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Abstract

Structure of each Compositional model can be visualized by a tool
called persegram. Every persegram over a finite non-empty set of vari-
ables N induces an independence model over N, which is a list of condi-
tional independence statements over N. The Equivalence problem is how
to characterize (in graphical terms) whether all independence statements
in the model induced by persegram P are in the model induced by a sec-
ond persegram P’ and vice versa. Three different operations preserving
independence model were introduced in previous papers. If combined, one
is able to generate the (whole) class of equivalent persegrams. This char-
acterization is indirect: Two persegrams P,P’ are equivalent if there exists
a sequence of persegrams from P,P’ such that only so called IE-operations
are performed to get next persegram in the sequence.

In this paper we give the motivation and introduction for direct char-
acterization of equivalence. We have found some invariants among equiva-
lent persegrams that have to be remained. In spite of that, the final simple
direct characterization is not given. Instead we give several properties of
equivalent persegrams that could be helpful.

Structure of each Compositional model can be visualized by a tool
called persegram. Every persegram over a finite non-empty set of variables
N induces an independence model over N , which is a list of conditional
independence statements over N . The equivalence problem is how to char-
acterize (in graphical terms) whether all independence statements in the
model induced by persegram P are in the model induced by a second
persegram P

′ and vice versa. In the previous paper [5] indirect character-
ization of equivalence was done. We introduced three different operations
on persegrams remaining independence model which combined together
are able to generate the (whole) class of equivalent persegrams. That
characterization is indirect in the following sense: Two persegrams P , P ′

are equivalent if there exists a sequence of persegrams from P to P
′ such

that only so called IE-operations are performed to get next persegram in
the sequence.

In this paper we give the motivation and introduction for direct char-
acterization of equivalence. We have found some invariants among equiva-
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lent persegrams that have to be remained. In spite of that, the final simple
direct characterization is not given. Instead we give several properties of
equivalent persegrams that could be helpful.

1 Introduction

The ability to represent and process multidimensional probability distributions
is a necessary condition for the application of probabilistic methods in Artificial
Intelligence. Among the most popular approaches are the methods based on
Graphical Markov Models, e.g., Bayesian Networks. The Compositional mod-
els are an alternative approach to Graphical Markov Models. These models
are generated by a sequence (generating sequence) of low-dimensional distri-
butions, which, composed together, create a distribution - the so called Com-
positional model. Moreover, while a model is composed together, a system of
(un)conditional independencies is simultaneously introduced by the structure of
the generating sequence.

The structure can be visualized by a tool called persegram and one can
read induced independencies directly using this tool. That is why we can say
that every persegram over a finite non-empty set of variables N induces an
independence model over N - a list of conditional independence statements over
N . The equivalence problem is how to characterize (in graphical terms) whether
all independence statements in the model induced by persegram P are also in
the independence model induced by a second persegram P ′ and vice versa.

2 Compositional Models

A Bayesian network may be defined as a multidimensional distribution fac-
torizing with respect to an acyclic directed graph. Alternatively, it may be
defined by its graph and an appropriate system of low-dimensional (oligodimen-
sional) conditional distributions. Contrary, Compositional models are defined
as a multidimensional distribution assembled from a sequence of oligodimen-
sional unconditional distributions, with the help of operators of composition.
The main advantage of both approaches lies in the fact that oligodimensional
distributions could be easily stored in a computer memory. However, comput-
ing with a multidimensional distribution that is split into many pieces may be
exceptionally complicated. The advantage of Compositional models in com-
parison with Bayesian networks consists in the fact that compositional models
explicitly express some marginals, whose computation in a Bayesian network
may be demanding. Compositional model is assembled ,in contrast to Bayesian
network, from unconditional distributions.

2.1 Notation and Basic Properties

Throughout the paper the symbol N will denote a non-empty set of finite-valued
variables. From the next chapter on, variables will be represented by markers
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of a persegram. All probability distributions of this variables will be denoted
by Greek letters (usually π, κ); thus for K ⊂ N , we consider a distribution
(a probability measure over K) π(K) which is defined for variables K. When
several distributions will be considered, we shall distinguish them by indices.
For a probability distribution π(K) and U ⊂ K we will consider a marginal
distribution π(U).

The following conventions will be used throughout the paper. Given sets
K, L ⊂ N the juxtaposition KL will denote their union K ∪ L. The following
symbols will be reserved for special subsets of N : K, R, S. The symbol U, V, W, Z

will be used for general subsets of N . The symbol |U | will be used to denote the
number of elements of a finite set U , that is, its cardinality. u, v, w, z denotes
variables as well as singletons {x}, . . .

Independence and dependence statements over N correspond to special dis-
joint triples over N . Thy sumbol 〈U, V |Z〉 denotes a triplet of pirwise disjoint
subsets U, V, Z of N . This notations anticipates the intended meaning: the set
of variables U is conditionally independent or dependent of the set of variables
V given the set of variables Z. This is why the third set Z is separated by
a straight line: it has a special meaning of the conditioning set. The symbol
T (N) will denote the class of all disjoint triplets over N :

T (N) = {〈U, V |Z〉; U, V, Z ⊆ N U ∩ V = V ∩ Z = Z ∩ U = ∅}

To describe how to compose low-dimensional distributions to get a distribu-
tion of a higher dimension we use the following operator of composition.

Definition 2.1. For arbitrary two distributions π(K) and κ(L) their composi-
tion is given by the formula

π(K)⊲ κ(L) =

{

π(K)κ(L)
κ(K∩L) if π↓K∩L ≪ κ↓K∩L,

undefined otherwise,

where the symbol π(M) ≪ κ(M) denotes that π(M) is dominated by κ(M),
which means (in the considered finite setting)

∀x ∈ ×j∈MXj ; (κ(x) = 0 =⇒ π(x) = 0).

The result of the composition (if defined) is a new distribution. We can
iteratively repeat the process of composition to obtain a multidimensional dis-
tribution - a model approximating the original distribution with corresponding
marginals. That is why these multidimensional distributions (and the whole
theory as well) are called Compositional models . To describe such a model
it is sufficient to introduce an ordered system of low-dimensional distributions
π1, π2, . . . , πn. If all compositions are defined, we call this ordered system a
generating sequence. To get a distribution represented by this sequence one has
to apply the operators from left to right:

π1 ⊲ π2 ⊲ π3 ⊲ . . .⊲ πn−1 ⊲ πn = (. . . ((π1 ⊲ π2)⊲ π3)⊲ . . .⊲ πn−1)⊲ πn.
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From now on, we consider generating sequence π1(K1), π2(K2), . . . , πn(Kn)
which defines a distribution

π1(K1)⊲ π2(K2)⊲ . . .⊲ πn(Kn).

Therefore, whenever distribution πi is used, we assume it is defined for vari-
ables Ki. In addition, each set Ki can be divided into two disjoint parts. We
denote them Ri and Si with the following sense:

Ri = Ki\(K1 ∪ . . . ∪ Ki−1), Si = Ki ∩ (K1 ∪ . . . ∪ Ki−1)

.
Ri denotes variables from Ki with the first appeared with respect to the

sequence (meaning from left to right). Si denotes the already used.

2.2 Graphical concepts

It is well-known that one can read conditional independence relations of a
Bayesian network from its graph. A similar technique is used in compositional
models. An appropriate tool for this is a persegram. Persegram is used to
visualize the structure of a compositional model and is defined bellow.

Definition 2.2. Persegram P of a generating sequence is a table in which rows
correspond to variables (in an arbitrary order) and columns to low-dimensional
distributions; ordering of the columns corresponds to the generating sequence
ordering. A position in the table is marked if the respective distribution is defined
for the corresponding variable. Markers for the first occurrence of each variable
(i.e., the leftmost markers in rows) are squares (we call them box-markers) and
for other occurrences there are bullets.

Persegram P is a table of markers. Since the markers in the i-th column
highlight variables for which generating sequence is defined, we denote markers
in i-th column as Ki. Box-markers in i-th column of P are denoted like Ri

and bullets like Si. Ki = Ri ∪ Si. This notation is purposely in accordance
with notation of variable sets in generating sequences to simplify readability
and lucidity of the text.

Persegrams are usually denoted by P and if it is not specified otherwise P
corresponds to the generating sequence π1(K1), . . . , πn(Kn) where K1 ∪ . . . ∪
Kn = N . We say that P is defined over N . (i.e. P over N has n columns with
markers K1, . . . , Kn where K1 ∪ . . . ∪ Kn = N .)

To simplify the notation we will use the following symbol: Let P be a perseg-
ram over N . We introduce a function ][P : N → N, which for every variable
u ∈ N returns the index of set Ki with the first appearance of u in the perseg-
ram P . Due to the previously established notation can be said that K]u[P is a
column Ki where u ∈ Ri. In other words: ]u[P= i : u ∈ Ri.

Definition 2.3. Let P be a persegram over N and �P a binary relation. For
arbitrary u, v ∈ N u �P v if ]u[P≤]v[P . Moreover we introduce the relation ≺P :
u ≺P v ⇔ u �P v AND v �P u.
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The following convention will be used throughout the paper: Given variables
u, v, w ∈ N and P over N , the term u, v ≺P w denotes that u ≺P w and v ≺P w.
The symbol P may be omitted, if the content is clear.

2.3 Conditional independence

Conditional independence statements over N induced by the structure of Com-
positional model can be read from its persegram. Such independence is indicated
by the absence of a trail connecting or avoiding relevant markers. It is defined
below.

Definition 2.4. Consider a persegram over N and a subset Z ⊂ N . A sequence
of markers m0, . . . , mt is called a Z-avoiding trail that connects m0 and mt if
it meets the following 4 conditions:

1. for each s = 1, . . . , t a couple (ms−1, ms) is in the same row (i.e., hori-
zontal connection) or in the same column (vertical connection);

2. each vertical connection must be adjacent to a box-marker (one of the
markers is a box-marker);

3. no horizontal connection corresponds to a variable from Z;

4. vertical and horizontal connections regularly alternate with the following
possible exception: two vertical connections may be in direct succession if
their common adjacent marker is a box-marker of a variable from Z;

If a Z-avoiding trail connects two-box markers corresponding to variables u and
v, we also say that these variables are connected by a Z-avoiding trail. Suppose
〈U, V |Z〉 ∈ T (N) is a disjoint triplet over N . One says that U and V are
conditionally dependent by Z, written U 6⊥⊥V |Z[P ], if there exists a Z-avoiding
trail between variable u ∈ U and variable v ∈ V in P. In the opposite case one
says that U and V are conditionally independent by Z in P, written U⊥⊥V |Z[P ].
We also say that 〈U, V |Z〉 is represented in P. The induced independence model
I(P) and the induced dependence model D(P) are defined as follows:

IP = {〈U, V |Z〉 ∈ T (N); U⊥⊥V |Z[P ]}

DP = {〈U, V |Z〉 ∈ T (N); U 6⊥⊥V |Z[P ]}

Example 2.5. Consider persegram from Figures 1 and 2.
In Figure 1 a ∅-avoiding trail is depicted. Therefore u 6⊥⊥z|∅. Moreover, one

can replace ∅ by any subset of {v, w, x, y} which is avoiding as well. In Figure 2
is depicted another trail connecting u and x this time. Therefore u 6⊥⊥x|z. On
the contrary to Figure 1 one can not replace z by any other variable except of
v. Otherwise the condition 3. from the Definition 2.4 will be corrupted. (i.e.
u⊥⊥x|y[P ] for example)

From the previous Definition 2.4 one can almost immediately get an inter-
esting fact about variables appeared for the first time in the last column.



Equivalence problem in Compositional models 6

π1 π2 π3 π4 π5
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u

Figure 1: P : u 6⊥⊥z|∅, u 6⊥⊥z|v

π1 π2 π3 π4 π5
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w

v

u

Figure 2: P : u 6⊥⊥x|z

Lemma 2.6. Consider a persegram P with n columns K1, . . . , Kn and distinct
variables u, v ∈ K1 ∪ . . . ∪Kn such that u 6∈ Kn and v ∈ Rn. Then u⊥⊥v|Sn[P ].

Proof. Since v belongs to the last column of P only and u do not, every trail to
v has to contain a horizontal connection to n-th column corresponding to some
variable from Sn. By condition 3. of the Definition 2.4: No horizontal connec-
tion can correspond to variable from Sn. Then a Sn-avoiding trail between u

and v can not exist.

The following theorem shows an important parallel between independence
read from compositional model and from its persegram. This theorem is given
without proof, one can find it in [1].

Theorem 2.7. Consider a generating sequence π1(K1), . . . , πn(Kn), its corre-
sponding persegram P, and three disjoint subset U, V, Z ⊂ K1 ∪ . . . ∪ Kn such
that U 6= ∅ 6= V . Then:

U⊥⊥V |Z[P ] ⇒ U⊥⊥V |Z[π1 ⊲ . . .⊲ πn].

Notice that in definition 2.4 there is no condition concerning the order of
rows in persegrams. This is not surprising because there is no rows ordering in
definition 2.2 either.

To simplify proofs done by induction on the number of columns we introduce
the concept of the subpersegram induced by subset of variables U . Unlike the
subgraph which contains exactly those variables that induce it, subpersegram
induced by a set U may be defined for some superset of U .

Definition 2.8. Let P be a persegram over N . U ⊆ N . A subpersegram
P [U ] induced by U is the minimal left part of P containing all box-markers
corresponding to U .

Example 2.9. Let P be the persegram represented in Example 2.5. Then the
corresponding induced subpersegram P [z] is in Figure 3 and induced subperseg-
ram P [w] is in Figure 4.
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Figure 3: P ≡ P [z]
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Figure 4: P [w]

Lemma 2.10. Let P be a persegram over N , and u 6⊥⊥v|Z[P ]. Then all Z-
avoiding trails connecting u with v are in subpersegram P [u ∪ v ∪ Z] too.

Proof. Suppose that u 6⊥⊥v|Z[P ] and that there is a trail with a connection in P
but not in P [u∪ v ∪Z]. Let m is the first marker on the trail from u to v which
belongs to such a column. Because this marker is the first one in such a column,
a horizontal connection was used and therefore m is a bullet. Now one has
to continue with a vertical connection(down) to box-marker. This box-marker
does not correspond to any variable from Z (this column is not in P [u∪v∪Z]).
Therefore one has to continue with horizontal connection (to the right, this is a
box-marker - there is nothing on left in the same row) to a bullet. Then down
to a box-marker which does not correspond to any variable from Z etc. From
such a trail is no return. Therefore such a trail can not exist.

This lemma basically means, that if we are interested in relation u⊥⊥v|Z[P ]
we may focus on the subpersegram P [u ∪ v ∪ Z] only. This observation is
summarized in the following corollary.

Corollary 2.11. Let P be a persegram over N and u, v ∈ N, Z ