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Abstract Growing interest in applications of distributed systems, such as multi-agent systems, increases
demands on identification of distributed systems from partial information sources collected by local
agents. We are concerned with fully distributed scenario where system is identified by multiple agents,
which do not estimate state of the whole system but only its local ‘state’. The resulting estimate is
obtained by merging of marginal and conditional posterior probability density functions (pdf) on such
local states. We investigate the use of recently proposed non-parametric log-normal merging of such
‘fragmental’ pdfs for this task. We derive a projection of the optimal merger to the class of weighted
empirical pdfs and mixtures of Gaussian pdfs. We illustrate the use of this technique on distributed
identification of a controlled autoregressive model.
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1. INTRODUCTION

The field of estimation of distributed systems was established
by early works [Speyer, 1979] where distributed Kalman fil-
ter was developed. Nowadays, this area is receiving a lot of
attention due to growing interest in networked and distributed
systems, such as multi-agent systems or sensor networks. Tra-
ditionally, distributed system identification is performed by a
group of agents with identical description of the state, which
is estimated from observations available to each agent [Alriks-
son, 2008]. Each agent provides posterior probability density
function (pdf) on the common state variable. The pdfs are then
combined using various merging techniques. This approach is
suitable for applications in distributed target tracking or local-
ization [Rosencrantz et al., 2003]. However, this arrangement
does not scale well to systems with large state such as traffic
networks [Šmídl and Přikryl, 2006]. Moreover, modelling of
the full common state may be unnecessary in situations when
only local state of an agent is required to make decisions. In
such applications, it is sufficient to improve only posterior pdf
on the local state using information from the neighbors.

We are concerned with fully distributed scenario, where each
agent is building posterior pdf on its local state and can com-
municate this pdf to its neighbors. The communicated pdfs can
be of any type and shape, can be defined on any variable and
conditioned on any variable. They have to be only weakly com-
patible: the underlying joint pdfs have to have common support.
Up to our knowledge, this task has been addressed in the litera-
ture only very recently by Kárný et al. [2008], where a method-
ological solution for fully decentralized decision-making with a
flat structure of cooperation was introduced. This approach nat-
urally embraces distributed identification and has the following
features of interest:

• the proposed methodology allows to combine fragmental
information such as pdfs of overlapping variables, or
merging of pdfs characterized by moments only,

• the used non-parametric evaluation scheme allows a uni-
fied handling of different types of pdfs,

• the numerical implementation of the resulting combina-
tion was elaborated only for a rectangular grid support.

While the first two features are of practical interest, the
third represents a strong limitation for evaluation of high-
dimensional pdfs or pdfs varying on wide support.

In this paper, we present a new way of evaluation of the non-
parametric results. Specifically, we project the non-parametric
pdfs into the class of weighted empirical pdfs. Merging of the
source pdfs projected into this class is almost identical to the
grid-based version. However, decomposition of the pdf into
conditional and marginal pdfs—which is needed for merging
of fragmental pdfs—is difficult in this class. This problem is
addressed by projecting the empirical pdfs into a mixture of
pdfs from exponential family. The resulting algorithm provides
a universal tool for merging of pdfs. It can be used in various
structures of decentralized identification such as peer-to-peer
structures, hierarchical structures or structures with special-
purpose mediator agents.

The paper is organized as follows. In Section 2, we shortly
review the non-parametric probability merging of [Kárný et al.,
2008]. In Section 3, we provide the proposed evaluation scheme
based on importance sampling and probabilistic mixtures. Fi-
nally, the resulting algorithm is applied to distributed estimation
of a controlled regressive model in Section 4.

2. BAYESIAN MERGING

We are concerned with two scenarios: (i) merging of source
pdfs describing a common variable x, (ii) and merging of
sources with only fragmental information about x. Solution of
the former scenario will be used as a subroutine for solution
of the latter scenario. If not stated otherwise, all results in this
Section are from [Kárný et al., 2008].
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Figure 1. Illustration of log-normal merging for two Gaussian source pdfs. Dotted lines denote original source pdfs, full lines
denote result of log-normal merging for β = 1 (left), β = 2 (middle) and β = 100 (right). For comparison, results of arithmetic
merging and geometric merging are displayed as thick dashed lines in the left and in the right plot, respectively.

