
A Brief Comparison of Selected Forgetting Methods

Kamil Dedecius

Abstract— This paper brings a comparison of three selected
techniques for estimation of slowly varying parameters of
input-output models. One of them is the exponential forgetting
method, which is the most popular and simplest method, while
another method – the alternative forgetting – is based on
it. The third selected method is the partial forgetting, which
presents a completely different approach to the slowly varying
parameters. The comparison of these methods is based on a one-
step ahead prediction of a predefined time series with models
employing these forgetting methods. The prediction errors are
then compared.

I. INTRODUCTION

Tracking of parameters of a linear regressive models is a
key factor in adaptive algorithms of all kinds [1]. However,
if a process has to be modelled by a linear filter model,
its stationarity is a limiting condition. A stochastic process
x(t) is said to be stationary if its statistics (distribution
functions for each fixed t) are not affected by a time shift. It
means, that two processes x(t) and x(t+ ε) have the same
statistics for any ε [2]. If the moments are finite, then the
stationary process can be characterized with its first general
and second central moments and the direction of time cannot
be determined from them [3].

However, the condition of the stationarity cannot always
be fulfilled, moreover, most real processes are in their nature
not stationary (e.g. the longer-term economical series etc.).
If a statistician has to model such processes, he needs to
employ a scheme that allows changes in the moments like
the mean value and variance. The forgetting-based estimation
is then a popular option.

The goal of the paper is to demonstrate the prediction abil-
ities of regression models employing parameter estimation
with forgetting. The exponential [6][7] and alternative (some-
times called stabilized [5]) forgetting represent the more or
less classical approach to slowly varying parameters, while
the partial forgetting [12] is a newly developed method. For
our purpose, just the noise free time series with characteristic
roots in the right half-plane of the unit circle were modelled.

II. SYSTEM MODEL

Let’s have a discrete stochastic system observed at time in-
stants t = 1, 2, . . . This system can have directly manipulated
input ut, which affects the single system output yt. The cou-
ples of inputs and outputs in each time instant t form the data
vector dt = (ut, yt); the sequence d(t) = (d1, d2, . . . , dt)
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describes the evolution of the system behaviour in time, i.e.
from the beginning time 1 until the estimation time t.

Generally, the model output yt depends on the previous
data d(t − 1) and the current input ut. This dependence is
modelled by a conditional probability density function (pdf),
which has the form

f(yt|ut, d(t− 1), θt) = f(yt|ψt, θt) (1)

where θt stands for a model parameter (possibly multivariate
column vector) and ψt is a column regression vector contain-
ing all data that have an influence on the output yt.

Usually, the goal is to find such a probabilistic model that
differs from the reality presented by an unknown true pdf
as least as possible. As a measure of the difference between
two pdf (or distributions in general), the Kullback-Leibler
divergence defined as follows is used [4].

Definition 1 (Kullback-Leibler divergence): Let f and g
be two continuous probability density functions of a random
variable x. The Kullback-Leibler divergence, also known as
relative entropy, is defined as

KL (f(x)||g(x)) =
∫
f(x) ln

f(x)
g(x)

dx, x ∈ x∗ (2)

It measures the divergence of a pair of pdfs f and g,
acting on a set x∗. However, it cannot be considered as
a distance measure, since it does not satisfy neither the
symmetry KL (f ||g) 6= KL (g||f), nor the triangle inequality.

III. NORMAL REGRESSION MODEL

If we assume normality of the linear regression model
(1), we can consider the parameters to have Gauss-inverse-
Wishart (GiW) distribution defined as follows [5]:

Proposition 1 (Gauss-inverse-Wishart pdf): The probabil-
ity density functionof the Gauss-inverse-Wishart distribution
has the form

GiWΘ(V, ν) ≡ r−0.5(ν+n+2)

I(V, ν)
exp

{
−1
2r

[
−1
θ′

]′
V

[
−1
θ

]}
(3)

or

GiWΘ(L,D, ν) ≡ r−0.5(ν+n+2)

I(L,D, ν)
×

× exp
{
−1
2r

[
(θ − θ̂)′C−1(θ − θ̂) +DLSR

]}
(4)

where the individual terms have the following meaning:
ν stands for degrees of freedom,
n denotes length of the regression vector [−1, θ′]′,
r is the variance of model noise,



V is the extended information matrix, i.e. symmetric
square n×n dimensional non-zero positive definite
matrix, which carries the information about the past
data. By its L′DL decomposition, the terms L and
D are obtained.

