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Abstract— The paper is devoted to analysis of data related to
traffic accidents at one of the roads in Czech Republic. The data
sets are available as discrete-valued variables providing results
of traffic accident (with death or not) as well as conditions under
which the accident has happened (weather, visibility, speed etc).
Situation of a traffic accident is modeled within state-space
framework. Estimation of accidents results is proposed with the
help of Bayesian filtering based on determined probabilities.

I. INTRODUCTION

The paper deals with analysis of data sets concerned
with death traffic accidents on the road II/114 on Czech
Republic. Everyone knows that in out time of progress and
high speed powerful cars the death accident statistics remains
unfavorable and offensive: it is enough to see the everyday
news. Modeling of traffic accidents and conditions under
which they happened is important task to predict deathrate on
certain roads under certain driving modes, speed, visibility
etc. It gives a chance a driver to better regulate controllable
variables such as speed and driving modes via advices
of intelligent built-in car computers. This motivated us to
propose our solution presented at this paper.

One of the accompanied problems of modeling the traffic
accidents is a lack of informative data and small amount
of data sets. The available data sets contain measurable
variables, mostly of a seasonable character, which describe
various conditions of the accident. The result of the ac-
cident plays a role of a modeled variable. Surely, there
are many other unmeasured variables, influencing it. The
data sets can be explored via various approaches to extract
the information they can bring and understand relationships
between variables. However, a choice of accurate model of
the traffic accident is a difficult and ambiguous task, which
requires an extra-use of prior expert knowledge. Previously,
the available data sets have been modeled with the help
of logistic regression [1]. This is the most simple way of
modeling, remained, however, in a static way. Another way,
proposed in this paper, is to be aware of the unmeasured
variables, or even to reduce the number of variables in
the data vector. The unmeasured and omitted variables,
which are mostly periodical with the period one year, cause
dynamics of the modeled variable. Thus, the dependence on
some external variables can be substituted by considering
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the dynamic (state-space) model of the variable monitored.
The present paper proposes to set the traffic accident as a
state variable and use the state-space model [2]. The state-
space model is considered for discrete-valued variables with
Bernoulli distribution. Relationships between the variables
are supposed via probabilities of a certain event, defined by
traffic experts (or estimated offline). Physically, it can be
interpreted as in the following example. In winter there are
much more mortal accidents then in summer. So, if the last
accident was mortal (and the season was not known) it is
probable that it happened during winter and that the winter
still lasts. It means, that the mortal accident is now more
probable, too. This interpretation explains usage of proba-
bilities in the discrete state-space model. The time moments
used in the dynamic model are irregular ones, determined
by a sequence of the traffic accidents. The variables from
the available data sets are exploited as a discrete output and
a discrete input for the considered model. At the present
paper, the estimation of a discrete result of traffic accident
within a given set of possibles values (either with death or
injury or only with slight material damage) is proposed as an
analytically tractable solution of Bayesian filtering [3]. The
proposed solution does not require high computational cost
(as, for example, particle filters [4], which can be possibly
used for this aim) and thus it can be exploited in real
conditions with available expert knowledge.

A layout of the paper is as follows. Section II provides
basic facts about the models used as well as Bayesian
filtering. Section III is devoted to the filtering with discrete-
valued variables and presents the algorithm. Section IV
describes specialization of the proposed technique to analysis
of the death traffic accidents and provides results.

II. PRELIMINARIES

The state-space model to be used in the paper is provided
with the help of the following conditional probability (den-
sity) functions (p(d)fs). The observation model, specified by
pdf

f (yt|ut, xt) , (1)

relates the system output yt to the system input ut and the
unobserved system state xt at discrete time moments t ∈
t∗ ≡ {0, . . . , t̊}, where t̊ is the cardinality of the set t∗ and
≡ means equivalence. The state evolution model

f (xt+1|ut, xt) , (2)

describes the evolution of the system state xt. The estimation
of the finite-dimensional system state calls for application of