2.1 Merging of pdfs with common variable

The task is to aggregate information from several source pdfs,
f1:S(x) ≡ { f1(x), . . . fS(x)}, into one combined pdf, f̃ (x), ∀x ∈
x∗. x∗ is common support of all sources and the symbol ζ1:m =
{ζ1, . . . ,ζm} is used throughout for various ζ .

The considered task is known as probability merging or proba-
bility combination. It has been studied in statistics for decades,
see e.g. Genest and Zidek [1986] for survey. Many methods
were developed for specific problems, however, no generally
accepted solution is established. In this paper, we follow so-
called supra Bayesian approach, where the ‘ideally’ combined
pdf f̃ (x) is interpreted as an unknown parameter and the sources
are taken as its ‘noisy’ observations. Since the ‘parameter’ f̃ (x)
is infinite-dimensional in generic case, the merging becomes
the task of non-parametric Bayesian parameter estimation. The
task is conceptually solved by the Bayes rule if we choose: (i)
likelihood function of sources fs(x) given f̃ (x), and (ii) prior
pdf on the estimated pdf f̃ (x).

The estimation problem is solved in point-wise manner at
points xxxi ∈ x∗, i = 1, . . . ,n, (boldface marks realizations) with
the following choices within the supra Bayesian approach:

(1) The likelihood function f ( fs| f̃ ,σ ,x) is chosen as log-
normal pdf with mean value f̃ (x) and variance σ . For
concise notation, we have dropped explicit mentioning of
f̃ being a function of x and replaced it by conditioning on
x. This notation will be used in the sequel.

(2) The prior pdf f ( f̃ |σ) on values f̃ is chosen as improper
uniform pdf on positive real axis and prior pdf on the
parameter σ as exponential pdf f (σ) ∝ exp(−βσ). The
symbol ∝ denotes equality up to the normalizing constant.

The choice of a proper prior pdf is necessary for obtain-
ing finite values of the estimate, cf. Remark 1.

The above mentioned model was chosen from several candi-
dates, see discussion of its choice in [Kárný et al., 2008].

The posterior pdf f ( f̃ | f1:S,x) is obtained via the Bayes rule:

f ( f̃ | f1:S,x) ∝

∫ S

∏
s=1

f ( fs| f̃ ,σ ,x) f ( f̃ ) f (σ). (1)

The above formal posterior pdf specifies distribution on infinite-
dimensional pdf f̃ treated in non-parametric way. In majority
of practical applications, we seek for a point estimate of f̃ ,

typically, within a class of parametric parametric pdfs, f (x|V ),
where V ∈ V ∗ is their parameter. Following the Bayesian
approach, the best point estimate within the parametric class
f (x|V ) is obtained by minimizing expected Kerridge inaccu-
racy, [Bernardo, 1979]:

V̂ = arg min
V ∈V ∗

−
∫

f̂ (x) ln f (x|V )dx (2)

f̂ (x)≡ E( f̃ (x)| f1:S,x),
E(·|·)≡ expectation given by the pdf (1).

The resulting pdf f (x|V̂ ) will be called the merger. For exam-
ple, the result of minimization (2) for pdfs with support in finite
number of points x ∈ xxx1:n = {xxx1, . . . ,xxxn} is

f (x = xxxi|V̂1:S) ∝ E( f̃ | f1:S,xxxi) = f̂ (x = xxxi) (3)

V̂1:S ≡ { f1:S(x), x ∈ xxx1:n}.