θ is a vector of regression coefficients
θ̂ is a least-squares (LS) estimate of θ
C is the covariance of LS estimate
DLSR is the LS remainder
I stands for normalization integral

For the sake of generality, the time indices were omitted in
the Proposition 1.

The extended information matrix is symmetric and positive
definite and therefore factorable to the unique unit triangular
matrix L and the unique unit diagonal matrix D as follows

V =
[
V11 V12

V21 V22

]
=

= L′DL =
[

1 0
L1 L2

]′ [
D1 0
0 D2

] [
1 0
L1 L2

]
(5)

Here, the left upper-corner elements of the V and D
matrices are nonnegative scalars, D1, V11 ∈ R+. Recalling
Proposition 1, the least-square estimate of parameters θ̂ ≡
L−1

2 L1 has the covariance C ≡ L−1
2 D−1

2 (L−1
2 )′ and the

least-square reminder DLSR ≡ D1.

IV. PARAMETER ESTIMATION AND FORGETTING

According to the Bayesian approach, the unknown model
parameter θt is a random variable. Then, it is possible to
describe it by a probability density function, conditioned by
the data available at the current time instant t, i.e. f(θt|d(t)).
Under the natural conditions of control [6] the Bayes rule for
recurrent parameter estimation reads

f(θt|d(t)) ∝ f(yt|ψt, θt)f(θt|d(t− 1)) (6)

where ∝ denotes proportionality, i.e. equality up to a constant
factor.

This relation can be viewed as the data update – the
new information carried by the data is incorporated into the
parameter estimate.

In the case of time-variant parameters, the successive step
after the data update is the time update, formally given

f(θt+1|d(t)) =
∫
θ∗
f(θt+1|d(t), θt)f(θt|d(t)) dθ (7)

There are multiple ways how to obtain the posterior pdf
in (7). A popular approach is to employ some forgetting
method, enabling discounting of a (potentially) outdated
information. For purpose of this paper, the exponential,
alternative and partial forgetting were selected.

A. Exponential Forgetting

The exponential forgetting, also known as time-weighted
least squares [7] or flattening the posterior probability density
function [6], dominates the methods of solution of slowly
time-variant parameters issue. This approach introduces just
one new parameter λ ∈ (0, 1] called forgetting factor,

which is usually not lower than 0.95. This factor causes the
flattening of the pdf by exponentation of it

f(θt+1|d(t)) = [f(θt|d(t))]λ (8)

1) Exponential Forgetting in Normal Model: If we sup-
pose using the exponential forgetting method in normal
model, then the probability density function is powered by
the forgetting factor λ, which leads to the following time-
update scheme:

Vt = λVt−1 (9)
νt = λνt−1 (10)

Indeed, the forgetting step is as simple as the multipli-
cation of the extended information matrix and the counter
(number of degrees of freedom) by the forgetting factor.

B. Alternative Forgetting

Sometimes, the exponential forgetting is viewed as an
optimization problem of ‘balancing’ two probability density
functions f1 and f2. The unknown true pdf f̂ describing
the distribution of model parameters then equals to f1 with
probability λ, making the probability of the second pdf f2

to be 1 − λ. Then, the following proposition can be made
[5][8].

Proposition 2: Let an unknown true probability density
function f , describing the distribution of unknown param-
eters, be equal to pdf f1 with probability λ ∈ [0, 1] and
to pdf f2 with probability 1 − λ. Let the pdfs f1 and f2

be mutually non-orthogonal and have the same support θ∗.
Then, the relation

f̂(θ) ∝ [f1(θ)]λ[f2(θ)]1−λ (11)

describes the estimate of f , obtained as a solution of the
optimization problem

min
f

[λKL (f ||f1) + (1− λ)KL (f ||f2)] (12)

The proof can be found in [8]
In practical use, the pdf f1 is usually the filtered one,

obtained after the data update (6), while the another one
(f2) is any appropriate (preferably flat, e.g. the prior) pdf.
The relation (11) defines the time update step.

1) Alternative Forgetting in Normal Model: As it was
already mentioned above, the alternative forgetting (also
known as stabilized [5] assumes use of an alternative in-
formation. For the sake of convenience, such an information
takes the same form (distribution) as the latest information
available. In the case of a normal regressive model, the
alternative information is represented by a normal probability
density function with own information matrix VA and counter
(degrees of freedom) νA. The time update (i.e. forgetting) has
the following form

Vt = λVt−1 + (1− λ)VA (13)
νt = λνt−1 + (1− λ)νA (14)

Just like in the case of a simple exponential forgetting, the
factor λ ∈ [0, 1] denotes the weight (probability).



