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ABSTRACT

The paper deals with estimation of a state with discrete values.
The proposed estimation technique is evolved as an applica-
tion of Bayesian filtering to a state-space model with discrete
distribution. The example of filtering is shown with Bernoulli
distributions. The considered problem is one of the items aim-
ing at filtering with mixed continuous and discrete state. Il-
lustrative experiments demonstrate the filtering with discrete
simulated data from the traffic control area, which is a poten-
tial application domain of the research.

Index Terms— State-space model, Bayesian filtering, dis-
crete distribution

1. INTRODUCTION

The paper deals with state estimation of a system, whose state
is a discrete-valued one. Discrete state estimation is an impor-
tant task, solution of which is highly desired in many applica-
tion domains (econometrics, traffic flow control, biomedical
studies, robotics, radiation protection etc). The target appli-
cation of the presented paper is traffic control, where discrete
variables are used for modeling of a driver state, level of dan-
gerous driving, visibility, surface of a road, existence of car
queues etc. It is necessary to highlight that the global objec-
tive of the present research is the filtering with mixed (contin-
uous and discrete) data. Thus, the problem discussed in the
present paper is one of the subtasks for reaching this aim.

Majority of techniques found in the context of discrete
state estimation are based on hidden Markov models [1, 2, 3].
Estimation with mixed (continuous and discrete) data is a
known problem in the field of logistic regression [4]. Analyz-
ing the current state-of-the-art concerning the discussed filter-
ing problem, one can find the stochastic approximations (par-
ticle filters) [5] at first sight to be a suitable solution. How-
ever, the particle filters require a high computational cost and
fail to win against analytically tractable solutions. Thus, a
reliable analytical solution with an adequate computational
complexity is needed.
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The first results [6] of the present research were concerned
with entry-wise organized Bayesian filtering with the mixed-
type state. Bayesian filtering [7] applied to continuous Gaus-
sian state-space model provides Kalman filter [8]. The paper
explores the filtering specialization to discrete distributions in
order to involve it later to the mixed state estimation.

Layout of the paper is as follows. Section 2 provides basic
facts about the probabilistic state-space model and Bayesian
filtering. Section 3 is devoted to the filtering with discrete
state-space model, where the involved variables have Bernoulli
distribution. Section 4 provides illustrative experiments con-
cerned with the traffic control area. Remarks and plans of
future work in Section 5 conclude the paper.

2. PRELIMINARIES

The probabilistic state-space model of the system, a state of
which has to be estimated, is provided with the help of the
following conditional probability (density) functions (p(d)fs).
The observation model, specified by

f (yt|ut, xt) , (1)

relates the system output yt to the system input ut and the
unobserved system state xt at discrete time moments t ∈ t∗ ≡
{0, . . . , t̊}, where t̊ is the cardinality of the set t∗ and≡means
equivalence. The state evolution model

f (xt+1|ut, xt) , (2)

describes the evolution of the system state xt. The estimation
of the finite-dimensional system state calls for application of
Bayesian filtering. Bayesian filtering, estimating the system
state, includes the following coupled formulas.
Data updating

f
(
xt
∣∣dt) =

f (yt|ut, xt) f
(
xt
∣∣dt−1

)∫
f (yt|ut, xt) f

(
xt
∣∣dt−1

)
dxt

, (3)

∝ f (yt|ut, xt) f
(
xt
∣∣dt−1

)
,

(∝ means proportionality) incorporates the experience con-
tained in the data dt, where dt = (d0, . . . , d̊t) and dt ≡
(yt, ut).



Time updating

f
(
xt+1

∣∣dt) =
∫
f (xt+1|ut, xt) f

(
xt
∣∣dt) dxt, (4)

fulfills the state prediction. The filtering does not depend on
the control strategy {f(ut|dt−1)}t∈t∗ but on the generated
inputs only. The prior pdf f(x0), which expresses the sub-
jective prior knowledge on the state x0, starts the recursions.
Application of (3)-(4) to linear Gaussian state-space model
provides Kalman filter [9].