Evaluation of the conditional expectation of the unknown pdf
as a function of x is non-trivial. An approximate formula for it
was given in [Kárný et al., 2008]. Exact formulas for S = {2,3}
were derived in [Šmídl, 2008]. It holds:

f (xxxi|V̂1:2) ∝ exp
{

µ̂i +
√

2βλi

(
1−
√

4β−3
4β

)}
, (4)

f (xxxi|V̂1:3) ∝

B
(

0,
√

2βλi

√
3β−2

3β

)
B
(

0,
√

2βλi

) exp(µ̂i). (5)

Here, B denotes a modified Bessel function of the second kind,
µ̂i = 1

S ∑
S
s=1 ln fs(xxxi), and λi is a remainder after least squares,

λi = ∑
S
s=1 ln2( fs(xxxi))−Sµ̂i

2. Analytical formulas for S > 3 can
be also obtained using software for symbolic mathematics.
Remark 1. (Choice of β ). The parameter β , determining prior
pdf on σ occurring in the adopted log-normal model, is the only
free parameter of the proposed merging. It can be shown, that
limβ→∞ f̂ (xxxi) ∝ exp(µ̂i). This asymptotic merger

limβ→∞ f̂ (x) ∝ exp
( 1

S ∑
S
s=1 log fs(x)

)
,

coincides with the result of geometric merging or (also called
logarithmic pooling) [Genest and Zidek, 1986]. It was used in
distributed identification by Julier and Uhlmann [1997].

The merger is to be a proper pdf. This determines lower bound
on β . At present, just numerical experiments suggest that β

should not be chosen below 1. For β ≈ 1, f̂ (x) is approaching
the result of arithmetic merging.



Fig. 1 illustrates influence of β on merging of two Gaussian
pdfs, f1(x) = N (−2,1) and f2(x) = N (2,2). It shows that the
gained merger provides a compromise between properties of
the two most common arithmetic and geometric merging.

2.2 Merging of lower dimensional and conditional pdfs

Consider the case when respective sources inform about parts
of multivariate variable x. The sth source provides the pdf
fs(xs,d |xs,c) concerning of sub-selection xs,d of x-entries con-
ditioned on another sub-selection xs,c. A part of the x, denoted
xs,0, may not be modelled by the source at all. Each source may
have different partitioning of x. In order to combine all sources
via the method described in Section 2.1, each source must be
extended to the common variable x using the chain rule:

fs(x) = f s(xs,0|xs,d ,xs,c) f (xs,d |xs,c) f s(xs,c), s = 1, . . . ,S. (6)

The choice of the pdf f (·) used for the extensions (6) has
significant influence on the resulting combined pdf. Following
the Bayesian approach, the unknown extensions are to be op-
timized by minimization of the Kerridge inaccuracy, in same
spirit as in (2). It can be shown that the optimal extension is
constructed using the optimal merger. This converts the formula
for the merger into an implicit equation. The resulting implicit
equation can be solved by successive approximation as follows:
Algorithm 1. (Merging of fragmental sources).

(1) Obtain initial guess of the merger f̂ 0(x), set maximum
number of iterations jmax, and set iterative counter j = 0,

(2) For each source, relating xs,d ,xs,c via fs(xs,d |xs,c), s ∈
{1 . . .S},
– factorize the current merger f̂ j(x) such that

f̂ j(x) = f̂ j(xs,0|xs,d ,xs,c) f̂ j(xs,d |xs,c) f̂ j(xs,c). (7)
– Create the sth extended source by complementing it
by factors of the current merger on the non-modelled
variables and variables in condition:

f̂ j
s (x) = f̂ j(xs,0|xs,d ,xs,c) fs(xs,d |xs,c) f̂ j(xs,c). (8)

(3) Combine extended sources f̂ j
s (x) into f̂ j+1(x) using (3).

(4) Stop if f̂ j converged or j ≥ jmax. Otherwise set j = j +1
and go to step (2).

Convergence of the algorithm can be checked, for example,
by checking if a statistical divergence of f̂ j(x) on f̂ j+1(x) is
smaller than a chosen threshold. At present, no proof of conver-
gence of the algorithm is known. The influence of the initial
guess pdf f̂ 0(·) on the result is also not known. Simulation
studies of the algorithm, Šmídl [2008], suggest that:

• The algorithm cannot provide unique results when merg-
ing sources with important information missing. For ex-
ample, when merging sources f1(a|b,c) and f2(a), the
extension on f (b,c) is arbitrary and the solved equation
lacks a unique solution. However, even in this case, pro-
jection f̂ (a|b,c) of the arbitrary merger f̂ (a,b,c) typically
converges to a single solution.
• The algorithm converges to a unique solution when degen-

erated cases mentioned above are structurally excluded.