C. Partial Forgetting

The above mentioned methods lack the ‘explicit’ ability
to track the system with parameters which vary each with a
different rate. To solve this case, the partial forgetting method
[12] was developed.

The method of partial forgetting is based on an un-
known random true multivariate parameter pdf Tf(θ|d(t)) =
Tf(θ1, . . . , θn|d(t)), n ∈ N. As this pdf is unknown and
unavailable, it would theoretically be possible to consider a
hyper-distribution describing it. However, such a distribution
would be too complicated and unconvenient for our purpose,
but it would be fully sufficient to take into account only its
point estimates constructed on the basis of the hypotheses
about the individual parameters behaviour. These hypotheses
are given by the expectations as follows:

H0 : E
[
Tf(θ|d(t))|θ, d(t), H0

]
= f(θ|d(t))

H1 : E
[
Tf(θ|d(t))|θ, d(t), H1

]
=

= f(θ2, . . . , θn|θ1, d(t))fA(θ1)

H2 : E
[
Tf(θ|d(t))|θ, d(t), H2

]
=

= f(θ1, θ3, . . . , θn|θ2, d(t))fA(θ2)
. . .

Hn : E
[
Tf(θ|d(t))|θ, d(t), Hn

]
=

= f(θ1, . . . , θn−1|θn, d(t))fA(θn)

Hn+1 : E
[
Tf(θ|d(t))|θ, d(t), Hn+1

]
=

= f(θ3, . . . , θn|θ1, θ2, d(t))fA(θ1, θ2)

Hn+2 : E
[
Tf(θ|d(t))|θ, d(t), Hn+2

]
=

= f(θ2, θ4 . . . , θn|θ1, θ3, d(t))fA(θ1, θ3)
. . .

H2n−2 : E
[
Tf(θ|d(t))|θ, d(t), H2n−2

]
=

= f(θn|θ1, . . . , θn−1, d(t))fA(θ1, . . . , θn−1)

H2n−1 : E
[
Tf(θ|d(t))|d(t), H2n−1

]
= fA(θ) (15)

The pdf f(·) denotes the probability density function
obtained after the data update (6), while the pdf fA is
any appropriate alternative. We use it to explicitly declare
that one or more parameters have different distribution (e.g.
because they vary). Usually we keep the same distribution
and only change its moments. In the case of the normal
distribution we can employ a flat pdf, causing the release of
the parameters’ values. One of possible sources of the flat
pdf is the prior information.

Each of the hypotheses mentioned above has assigned a
weight (probability) λi, i = 1, . . . , 2n − 1 of becoming true
during the time run. As each hypothesis represents an atomic
random event, they altogether compose the whole probability
space and the sum of their weights must be equal to one,∑
i λi = 1 and λi ∈ [0, 1].
The convex combination of the probability density func-

tions according to individual hypotheses produces the expec-

tation of the true parameter probability density function.

E
[
Tf(θ|d(t))|C

]
= E

[
E
[
Tf(θ|d(t))|C, Hi

]
|C
]

=

=
2n−1∑
i=0

λiE
[
Tf(θ|d(t))|C, Hi

]
(16)

where C = {θ, d(t)}
We search for an approximative pdf f̃(θ|d(t)) of the

mixture (16) that belongs to the same family of distributions
as the mixture components. Under general conditions, as
a ‘measure’ of dissimilarity between two distributions, we
use the Kullback-Leibler divergence described in the former
part of the paper. Hence the approximative pdf could be
selected as that one which minimizes the expected divergence
between the mixture and itself

arg min
f̃∈f̃∗(θ|d(t))

E
[
KL
(
Tf
∣∣∣∣∣∣f̃) |C] =

= arg min
f̃∈f̃∗(θ|d(t))

E

[∫
θ∗

Tf(θ|d(t)) ln
Tf(θ|d(t))
f̃(θ|d(t))

dθ|C
]

=

= arg min
f̃∈f̃∗(θ|d(t))

∫
θ∗

E
[
Tf(θ|d(t))|C, Hi

]
ln

1
f̃(θ|d(t))

dθ =

= arg min
f̃∈f̃∗(θ|d(t))

∫
θ∗

2n−1∑
i=0

λiE
[
Tf(θ|d(t))|C, Hi

]
×

× ln
1

f̃(θ|d(t))
dθ (17)

Using the relation (17), we found the best approximation
of the true parameter probability density function f̃(θ|d(t)).
This pdf ideally approximates the probabilistic description
of the real behaviour of model.

1) Partial Forgetting in Normal Model: Here, with regard
to the theoretical approach described above, the situation
gets more complicated than in the case of the previous
two forgetting methods. The derivation of the forgetting
was thoroughly described in [12], to avoid the informational
overhead in this paper, let’s summarize just the result. First,
note that we need to enumerate the hypotheses (15) and
the related probability density functions. The successive
step consists in evaluation of a mixture of these pdfs as
given in (16) and its approximation (17) with respect to the
distribution parameters. The results of this procedure is given
by the following proposition.

Proposition 3: Given a convex combination (mixture) of
n Gauss-inverse-Wishart pdfs. Its best approximation in the
sense of the minimizer of the Kullback-Leibler divergence,
holding the GiW distribution, is given by the following
parameters (statistics)
• θ̃ – the regression coefficients

ˆ̃
θ =

(
n∑
i=1

λi
νi

DLSR,i

)−1

·

(
n∑
i=1

λi
νi

DLSR,i
θ̂i

)
(18)



• D̃LSR – the least-squares reminder

D̃LSR = ν̃ ·

(
n∑
i=1

λi
νi

DLSR,i

)−1

(19)

• C̃ – the least-square covariance matrix

C̃ =
n∑
i=1

λiCi +
n∑
i=1

λi
νi

DLSR;i

[(
θ̂i − ˆ̃

θ
)(

θ̂i − ˆ̃
θ
)′]
(20)

• and the counter (degrees of freedom)

ν̃ =
1 +

√
1 + 4

3 (A− ln 2)

2(A− ln 2)
(21)

where

A = ln

(
n∑
i=1

λi
νi

DLSR,i

)
+

n∑
i=1

λi lnDLSR,i−

−
n∑
i=1

λi ψ0(0.5νi) (22)

The proof is omitted as it would be necessary to include
the derivation of the Kullback-Leibler divergence of normal
probability density functions, its motivation is given in [12].
The given expression of counter employs an approximation
of the digamma function ψ0(ν̃). The approximation was done
on base of the Bernoulli numbers, however multiple methods
can be used (see e.g. [9][10][11]).

V. EXPERIMENTS

This section brings tests based on one-step ahead predic-
tions of the system output using the first-order autoregression
model AR(1) modelling the system in the form

yt+1 = θ1 + θ2yt (23)

where θ1 is the absolute term and θ2 is the dynamics,
yt is the system output in time t. The usually present
normal uncorrelated white noise with zero mean was omitted.
Because of the character of the AR(1) process model, only
the non-oscillating processes with poles in the right halfplane
were included to the test.

The quality of estimation was evaluated by the prediction
ability. As a criterion of the prediction quality, the relative
prediction error RPE defined as follows was considered

RPE =
1
s

√∑T
i=1(yp;i − yi)2

T
(24)

where yi denotes the real system output, yp;i is the predicted
output and s is the sample standard deviation of data on
horizon T .

If there was a need for an alternative, the prior information
build up from the first few data was used. The exponential-
and alternative-based estimators were run as defined, the

partial forgetting hypotheses were selected the following
way: the hypothesis H0, employing the plain filtered pdf,
was taken as the most probable one, the hypothesis H3

consisting of the completely alternative pdf was decided
to be very unlikely and assigned with weight of zero. The
two remaining hypotheses weights’ were searched with the
genetic algorithms (GAs) and are shown in the tables below.
The weight of H0 can be calculated as a complement to
unity.

A. Constant parameters

First, try to model the time series which is stationary and
stable. This series was generated by the equation

yt+1 = 0.9yt − 0.2, t = 1, 2, . . . , 300 (25)

with initial value y1 = 0. This time series is shown in the
Fig. 1.

Such a time series can be modelled both by a models with
and without forgetting. In a very short time aspect, this series
changes its statistics, however in a longer time it is stable.
The forgetting methods only lead to faster ”stabilization”
of the parameter estimation. The prediction quality gives
Table I. The alternative information for partial and alternative
forgetting was built up from the first five data.

The prediction error is the least in the case of partial
forgetting, which leads to the conclusion that the short-
time process is better modelled by a model with released
parameter (absolute term).

B. Time-varying dynamics

Now, we will try to model the series generated by the
relation

yt+1 = (0.9− 1/t)yt + 2, t = 1, 2, . . . , 300 (26)

initialized with y1 = 2. Such a process has for each time
instant t characteristic root inside the unit circle. However,

Fig. 1. Constant parameters.