Decomposition of models (1)-(2) via the chain rule [8]
represents them as the product of p(d)fs of the individual state
and output entries.

f(yt|ut, xt) =
ẙ∏
j=1

f(yj;t|yj+1:̊y;t, ut, x1:̊x;t), (5)

f(xt+1|ut, xt) =
x̊∏
i=1

f(xi;t+1|xi+1:̊x;t+1, ut, x1:̊x;t),(6)

where ẙ and x̊ denote number of entries of column vectors yt
and xt respectively, j = {1, . . . , ẙ}, i = {1, . . . , x̊}. A nota-
tion in the form xi+1:̊x;t in (5)-(6) denotes a sequence of the
vector entries from (i+1) to x̊, i.e. {xi+1;t, xi+2;t, . . . , xx̊;t},
which is empty, when (i + 1) > x̊. The known input ut is
factorized within computations. The filtering (3)-(4) with de-
composed models (5)-(6) preserves the entry-wise form of the
state estimate f (xt+1|dt) =

∏x̊
i=1 f (xi;t+1|xi+1:̊x;t+1, d

t)
[6]. This enables its exploitation with various distributions
of entries. The solution specialized to Gaussian state-space
model can be found in [6]. The present paper considers the
discrete state-space model.

3. FILTERING WITH DISCRETE-VALUED STATE

Let’s assume that the variables yt, xt and ut are of a discrete-
valued nature. It means that one must investigate application
of the filtering (3)-(4) to models with discrete distributions.
In general, the multivariate discrete variables would lead to
decomposition of the state-space model according to (5)-(6).
When speaking about the state, one must consider the state
vector xt ≡ [x1;t, . . . , xx̊;t]′ with finite, preferably small x̊,
where each entry xi;t with i = {1, . . . , x̊} has a set of pos-
sible values {s1, s2, . . . , sn} with finite number n. However,
the estimation of the state vector with discrete entries is sig-
nificantly simplified via a special mapping of the multivariate
state to a scalar one. The mapping is proposed via a determi-
nation of the new set of possible values for the scalar discrete
state. The new set is constructed so that each possible com-
bination of values of all entries xi;t, i.e. {(x1;t = s1, x2;t =
s1, . . . , xx̊;t = s1), (x1;t = s2, x2;t = s1, . . . , xx̊;t = s1), . . . ,
(x1;t = sn, x2;t = sn, . . . , xx̊;t = sn)}, is denoted as the new
scalar value, belonging to this set, i.e. {k1, k2, . . . , kN}, N is

a number of combinations1. The mapping provides necessary
reduction of dimension of the state. The similar reducing of
the dimension is applied to the multivariate output and input.
It means, that the filtering (3)-(4) can be used directly with
models (1)-(2).

Let’s assume, that the scalar variables (either due to the
mapping or naturally) with the finite set of possible discrete
values have to be considered for the filtering. Generally, dis-
crete multinomial distribution could have been used for the
models (1)-(2) with these variables. For the sake of simplic-
ity, a number of possible values in the set is restricted by two,
which leads to Bernoulli distribution.

Let’s consider the observation model (1) described by the
Bernoulli distribution, shown in Table 1, where α with corre-
sponding indices denotes a probability (assumed to be known)
of taking the possible values by the output, conditioned on
values of the state and input. The set of discrete values for all
the variables is given as {k1, k2}, and the probability α2|ij is
always defined as (1−α1|ij). The Bernoulli distribution from

Table 1. Bernoulli observation model
yt = k1 yt = k2

ut = k1, xt = k1 α1|11 α2|11
ut = k2, xt = k1 α1|21 α2|21
ut = k1, xt = k2 α1|12 α2|12
ut = k2, xt = k2 α1|22 α2|22

Table 1 written with the help of Kronecker delta is presented
in the following product form

f (yt|ut, xt) =
∏

ut,xt∈{k1,k2}

α
δ(yt,k1)
1|utxt

α
δ(yt,k2)
2|utxt

, (7)

where Kronecker delta expresses a choice of an occurred value
from the possible ones. Similarly, the state evolution model
(2) is related to Bernoulli distribution, provided in Table 2,
where respective β denote a known probability of taking the
possible values of the state, conditioned on its previous values
and on the input, and β2|ij = (1 − β1|ij). The product form

Table 2. Bernoulli state evolution model
xt+1 = k1 xt+1 = k2

ut = k1, xt = k1 β1|11 β2|11
ut = k2, xt = k1 β1|21 β2|21
ut = k1, xt = k2 β1|12 β2|12
ut = k2, xt = k2 β1|22 β2|22

of the distribution from Table 2 is as follows.

f (xt+1|ut, xt) =
∏

ut,xt∈{k1,k2}

β
δ(xt+1,k1)
1|utxt

β
δ(xt+1,k2)
2|utxt

. (8)

1For example, for xt ≡ [x1;t, x2;t]′, with x1;t ∈ {s1, s2} and x2;t ∈
{s1, s2}, the possible values {(s1, s1), (s2, s1), (s1, s2), (s2, s2)} can be
denoted as the new set {k1, k2, k3, k4}.