3. PROJECTION TO WEIGHTED EMPIRICAL DENSITIES

In principle, the optimal non-parametric merger can be pro-
jected to any class of pdfs using formula (2). The implied

optimization problem is, however, difficult to solve for prac-
tically important families, such as mixtures of Gaussians. We
have already noted that (2) is analytically tractable for pdfs
with support on a finite number of discrete points, (3). The
challenge is to position these points into areas of high density of
the merger. Here, we design a procedure based on importance
sampling and mixtures of exponential family pdfs.

3.1 Importance sampling

Importance sampling, [Gilks et al., 1996], refers to techniques
for generating an empirical approximation of a pdf f (x):

f (x)≈ f (x|xxx1:n) =
1
n

n

∑
i=1

δ (x− xxxi) , (9)

where xxxi, i = 1, . . . ,n are independent identically distributed
samples from the pdf f (x) and δ (·) denotes the Dirac δ -
function. The approximation (9) is feasible only if we can
sample from the exact pdf f (x). Otherwise, we can draw sam-
ples from a chosen proposal pdf (importance function), q(x),
yielding approximation in the form of a weighted empirical pdf:

f (x|xxx1:n)≈ κ
−1

n

∑
i=1

wiδ (x− xxxi) , (10)

wi = f (xxxi)/q(xxxi) . (11)
Under this importance sampling procedure, the approximated
pdf f (x) need only be evaluated point-wise. Furthermore, nor-
malizing constant of f (·) is not required, since (10) can be
normalized trivially via the constant κ = ∑

n
i=1 wi.

Note that this procedure alone can be used to approximate
the merger f̂ (x) when all sources describe the same variable,
Section 2.1. Samples xxxi can be drawn from any proposal pdf
on the same support as the sources, weighted using (11) with
the numerator f̂ (xxxi). The resulting weighted empirical pdf con-
verges to the non-parametric merger for n→ ∞. Convergence
rate of the procedure depends on closeness of the proposal pdf
to the merger.

Extension of this procedure to the case with fragmental sources
is challenging since Algorithm 1 requires partitioning of the
merger into marginal and conditional pdfs and evaluation of
those pdfs at points xxxi. Due to the involved Dirac functions,
these operations are poorly defined and can be evaluated only
approximately. Kernel smoothing, [Wand and Jones, 1995],
is a typical solution to this problem. It positions a kernel
function around each sample and provides the approximation
in the form of a mixture model. Drawbacks of this approach
are high computational cost for large number of samples and
the need for an adequate choice of the kernel. An alternative
approach—used e.g. in [Bishop et al., 1998]—is to choose
a mixture model with a low number K � n of parametric
components and fit the mixture to the empirical pdf using one
of many available techniques. However, an algorithm for fitting
weighted empirical pdfs is not available. It is derived below.

3.2 Fitting mixture models to weighted empirical pdf

Fitting any parametric model to a non-weighted empirical pdf
is equivalent to Bayesian estimation of the model parameters
using xxx1:n as data. Point Bayesian estimation of mixture model
parameters can be solved using the EM algorithm and its vari-
ants [Titterington et al., 1985]. Here, we outline an algorithm
based on the Quasi-Bayes (QB) approach [Kárný et al., 2005].



The algorithm is suitable for mixture of pdfs from exponential
family, but for simplicity it will be derived for mixtures of
Gaussian pdfs (components)

f (x|Vm) =
K

∑
k=1

αkN (µk,Σk). (12)

Here, Vm ≡ {αk, µk, Σk}K
k=1, where µk denote mean value and

Σk covariance matrix of the kth Gaussian component, α denotes
vector of component weights ∑

K
k=1 αk = 1, αk ≥ 0.

