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Abstract

The so called Cusp deterministic catastrophe model extends the classical li-
near regression adding nonlinearity into a model. A property of a stochastic
catastrophe model connected with stochastic differential equation could be de-
scribed by density, which is known in closed-form only in stationary case. The
approximation of the transition density is done here by finite difference method.
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1 Catastrophe Theory

1.1 Introduction

Catastrophe theory is a special case of singularity theory part of the study
of nonlinear dynamical systems. Bifurcation theory is considered to have been
discovered by Henri Poincaré, as part of his qualitative analysis of systems of
nonlinear differential equations (1880-1890). After onward studying of differen-
tial equations René Thom (1972) described the seven elementary catastrophes
going up through six dimensions in control and state variables. This became
standard catastrophe theory.

In general catastrophe theory enables to estimate such a model, where the
small continuous change in exogenous variables could cause the discontinuous
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change of endogenous variable. This theory could be used for modelling of the
sudden collapse of a bridge under gradually increasing pressure or freezing of wa-
ter in decreasing temperatures. The earliest economic application was published
by Zeeman (1974), who tried to model bubbles and crashes in stock markets. He
used the so called CUSP model with two types of investors but only for qualita-
tive analysis. This was one reason why the paper was very criticized especially
by Zahler and Sussman. Despite the criticism the catastrophe theory has still
being developed. Stochastic catastrophe theory was introduced in late seven-
tieth by Loren Cobb [3]. He also developed maximum likelihood estimation of
catastrophe models. There are two other methods based on least-squares and
regression technique, but Cobb’s method is the most cited and further used and
developed. Recently Rosser [10] summed up the discussions about catastrophe
theory and concluded that the catastrophe theory definitely is worth further
attention while investigating nonlinear systems.

1.2 Cusp

Commonly used way how to introduce Cusp Surface Analysis is to compare it
to multiple linear regression. As in regression, there is one dependent variable
(Y) and a state variables (Z = (Z1, . . . , Zn)):

Y = b0 + b1Z1 + . . . + bnZn + U, (1)

where the random variable U is assumed to be normally distributed with zero
mean and constant variability. This regression model has n+2 degrees of free-
dom.
To obtain greater than linear flexibility it is necessary to add 2n + 2 degrees of
freedom into linear regression model to define three control factors:

A(Z) = A0 + A1Z1 + . . . + AnZn

B(Z) = B0 + B1Z1 + . . . + BnZn

L(Z) = L0 + L1Z1 + . . . + LnZn

(2)

These factors plus coefficient C determine the predicted values of Y given Z.
The predicted values of Y are values Y for which holds this equation:

0 = A(Z) + B(Z) [Y− L(Z)]− C [Y− L(Z)]3. (3)

Factors A, B, and L are used to be called the asymmetry, bifurcation, and
linear factor, respectively. The catastrophe model defined by (3) can be seen
as a generalization of the regression model (1): the two models coincide if (i)
A = 0, (ii) B = 1/Var[U], and (iii) C = 0. When these conditions are satisfied
the coefficients Li of L are the same as the coefficients bi of (1).

The model based on (3) is, like the regression model described by (1), a static
random model. The static catastrophe model is related to a dynamic model. The
(deterministic) dynamic cusp catastrophe model is described by a differential
equation:
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Obrázek 1: Zeemans original cusp surface

dy(t)/dt = a(z) + b(z) [y(t)− l(z)]− c [y(t)− l(z)]3, (4)

where the term on the right hand side could be expressed like

−dV (y)
dy

= a(z) + b(z) [y(t)− l(z)]− c [y(t)− l(z)]3. (5)

The function V (y) is called potential function and enable us to study the beha-
vior of catastrophe models. When the left hand side of the equation (4) equals
0, the system is in equilibrium. We distinguish between stable and unstable
equilibrium states, which correspond to the lokal minima and lokal maxima of
potential function. We can observe one stable or two stable and one unstable
equilibria of cusp model.

The cusp catastrophe model in canonical form

0 = α + βx− x3 (6)

shapes the canonical cusp surface (figure 1). The equation does not descibe the
relation between the original control variables and the original behavioral varia-
ble. The variables α, β and x are derived from the original one by diffeomorphic
transfornations. This transformations adjust the coordinate system so that the
shape of original response surface matches to the canonical cusp surface near
the cusp catastrophe point (α = β = x = 0). The variable x is a function
of the original behavioral variable and the original control variables, while the
variables α, β are each functions of all of the original control variables.
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Obrázek 2: Drift: a = 2, c = 1, b = {−1 (blue), 3 (red), 7 (yellow)}

2 Stochastic catastrophe theory

The basic assumption of catastrophe modelling is the existence of a mean equi-
librium state between the variable of interest y (e.g., market index, long-term
interest rate) and market foundamentals z (e.g., dividends, trading volume,
Put/Call ratio, short-term interest rate) which drive the parameters of diffusion
proces (z(t) is a vector of market foundamentals strictly exogenous with respect
to explained variable y(t)).