The prior probabilities for the initial discrete state are cho-
sen as p1(t) for value xt = k1 and p2(t) = (1 − p1(t)) for
xt = k2. Thus, the form of the prior Bernoulli distribution is
defined as

f
(
xt
∣∣dt−1

)
= p

δ(xt,k1)
1(t) (1− p1(t))δ(xt,k2). (9)

The estimation of the discrete state is proposed as the direct
application of Bayesian filtering (3)-(4) to the Bernoulli state-
space model (7)-(8) with incorporation of Bernoulli prior (9).
According to the mentioned relations, formula (3) with the
substituted Bernoulli distributions (7) and (9) takes the fol-
lowing form, providing the updating of the state estimate by
actual measurements

f
(
xt
∣∣dt) =

∏
ut,xt∈{k1,k2} α

δ(yt,k1)
1|utxt

α
δ(yt,k2)
2|utxt∑

xt∈{k1,k2}
∏
ut,xt∈{k1,k2} α

δ(yt,k1)
1|utxt

(10)

p
δ(xt,k1)
1(t) (1− p1(t))δ(xt,k2)

α
δ(yt,k2)
2|utxt

p
δ(xt,k1)
1(t) (1− p1(t))δ(xt,k2)

= p̄
δ(xt,k1)
1(t) p̄

δ(xt,k2)
2(t) , (11)

where integration in the denominator is replaced by regular
summation. The probabilities to be substituted in the data up-
dating (10) are chosen from Table 1 according to the actual
values of the output and the input. p̄(·) in (11) denotes the in-
termediate results of the filtering (data-updated probabilities).

The Bayesian time updating (4) with Bernoulli distribu-
tion (8) and the intermediate result (11) takes the following
form

f
(
xt+1

∣∣dt) =
∑

xt∈{k1,k2}

∏
ut,xt∈{k1,k2}

β
δ(xt+1,k1)
1|utxt

β
δ(xt+1,k2)
2|utxt

p̄
δ(xt,k1)
1(t) p̄

δ(xt,k2)
2(t) , (12)

which provides the resulting state estimate as the following
Bernoulli distribution

f
(
xt+1

∣∣dt) = p
δ(xt+1,k1)
1(t+1) (1− p1(t+1))δ(xt+1,k2), (13)

with the updated probability of value xt+1 = k1

p1(t+1) =
∑

xt∈{k1,k2}

∏
ut,xt∈{k1,k2}

β
δ(xt+1,k1)
1|utxt

p̄
δ(xt,k1)
1(t) p̄

δ(xt,k2)
2(t)

(14)
= β1|ut1p̄1(t) + β1|ut2p̄2(t),

calculated according to the known values of the input and sub-
stitution of the corresponding probabilities from Table 2. The
probability of value k2 is obtained as p2(t+1) = (1−p1(t+1)),
or can be calculated directly:

p2(t+1) =
∑

xt∈{k1,k2}

∏
ut,xt∈{k1,k2}

β
δ(xt+1,k2)
2|utxt

p̄
δ(xt,k1)
1(t) p̄

δ(xt,k2)
2(t)

(15)

= β2|ut1p̄1(t) + β2|ut2p̄2(t).

Relation (15) is obtained similarly according to the input val-
ues and substitution of the probabilities from Table 2. The
resulting Bernoulli distribution (13) is taken as the prior one
to be incorporated into the next step of the discrete state esti-
mation (10) with actual available measurements.

Algorithm

1. Set prior p2(t=0) for value xt = k2

2. Get actual data yt, ut

3. Choice from Table 1.
If yt = k2 & ut = k2, then α = α2|22, g = α2|21,
where g is an auxiliary variable for normalization, con-
ditioned on xt = k1,
else if yt = k2 & ut = k1, α = α2|12, g = α2|11,
else if yt = k1 & ut = k2, α = α1|22, g = α1|21,
else if yt = k1 & ut = k1, α = α1|12, g = α1|11,
end

4. Data updating.
p̄2(t) = α·p2(t)

α·p2(t)+g·(1−p2(t))
, p̄1(t) = 1− p̄2(t)

5. Choice from Table 2.
If ut = k1, then β = β2|12, d = β2|11, where d is an
auxiliary variable, conditioned on xt = k1,
else if ut = k2, β = β2|22, g = β2|21,
end

6. Time updating.
p2(t) = β · p̄2(t) + d · p̄1(t), p1(t) = 1− p2(t). Go to 2.

4. EXPERIMENTS

The illustrative experiments are concerned with estimation of
the state of driver tiredness. Currently the experiments use
the data simulated with the help of random generator and Ta-
bles 1-2. However, the planned practical experiments will be
based on realistic so-called “bio-traffic” data available from
traffic experts. Specializing the traffic data to models (7)-
(8), one considers the following variables. The output yt ex-
presses a measurable level of dangerous driving, which in the
simplified Bernoulli form belongs to the set {k1 = not close to
dangerous driving, k2 = close to dangerous driving}. The
unobserved state is a driver tiredness xt ∈ {k1 = not close to
be tired, k2 = close to be tired}. The control input ut is un-
derstood as advices, which the driver gets from the built-in car
computer with the following simplified Bernoulli set of pos-
sible values {k1 = no warnings, k2 = recommendation to re-
duce a speed, stop a car, have a break}. The probabilities used
in Tables 1-2 respectively were provided by traffic experts
determined heuristically as follows: α1|11 = 0.99, α2|11 =
0.01, α1|21 = 0.04, α2|21 = 0.96, α1|12 = 0.79, α2|12 =
0.21, α1|22 = 0.01, α2|11 = 0.99; β1|11 = 0.99, β2|11 =
0.01, β1|21 = 0.64, β2|21 = 0.36, β1|12 = 0.21, β2|12 =
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Fig. 1. Estimated probability of discrete state 1 ≡ (driver is close to be tired) (left) and point estimates of states 0 and 1 (right)

0.79, β1|22 = 0.03, β2|11 = 0.97. The prior probability p2(t)

of the driver tiredness was chosen as 0.5. Numerically, the
state k1 was identified with value 0, while k2 was taken as 1.
Fig. 1 (left) demonstrates the estimated probability of event
1, denoting that the driver is close to be tired, against the sim-
ulated state. For better illustration, Fig. 1 (right) shows the
point estimates of states 0 and 1.

5. CONCLUSION

The present paper is focused on the relatively simple task of
the filtering with the Bernoulli state-space model. Extension
of the set of possible values from two Bernoulli outcomes
up to some finite, preferably small number N will require to
specify the Kronecker-based product form of models (7)-(8)
and prior distribution (9). However, the logic of the approach
extended up to other related discrete distributions (at least,
multinomial) remains similar. It should be noted, that the con-
sidered problem has been described for the case with known
parameters of the discrete state-space model, which signifi-
cantly simplified the solution. It is clear that even extended
solution with multinomial distributions will cause additional
problems of setting (probably, off-line estimating) the param-
eters. The plans of future work will be devoted to the men-
tioned problems aiming at general objective of the estimation
of mixed states.

6. REFERENCES

[1] S. Dey L. Shue, B.D.O. Anderson, “Exponential stabil-
ity of filters and smoothers for hidden markov models,”
IEEE Transactions on Signal Processing, vol. 46(8), pp.
2180 – 2194, August 1998.

[2] Chun Yang, “On discrete hidden markov state estima-
tion,” in Proceedings of the American Control confer-
ence, Seattle, WA, USA, June 21-23 1995, vol. 1, pp. 12–
13.

[3] S. Di Cairano, K. H. Johansson, A. Bemporad, and R. M.
Murray, Hybrid Systems: Computation and Control, vol.
4981/2008, chapter Discrete and Hybrid Stochastic State
Estimation Algorithms for Networked Control Systems,
pp. 144–157, Springer, 2008.

[4] D. W. Hosmer and S. Lemeshow, Applied Logistic Re-
gression, Wiley-Interscience, 2001.
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