Estimation of the mixture model via the QB algorithm is based
on defining internal (latent) variable lk,i such that lk,i = 1 if the
ith data record, xxxi, was generated by the kth component of the
mixture and lk,i = 0 otherwise. Assuming that we know that the
kth component was used to generate ith data sample, likelihood
of the ith sample is the Gaussian pdf: f (xxxi|α,µ,Σ, lk,i = 1) =
f (xxxi|µk,Σk). The advantage of this parameterization is that
estimation of parameters µk,Σk is trivial if lk,i is known for each
i. Conjugate pdf to a Gaussian likelihood with unknown mean
and covariance matrix is Gauss-inverse-Wishart pdf. Hence,
with appropriate choice of prior, the posterior pdf on parameters
of the kth component, f (µk,Σk|xxx1:n) is of the Gauss-inverse-
Wishart type [Peterka, 1981] with sufficient statistics:

Vk =
n

∑
i=1

lk,i

[
xxxi
1

]
[xxxi
′ 1] +Vk,0, νk =

n

∑
i=1

lk,i +νk,0, (13)

where Vk,0, νk,0 parameterize prior Gauss-inverse-Wishart pdf.

The QB algorithm substitutes the unknown lk,i in (13) by their
expected value, lk,i ≡ l̂k,i, re-estimates posterior pdf µk,Σk, then
re-estimates l̂k,i and so on until convergence. The same idea
applied to the case of weighted empirical pdfs yields posterior
pdfs on the mixture component parameters in the form of
Gauss-inverse-Wishart pdf with sufficient statistics:

Vk =
n

∑
i=1

l̂k,iwi

[
xxxi
1

]
[xxx′i 1] +Vk,0, νk =

n

∑
i=1

l̂k,iwi +νk,0. (14)

This formula achieves the same effect as mixture estimation on
non-weighted empirical pdf obtained by re-sampling operation
[Doucet et al., 2001], see Šmídl [2008] for discussion.

The parameter V̂m = {α̂k, µ̂k, Σ̂k}K
k=1 minimizing (approxi-

mately) the inaccuracy (2) within the mixture class (12) is
composed of expected values, which are computed from the
statistics (14), [Peterka, 1981].

3.3 Final Merging Algorithm

Using building blocks designed and reviewed above, the pro-
posed log-normal merging of fragmental information appli-
cable to high-dimensional case is described by the following
algorithm.
Algorithm 2.

(1) Obtain all sources, fs(xs,d |xs,c), and specify statistics V̂ 0
m

characterizing initial guess of the mixture merger (12). Set
maximum iteration count jmax = 1.

(2) Generate n samples xxx1:n from the mixture f (x|V̂ j
m ) and

store the values f (xxxi|V̂ j
m ), i = 1, . . . ,n.

(3) Call Algorithm 1 with f̂ j(x) = f (x|V̂ j
m ), samples xxx1:n and

stopping time jmax to obtain f (xxxi|V̂1:S), i = 1, . . .n, (3).
(4) Evaluate weights (11) of the empirical approximation of

the merger wi ∝ f (xxxi|V̂1:S)/ f (xxxi|V̂ j
m ).

(5) Obtain ( j + 1)th mixture approximation of the merger,
f (x|V̂ j+1

m ), (12), using the modified QB algorithm, Sec-
tion 3.2.

(6) Stop, if the algorithm has reached a steady state. Other-
wise, goto step (2).

Two unspecified parts of the Algorithm 2 are how to choose the
initial proposal pdf and how to stop the algorithm. In practical
application, the initial proposal may be designed using expert
knowledge, or alternatively a Gibbs-sampling-like scheme can
be designed [Šmídl, 2008]. The stopping rule of the algorithm
is based on comparing divergence between the current and
previous approximating mixture.