Bayesian filtering. Bayesian filtering, estimating the system
state, includes the following coupled formulas.
Data updating

f
(
xt
∣∣dt) =

f (yt|ut, xt) f
(
xt
∣∣dt−1

)∫
f (yt|ut, xt) f

(
xt
∣∣dt−1

)
dxt

, (3)

∝ f (yt|ut, xt) f
(
xt
∣∣dt−1

)
,

(∝ means proportionality) incorporates the experience con-
tained in the data dt, where dt = (d0, . . . , d̊t) and dt ≡
(yt, ut).
Time updating

f
(
xt+1

∣∣dt) =
∫
f (xt+1|ut, xt) f

(
xt
∣∣dt) dxt, (4)

fulfills the state prediction. The filtering does not depend on
the control strategy {f(ut|dt−1)}t∈t∗ but on the generated
inputs only. The prior pdf f(x0), which expresses the sub-
jective prior knowledge on the state x0, starts the recursions.

Bayesian filtering (3)-(4) can be analytically solved with
linear Gaussian models. In that case the solution coincides
with Kalman filter [5]. With discrete variables, the hidden
Markov models [6], [7], [8] as well as sampling-based
solutions are often exploited. Due to limited computational
cost in the present application domain the particle filters
are hardly used. The paper proposes a non-approximative
solution for a relatively simple case of the filtering with
Bernoulli models.

III. NON-APPROXIMATIVE FILTERING WITH
DISCRETE-VALUED STATE

The considered variables yt, xt and ut are of a discrete-
valued nature. It means that one must investigate application
of the filtering (3)-(4) to models with discrete distributions.
When speaking about the state, one must consider the state
vector xt ≡ [x1;t, . . . , xx̊;t]′ with finite, preferably small x̊,
where each entry xi;t with i = {1, . . . , x̊} has a set of
possible values {s1, s2, . . . , sn} with finite number n. The
estimation of the state vector with discrete entries is simpli-
fied via a special mapping of the multivariate state to a scalar
one. The mapping is proposed via a determination of the new
set of possible values for the scalar discrete state. The new
set is constructed so that each possible combination of values
of all entries xi;t, i.e. {(x1;t = s1, x2;t = s1, . . . , xx̊;t =
s1), (x1;t = s2, x2;t = s1, . . . , xx̊;t = s1), . . . , (x1;t =
sn, x2;t = sn, . . . , xx̊;t = sn)}, is denoted as the new scalar
value, belonging to this set, i.e. {k1, k2, . . . , kN}, N is a
number of combinations1. The mapping provides necessary
reduction of dimension of the state. The similar reducing
of the dimension is applied to the multivariate output and
input. Let’s assume, that the scalar variables (either due to the
mapping or naturally) with the finite set of possible discrete
values have to be considered for the filtering. Generally,
discrete multinomial distribution could have been used for
the models (1)-(2) with these variables. For the sake of

1For example, for xt ≡ [x1;t, x2;t]′, with x1;t ∈ {s1, s2} and x2;t ∈
{s1, s2}, the possible values {(s1, s1), (s2, s1), (s1, s2), (s2, s2)} can be
denoted as the new set {k1, k2, k3, k4}.

simplicity, a number of possible values in the set is restricted
by two, which leads to Bernoulli distribution.

Let’s consider the observation model (1) described by
the Bernoulli distribution, shown in Table I, where α with
corresponding indices denotes a probability (assumed to
be known) of taking the possible values by the output,
conditioned on values of the state and input. The set of
discrete values for all the variables is given as {k1, k2}, and
the probability α2|ij is always defined as (1− α1|ij).

TABLE I
BERNOULLI OBSERVATION MODEL

yt = k1 yt = k2
ut = k1, xt = k1 α1|11 α2|11
ut = k2, xt = k1 α1|21 α2|21
ut = k1, xt = k2 α1|12 α2|12
ut = k2, xt = k2 α1|22 α2|22

The Bernoulli distribution from Table I written with the
help of Kronecker delta is presented in the following product
form

f (yt|ut, xt) =
∏

ut,xt∈{k1,k2}

α
δ(yt,k1)
1|utxt

α
δ(yt,k2)
2|utxt

, (5)

where Kronecker delta expresses a choice of an occurred
value from the possible ones. Similarly, the state evolution
model (2) is related to Bernoulli distribution, provided in
Table II, where respective β denote a known probability of
taking the possible values of the state, conditioned on its
previous values and on the input, and β2|ij = (1−β1|ij). The