Fig. 2. Time-varying dynamics.

in a short term, the change of the nominator of the term yt
can be viewed to be quite significant and therefore making
this particular example suitable for our purpose.

The course of the modelled data is depicted in the Fig. 2
Apparently, in this case the partial forgetting method led

to a better prediction than the other two methods, thus its
aim to track the parameters with different rate of change was
fulfilled. According to the intuition the exponential forgetting
based estimation produced the worst results. The results of
the latter two methods could yet be improved if there were
a more suitable alternative information. The alternative was
built from the first five data.

C. Time-varying absolute term

yt+1 = yt + 0.9t, t = 1, 2, . . . , 300 (27)

with y1 = 2. This process is a unit root process [13], as
its single root is equal to one, hence it is nonstationary.

TABLE I
CONSTANT PARAMETERS: ONE STEP-AHEAD PREDICTION OF TIME

SERIES.

Method Weight(s) RPE
Exponential 0.95 0.0501
Alternative 0.7569 0.0021
Partial [0.0063, 0.5059] 0.0001

TABLE II
TIME-VARYING DYNAMICS: ONE STEP-AHEAD PREDICTION OF TIME

SERIES.

Method Weight(s) RPE
Exponential 0.95 0.00336
Alternative 0.4078 0.00085
Partial [0.1435, 0.6122] 0.00061

Fig. 3. Time-varying absolute term.

TABLE III
TIME-VARYING ABSOLUTE TERM: ONE STEP-AHEAD PREDICTION OF

TIME SERIES.

Method Weight(s) RPE
Exponential 0.95 19.564e-05
Alternative 0.001 7.0712e-05
Partial [0.0086, 0.6973] 6.436e-05

Its character is explosive, which in combination with the
absolute term change makes it suitable for prediction with
forgetting-based parameter estimation.

The course of the series is shown in the Fig. 3. The results
of the prediction for all three methods shows Table III.

In this case the partial forgetting led again to the best
prediction, however the difference between it and the alter-
native forgetting were relatively not very big. The alternative
information was built from the first 10 data samples. The
exponential forgetting led to the worst prediction quality
(in comparison to the other two methods) as one would
intuitively expect.

D. Time-varying absolute term and dynamics

The last test demonstrates the prediction ability for a
system model with varying both regression coefficients. The
system is simulated with the following time series

yt+1 = (1 + 10−4t)yt + 10−3t, t = 1, 2, . . . , 300 (28)

initialized with y1 = 0. The single root of the process
lays outside the unit circle in the right halfplane, hence the
process is nonstationary. It is depicted in the Fig. 4.

The alternative information for the alternative and partial
forgetting was made up from the first five data. The partial
forgetting led to a bit better prediction than the alternative
one.



Fig. 4. Time-varying both parameters.

TABLE IV
TIME-VARYING BOTH PARAMETERS: ONE STEP-AHEAD PREDICTION OF

TIME SERIES.

Method Weight(s) RPE
Exponential 0.95 33.478e-05
Alternative 0.001 9.789e-05
Partial [0.0020,0.2490] 9.216e-05

VI. CONCLUSION

The paper brought a brief description and comparison
of three selected forgetting techniques, that can be used
in estimation of slowly varying parameters of nonstation-
ary stochastic systems. In the first part, they were shortly
introduced and described with references to the literature.
The second part of the paper compares their use in some
scenarios.

According to the tests given above, the best prediction
quality can be obtained with the partial forgetting, which
is more or less comparable to the alternative forgetting.
The reasoning leads to the conclusion that the exponential
forgetting, which is very fast, is usefull in the realtime
systems, when the time cost is the key element.

The main drawback of the partial forgetting consists in
the computational cost. While the exponential and alternative
forgettings are based on a simple exponentation of the
probability density function, which in the case of normality
leads to a simple multiplication of the appropriate terms, the
partial forgetting method needs a construction of hypotheses
and nontrivial approximation of a mixture of the hypothetical
pdfs. Moreover, the search for optima represents a multidi-
mensional problem and beside the search for optimal weights
we can yet search for optimal alternative.

VII. FUTURE WORK

This paper brought a brief comparison of three selected
forgetting techniques in the first-order autoregressive models,
used for one-step ahead predictions of stochastic processes
with a non-oscilating course. The future work will consist in
a deeper analysis of abilities of the forgetting methods and
development of a methodology for a selection of the optimal
weights and alternative information for the partial forgetting.
Currently, the underlaying environment for practical testing
and developement is formed by the traffic situation in Prague.
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