Low maximum number of iterations jmax (even 1) in Algorithm
1 supports overall numerical stability. When the initial guess
f̂ j(x) is far from the optimal, the values of the merger in
many samples may be close to zero and only a few become
significant in iterations. In a pathological situation, only one
sample receives non-zero weight causing numerical instability.
When the initial guess is known to be close to the expected
optimum, the value of jmax can be increased, or it can be be
estimated using e.g. efficient sample size [Doucet et al., 2001].
Remark 2. (Identification scenarios). For simple scenarios with
a limited number of known types of pdfs, an agent evaluating
algorithm Algorithm 2 can receive only statistics of the pdfs.
However, in highly heterogeneous environments, it may be

advantageous to design a special purpose mediating agent per-
forming Algorithm 2 and distributing evaluation of the third
step—i.e. Algorithm 1—between agents. Specifically, the sam-
ples generated in step (2) are send to the neighbors which
evaluate values of their local pdfs in given points and send the
resulting empirical pdf back to the mediator. The mediator use
these values within step (3), equation (8) of Algorithm 1. The
remaining steps are performed by the mediator. This scenario
is illustrated in Figure 2, where the mediating agent, A3, is
merging pdfs from local agents A1 and A2.

A2(b,r)

S(a,b,r)

A1(a,r)

zt

ut
yt A3 f̂ (a,b,r)

f1(aaa,rrr)

f2(bbb,rrr)

aaa,rrr

bbb,rrr

Figure 2. Fully distributed identification. System S with pa-
rameters a,b,r is identified by local agents A1 and A2
which are capable of observing only part of the data space,
yt ,ut and yt ,zt , respectively. These agents build their pos-
terior pdfs f (a,r|y1:t ,u1:t) and f (b,r|y1:t ,z1:t). Merging of
these statistics is mediated by agent A3, which operates on
common support x = [a,b,r]. It generates samples aaa,bbb,rrr
and sends their appropriate sub-selections to local agents
A1 and A2 (dotted lines). Local agents evaluates values
of their statistics at these points and send them back to
A3 (dashed lines). The merger f̂ (x) = f̂ (a,b,r) can be
provided in either empirical or mixture form.
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Figure 3. Expected values of the estimated parameters using: centralized approach (solid line), local estimates (dash-dotted line),
and supra Bayesian merging of fragmental pdfs with β = 1.5 (dashed line).
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Figure 4. Expected values of the estimated parameters using: centralized approach (solid line), local estimates (dash-dotted line),
and supra Bayesian merging of fragmental pdfs with β = 1000 (dashed line).

4. DISTRIBUTED IDENTIFICATION OF A
CONTROLLED REGRESSIVE MODEL

The proposed algorithm was applied to the task of identification
of the following controlled regressive model

yt = aut +bzt + et , (15)
where yt ,ut ,zt are observed data, a,b are unknown regres-
sion coefficients and noise et is Gaussian with zero mean
and unknown variance r. The task is to evaluate posterior pdf
f (a,b,r|y1:t ,u1:t ,z1:t). The process is observed by two agents:
A1 is capable of observing yt and ut , and A2 is capable of
observing yt and zt . They report their (fragmental) posterior
pdfs to agent A3, which merges them using Algorithm 2. In the
centralized (full information) setup, the posterior f (a,b,r|·) is
of the Gauss-inverse-Wishart form with statistics

Vt =
t

∑
τ=1

 y2
τ yτ uτ yτ zτ

yτ uτ u2
τ uτ zτ

yτ zτ uτ zτ z2
τ

+V0, νt = ν0 + t. (16)

Exact marginals f (a,r|·) and f (b,r|·) of f (a,b,r|·) are of the
Gauss-inverse-Wishart form with νt as in (16) and statistics

V1,t =
t

∑
τ=1

[
y2

τ yτ uτ

yτ uτ u2
τ

]
+V1,0, V2,t =

t

∑
τ=1

[
y2

τ yτ zτ

yτ zτ z2
τ

]
+V2,0.

(17)
Thus, agents A1 and A2 can collect these statistics and report
exact marginals to agent A3. Note that statistics ∑τ uτ zτ is

not collected by any agent and the merging procedure must
compensate for that.