TABLE II
BERNOULLI STATE EVOLUTION MODEL

xt+1 = k1 xt+1 = k2
ut = k1, xt = k1 β1|11 β2|11
ut = k2, xt = k1 β1|21 β2|21
ut = k1, xt = k2 β1|12 β2|12
ut = k2, xt = k2 β1|22 β2|22

product form of the distribution from Table II is as follows.

f (xt+1|ut, xt) =
∏

ut,xt∈{k1,k2}

β
δ(xt+1,k1)
1|utxt

β
δ(xt+1,k2)
2|utxt

. (6)

The prior probabilities for the initial discrete state are
chosen as p1(t) for value xt = k1 and p2(t) = (1−p1(t)) for
xt = k2. Thus, the form of the prior Bernoulli distribution
is defined as

f
(
xt
∣∣dt−1

)
= p

δ(xt,k1)
1(t) (1− p1(t))δ(xt,k2). (7)

The estimation of the discrete state is proposed as the direct
application of Bayesian filtering (3)-(4) to the Bernoulli state-
space model (5)-(6) with incorporation of Bernoulli prior
(7). According to the mentioned relations, formula (3) with
the substituted Bernoulli distributions (5) and (7) takes the
following form, providing the updating of the state estimate



by actual measurements

f
(
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∣∣dt) =

∏
ut,xt∈{k1,k2} α

δ(yt,k1)
1|utxt

α
δ(yt,k2)
2|utxt∑

xt∈{k1,k2}
∏
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δ(yt,k1)
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(8)

p
δ(xt,k1)
1(t) (1− p1(t))δ(xt,k2)

α
δ(yt,k2)
2|utxt

p
δ(xt,k1)
1(t) (1− p1(t))δ(xt,k2)

= p̄
δ(xt,k1)
1(t) p̄

δ(xt,k2)
2(t) , (9)

where integration in the denominator is replaced by regular
summation. The probabilities to be substituted in the data
updating (8) are chosen from Table I according to the actual
values of the output and the input. p̄(·) in (9) denotes the
intermediate results of the filtering (data-updated probabili-
ties).

The Bayesian time updating (4) with Bernoulli distribution
(6) and the intermediate result (9) takes the following form

f
(
xt+1

∣∣dt) =
∑

xt∈{k1,k2}

∏
ut,xt∈{k1,k2}

β
δ(xt+1,k1)
1|utxt

β
δ(xt+1,k2)
2|utxt

p̄
δ(xt,k1)
1(t) p̄

δ(xt,k2)
2(t) , (10)

which provides the resulting state estimate as the following
Bernoulli distribution

f
(
xt+1

∣∣dt) = p
δ(xt+1,k1)
1(t+1) (1− p1(t+1))δ(xt+1,k2), (11)

with the updated probability of value xt+1 = k1

p1(t+1) =
∑

xt∈{k1,k2}

∏
ut,xt∈{k1,k2}

β
δ(xt+1,k1)
1|utxt

p̄
δ(xt,k1)
1(t) p̄

δ(xt,k2)
2(t)

(12)
= β1|ut1p̄1(t) + β1|ut2p̄2(t),

calculated according to the known values of the input and
substitution of the corresponding probabilities from Table II.
The probability of value k2 is obtained as p2(t+1) = (1 −
p1(t+1)), or can be calculated directly:

p2(t+1) =
∑

xt∈{k1,k2}

∏
ut,xt∈{k1,k2}

β
δ(xt+1,k2)
2|utxt

p̄
δ(xt,k1)
1(t) p̄

δ(xt,k2)
2(t)

(13)
= β2|ut1p̄1(t) + β2|ut2p̄2(t).

Relation (13) is obtained similarly according to the input
values and substitution of the probabilities from Table II.
The resulting Bernoulli distribution (11) is taken as the prior
one to be incorporated into the next step of the discrete state
estimation (8) with actual available measurements.