The CUSP stochastic model originally advanced by Creedy et al. [6] arises
from a general diffusion proces for the variable of interest with a cubic drift
and an arbitrary volatility functions. When choosing the drift function one has
to consider the strength of mean reversion. Aı̈t-Sahalia [1] has shown that a
stronger mean-reverting drift is more likely to pull the process back towards
its mean even in high volatile dynamics. The cubic drift can take the shape
illustrated in figure (2).

In the basic Cusp stochastic model the volatility function σ(y, t) is assumed
to be a constant σ2. However this is quite limiting this assumption does not rest-
rict the crucial features of underlying model. There are several other commonly
used diffusion specification:

σ(y, t) = σ
√

x
σ(y, t) = σ x

σ(y, t) = σ
√

x (1− x)
σ(y, t) = σ0 + σ1 x.

(7)

In our configuration the stochastic differential equation is following:

dy(t) =
(
a(z, t) + b(z, t) [y(t)− λ]− c [y(t)− λ]3

)
dt + σ dW (t). (8)

where W (t) denotes a standard Brownian motion.

4



-1

0

1

2

3

-5

0

5

0.0

0.2

0.4

0.6

0.8

Obrázek 3: Stationary density: a = 0.1, b ∈ [−1, 3], c = 1, y ∈ [−5, 5]

2.1 Density

The use of Itô stochastic differential equation (8) allowed Cobb to relate the
potential function of a deterministic catastrophe system with stationary pro-
bability density functin of the stochastic process. By solving the corresponding
Fokker–Planck equation

∂

∂t
f(y, t) = − ∂

∂y
[µ(y, t)f(y, t)] +

1
2

∂2

∂y2
[σ(y, t)2f(y, t)] (9)

one could obtain the transition density f(y), but in most cases the-closed form
solution does not exist. Therefore the research has been done using the statio-
nary density

fI(y) = Ns exp

[
2

∫ y

s

{µ(x)− (1/2)[σ2(x)]′}
[σ2(x)]

dx

]
, (10)

where Ns is normalizing constant, s is an arbitrary interior point of the state
space and the prime denotes differentiation with respect to x. Maximimum
likelihood estimation using stationary density is appropriate only under random
sampling, which is not the case of financial time series. Another approach is to
minimize the distance between the nonparametric kernel density estimate and
the parametric stationary density.

The problem of Cobb’s interpretation in Itô sense inhere in fact, that stati-
onary density is not invariant under diffeomorphic transformations, which is es-
sential in deterministic catastrophe theory. Wagenmakers et al. [15] came with
the solution of this problem. They prooved that the use of Stratonovich in-
terpretation of stochastic differential equation is invariant under diffeomorphic
transformations. The invariant density could be derived from the stationary
density from an Itô SDE by multiplying it by diffusion function σ(y):
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fS(y) = fI(y)σ(y) = Ni exp

[
2

∫ y

i

{µ(x)− (1/4)[σ2(x)]′}
[σ2(x)]

dx

]
(11)

When the diffusion function is constant, σ(y) = σ, we can derive the following
form of stationary pdf

f∞(y|z; θ) = N exp

[
2 a(z)

(y − λ)
σ2

+ b(z)
(y − λ)2

σ2
− c

2
(y − λ)4

σ2

]
, (12)

where θ are parameters of a(z) and b(z), which are linear functions of z, c is
parameter of mean-reversion strenght and λ position parameter. This stationary
density corresponds to the stochastic differential equation (8) irrespective of
its Itô or Stratonovich interpretation. The parameters can be estimated using
maximum likelihood procedures for example by the invariant one developed by
Hartelman [7].

This stationary density (12) belongs to the class of generalized normal dis-
tributions, which is highly flexible with respect to skewness and kurtosis, and
exibits, at most, two modes (Cobb [4]).

2.2 Cardan’s discriminant

A procedure to identify bimodality of the stationary densiy consist in assessing
the sign of the Cardan’s discriminant:

δC(z; a, b) ≡ a(z)2

4
− b(z)3

27 c
. (13)

A necessary and sufficient condition for unimodality is δC(z; a, b) ≥ 0. In this
case a(z) and b(z) measure skewness and kurtosis of the distribution. In bi-
modality case δC(z; a, b) < 0 a(z) and b(z) determine the relative heights and
separateness of the two modes. In case of transition density Cardan’s discrimi-
nant is saying to which steady state the system is in the moment driven. The
similarity between the stationary density and the transition density is particu-
larly driven by the length of the time step.

3 Approximation of transition density

3.1 Finite Differences

The Fokker-Planck equation usually does not have closed-form solutin and our
case of cusp stochastic model is not an exception. Finite difference method is
one of the possible numerial estimation. We are not limited by irregular shape
of the boundary and there is no flux across the boundary as well. In the light
of investigating cusp model we can set the boundary conditions for the density
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during the time to zero in sufficiently distance from zero on both sides. Starting
density in the zero time does not play importat role and in practical applications
is omitted because of its negligible influence when maximizing the likelihood.
We need to discretized the Fokker-Planck equatin

∂

∂t
[f(y, t)] = − ∂

∂y
[µ(y, z, t)f(y, t)] +

σ2

2
∂2

∂y2
[f(y, t)] (14)

in the nodes of rectangular mesh with time step ∆t going from 0 to the number
of observation T and value step ∆y splitting the values ymin = y0, y1, . . . , yN =
ymax, where we consider the drift

µ(y, z, t) = a(z, t) + b(z, t) y(t)− c y(t)3. (15)

For approximating derivatives of equation (14) the finite difference method
has many possibilities which are of different degrees of accuracy and with specific
stability conditions. This two characteristic would be subordinated to other
two desired properties of approximation. First is suppressing of the undesirable
oscillation of the solution. This requirement shuts out the central differences for
the first derivation with respect to y (Strikwerda [12]). Secondly, there is natural
requirement to keep the solution above zero which rules out the compounded
approximations for time derivation. Bearing all requirements in mind we finally
arrive to pertinent dicretization

f(y,t)−f(y,t−∆t)
∆t = − [µ(y, z, t)]′ f(y, t)− µ(y,z,t)

2 ∆y Ip

·(3f(y, t)− 4f(y − Ip ∆y, t) + f(y − 2Ip ∆y, t))
+ σ2

2 ∆y2 (f(y −∆y, t)− 2f(y, t) + f(y + ∆y, t)),
(16)

where the Ip = 1 if µ(y, z, t) > 0 and Ip = −1 otherwise and the prime denotes
the derivation with respect to y. This method is suggested by Shapira [11] here
is just adapted for second order accuracy and specific situation. For the time
derivation the backward difference is used because of its unconditional stability
which means that we have first order accuracy in time discretization.

Then for every time layer we have to solve the set of equation generally
written down as:

f(y, t−∆t) = f(y, t)
(

1 + ∆t [µ(y, z, t)]′ + 3 ∆t
2 ∆y |µ(y, z, t)|+ σ2 ∆t

∆y2

)

+f(y −∆y, y)
(
− 4 ∆t

2 ∆y µP (y, z, t)− σ2 ∆t
2 ∆y2

)

+f(y + ∆y, y)
(
− 4 ∆t

2 ∆y µN(y, z, t)− σ2 ∆t
2 ∆y2

)

+f(y − 2∆y, t) ∆t
2 ∆y µP (y, z, t)

+f(y + 2∆y, t) ∆t
2 ∆y µN(y, z, t),

(17)
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where

µP (y, z, t) := (|µ(y, z, t)|+ µ(y, z, t))/2

µN(y, z, t) := (|µ(y, z, t)| − µ(y, z, t))/2.

This general equations could be rewritten into compact matrix notation:

f (i−1) = Af (i),

where f (i) = {f(y0, i ∆t), f(y1, i ∆t), . . . , f(yN , i ∆t)} is a vector of density
approximation values in i-th time layer and A is compounded from five vectors
(one diagonal and two ofdiagonals on both sides at diagonal) such that the
product correspond to the equation (17).

After all its possible to estimate the parameters of a diffusion proces with
discretely observed process values y0, y1, . . . , yT and values of market founda-
mentals denoted zt using appoximate maximum likelihood:

T∑
s=1

log f(ys|zs, ys−1; θ), (18)

where θ is a vector of parameters ai, bi, c, σ.

3.2 Other possible approaches

More precise and flexible but still quite similar method to finite differences is
finite element method. The main advantage is, that it aproximates the result
not the solved equation. Other advantages are possibility to refine the mesh
during the calculation to achieve higher accuracy. This method is prefered by
Hurn et al. [8].

Aı̈t-Sahalia [2] has proposed a method based on Hermite polynomials to
derive explicit sequence of closed-form expansion for the transition density of
diffusion processes. Still, it has to be adapted for diffusion processes with exo-
genous variables. Thanks to closed-form the maximum likelihood estimation of
the parameters is considerably less computationally demanding and achieving
at least comparable accuracy with other approximation methods ([9]).
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