A naive approach for A3 could be to merge marginal pdfs from
A1 and A2 under the assumption of mutual independence of
ut and zt . Thus, A3 can build its statistics V3,t using elements
from V1,t and V2,t where appropriate and take the expected value
of the missing term. However, the resulting matrix V3 may
be negative definite, disqualifying it from being a statistics of
Gauss-inverse-Wishart pdf. Hence, an optimization procedure
would have to be derived that optimizes the missing value such
that V3 remains positive definite. The proposed merging scheme
achieves this automatically.

A simulation experiment of 100 data generated by model (15)
was performed with a = 1.5, b = 0.8, r = 0.01, and

ut = sin3
(

π

40
t
)

, zt = sin3
(

π

40
t +

π

10

)
.

The point estimates obtained by the merging algorithm for three
components and two choices of β , β = 1.5 and β = 1000,
are displayed in Fig. 3 and Fig. 4, respectively, via posterior
expected values of the unknown parameters.

Note that the merging algorithm preserves expected values of
the parameters unique to agents A1 and A2, i.e., a and b, respec-
tively, and merges the expected value of the common parameter
r. With increasing value of β the merged expectation of r is
decreasing. For β = 1.5, the merged variance almost coincide



with its expectation provided by agent A2. Note that due to the
missing part of the statistics, uτ zτ , mutual correlation between
uτ and zτ is not recognized. Hence, each agent considers the
unobserved input as a part of the disturbance et , which results
in a biased estimates of a and b, and increased expected value
of variance σ .

Uncertainty bounds on the estimates are not displayed in Fig-
ures for clarity. Terminal variances of the estimates for β =
1000 at t = 100 were:

A1 : var(a) = 0.006, std(a) = 0.07, var(r) = 0.002,

A2 : var(b) = 0.025, std(b) = 0.16, var(r) = 0.007,

A3 : cov(a,b) =
[

0.016 0.003
0.003 0.027

]
, var(r) = 0.008.

Note that standard deviation of the posterior estimate of a is
relatively small compared to the bias in the expected value, Fig-
ure 4. The merged variance on a is, however, significantly in-
creased, while the merged variance of b was almost preserved.
Thus the error caused by the missing statistics was compensated
in this way.

Source code for the method and this example are available:
http://mys.utia.cas.cz:1800/trac/bdm.

5. DISCUSSION AND CONCLUSION

The paper presents a first step development of a fully automatic
method of probability merging. Many technical details were
necessary to describe the method in full. However, most of
those details are routine applications of the probability calculus.
The main ideas of the paper are as follows:

• Supra Bayesian approach to merging fragmental proba-
bilistic knowledge pieces is a feasible methodology.
• The best merger is found to be the expectation of the

unknown objective pdf describing union of all random
variables considered. A fragmental knowledge piece is to
be extended in a unique and unambiguous way.
• The evaluating method was designed to be as general as

possible. Being a combination of importance sampling
with proposal pdf in the form of a mixture of exponential
family pdfs, it is ready to be used in various implementa-
tions as a black box. The only constraint is the common
support of all sources. In case of restricted support, the
method has to be extended to accommodate for that e.g.
by rejection sampling.

The resulting merging methodology has a wide scope of ap-
plications ranging from elicitation of prior pdfs from expert
opinions over distributed system identification and data fusion
to fully decentralized scenarios of cooperative agents.

The presented application was rather simplistic, its purpose was
to demonstrate that the algorithm is capable of merging arbi-
trary pdfs, such as marginals of Gauss-inverse-Wishart pdf. For
this particular example, an algorithm achieving similar perfor-
mance at lower cost can be designed. The value of our approach
is that the merging was achieved automatically without the need
for analyzing sufficient statistics and their optimization.

The price for generality of the method is its high computational
cost. Many simplifications can be made to lower the cost. For
example, when the merger is supposed to be in a specific class–
e.g. Gaussian–the weighted empirical pdf can be fitted by a

Gaussian pdf which is much cheaper operation compared to
fitting mixtures.

The methodological foundations of the approach are almost
complete, the only missing part is proof of the convergence
of the iterative algorithm. Alternatively, a methodology for
choosing parameter β can be designed. However, we expect
that most of the future work is in application of the method
to fully distributed scenarios for which it was developed and
designing more efficient approximations of the proposal pdf.
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