Algorithm
1) Set prior p2(t=0) for value xt = k2

2) Get actual data yt, ut
3) Choice from Table I.

If yt = k2 & ut = k2, then α = α2|22, g = α2|21,
where g is an auxiliary variable for normalization,
conditioned on xt = k1,
else if yt = k2 & ut = k1, α = α2|12, g = α2|11,
else if yt = k1 & ut = k2, α = α1|22, g = α1|21,
else if yt = k1 & ut = k1, α = α1|12, g = α1|11,
end

4) Data updating.
p̄2(t) = α·p2(t)

α·p2(t)+g·(1−p2(t))
, p̄1(t) = 1− p̄2(t)

5) Choice from Table II.
If ut = k1, then β = β2|12, d = β2|11, where d is an
auxiliary variable, conditioned on xt = k1,
else if ut = k2, β = β2|22, g = β2|21,
end

6) Time updating.
p2(t) = β · p̄2(t) + d · p̄1(t), p1(t) = 1− p2(t). Go to 2.

The algorithm is presented for the Bernoulli distribution, but
it can be easily extended up to the multinomial one. How-
ever, in practice the multinomial distribution complicates the
proposed filtering by setting of the larger number of the
probabilities for the observation and state-evolution models.

IV. DEATH TRAFFIC ACCIDENTS ANALYSIS AND RESULTS
OF EXPERIMENTS

The available data sources represent the evidence about
accidents on the road II/114 in the Czech republic. The
modeled variable xt relates to a result of the traffic accident
so that xt ∈ {1, 0}, where 1 = accident with material damage,
0 = accident caused death or injury. The measurements Dt

contain the following information:
• D1;t is a daytime, where 1 – day, 2 – dawn, dusk, 3 –

night;
• D2;t is visibility, where 1 – clear weather, 2 – fog, 3 –

rain, 4 – snow;
• D3;t is a speed with 1 – normal, 2 – high;
• D4;t is a cause of accident, where 1 – high speed, 2 –

wrong driving, 3 – wrong overtaking, 4 – other;
• D5;t is a type of accident: 1 – danger, 2 – crash between

cars, 3 – crash with a fixed object, 4 – collision with
an animal.

The mentioned data sources have been analyzed with
the help of various approaches. The understanding if the
variables bring some information sufficient for modeling was
the extremely difficult task due to small capacity of the
available data sets. The idea to use the state-space model with
the described probabilistic approach came after the attempt
to make prediction via logistic regression. The results of
exploitation of logistic regression is shown in Fig. 1. The
quality of the estimation shown significant dependence on
prior knowledge. It can be seen that the obtained results
can be improved. The exploitation of the proposed algorithm
of the discrete-valued state filtering did not required high
computational cost and gave a possibility to incorporate
expert knowledge. That’s the way it was decided to test
the algorithm on the available data. The data sets have been
rescaled until two possible values of the modeled variables
so that to be simplified and also adapted to Bernoulli
model. Here, two experiments are demonstrated: one with
scalar variables and another with reduced dimension of the
variables via the proposed mapping. The last experiment
was obviously complicated from the point of view of expert
setting of probabilities for models (5)-(6). The data sets that
are the most informative for filtering have been chosen for
experiments.
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Fig. 1. Prediction of traffic accidents with the logistic regression

A. Experiment 1

The available values of the variable D2;t were identified
with the system output according to (5). The visibility
D2;t ∈ {1, 0} was rescaled so that 1 means clear visibility
(with clear weather), and 0 denotes the worse visibility with
fog, rain or snow. Variable D3;t ∈ {1, 0} expressing the
measured speed has been identified with the input in (5)
so that 1 means the normal speed, while 0 denotes the
high speed. The prior probability of value xt = 0 (i.e.
the death accident) is chosen to be equal 0.5. Parameters
(probabilities) given by traffic experts for observation model
(5) (for prediction of measurements) and for state evolution
model (6) are shown in Tables III-IV respectively. The

TABLE III
PROBABILITIES FOR OBSERVATION MODEL

D2;t = 0 D2;t = 1
D3;t = 1, xt = 1 0.68 0.32
D3;t = 0, xt = 1 0.49 0.51
D3;t = 1, xt = 0 0.04 0.96
D3;t = 0, xt = 0 0.45 0.55

TABLE IV
PROBABILITIES FOR STATE EVOLUTION MODEL

xt+1 = 0 xt+1 = 1
D3;t = 1, xt = 1 0.08 0.92
D3;t = 0, xt = 1 0.69 0.31
D3;t = 1, xt = 0 0.64 0.36
D3;t = 0, xt = 0 0.97 0.03

results shown at Fig. 2 demonstrate comparison of real and
estimated results of the accidents. The results of the filtering
strongly depend on expert knowledge given via parameters of
observation and state evolution models (5)-(6). This simple
experiment was obviously made for testing of the proposed
algorithm. Improvement of the obtained results is expected to
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Fig. 2. Filtering of death traffic accidents with scalar variables

be reached with the help of offline estimation of parameters,
which is planned in later work.

B. Experiment 2

For this experiment the cause of the accident D4;t was
identified with the output in the model (5). It was rescaled
so that 1 means the high speed caused the accident and 0
comprise all reasons concerned with a wrong driving. This
rescaling has been chosen according to presence of more
informative data in the data sets. The input in models (5)-
(6) was identified with a vector Dr

t ≡ [D2;t; D3;t]. The
mapping proposed in Section III has been applied to the
vector Dr

t to reduce dimension until a scalar. It results in
the following set of possible values for the reduced variable
Dr
t ∈ {D1, D2, D3, D4}, where D1 ≡ [1; 1], D2 ≡ [0; 1],

D3 ≡ [1; 0], D4 ≡ [0; 0]. Here, setting of probabilities
for models (5)-(6) was more complicated task than in the
previous experiment. The parameters for (5)-(6) provided by
experts are shown in Tables V-VI respectively. The results
of the estimation are shown at Fig. 3.

TABLE V
PROBABILITIES FOR OBSERVATION MODEL

D4;t = 0 D4;t = 1
Dr

t = D1, xt = 1 0.87 0.13
Dr

t = D2, xt = 1 0.73 0.27
Dr

t = D3, xt = 1 0.04 0.96
Dr

t = D4, xt = 1 0.11 0.89
Dr

t = D1, xt = 0 0.96 0.04
Dr

t = D2, xt = 0 0.72 0.28
Dr

t = D3, xt = 0 0.18 0.82
Dr

t = D4, xt = 0 0.14 0.86

V. CONCLUSIONS AND FUTURE WORKS

The paper describes the approach to the analysis of
data sources representing the evidence about death traffic
accidents on one of the Czech roads. The aim of the paper
was to test the proposed filtering algorithm on the traffic



TABLE VI
PROBABILITIES FOR STATE EVOLUTION MODEL

xt+1 = 0 xt+1 = 1
Dr

t = D1, xt = 1 0.04 0.96
Dr

t = D2, xt = 1 0.21 0.79
Dr

t = D3, xt = 1 0.83 0.17
Dr

t = D4, xt = 1 0.82 0.18
Dr

t = D1, xt = 0 0.96 0.04
Dr

t = D2, xt = 0 0.94 0.06
Dr

t = D3, xt = 0 0.12 0.88
Dr

t = D4, xt = 0 0.7 0.3
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Fig. 3. Filtering of death traffic accidents with mapping

accidents data sets. To conclude the paper, one can say that
the testing opens weak points of the algorithm. The algorithm
is very sensitive to the setting of probabilities for the model,
provided by traffic experts. It should be noted that better
results of prediction of death accidents are expected with
the help of offline estimation of parameters. Thus, future
work will be concerned with the parameter estimation for
improvements of the filtering with the discrete state-space
model.

A really important remark to the present paper is the
point that the authors neither search nor invent the new
optimal filtering algorithm for discrete models. The described
filtering is one of items aiming at filtering with mixed
(continuous and discrete) models. It means that the global
objective of the research is to find solution for the joint
filtering of the mixed-type variables (more information is
available in [9]).
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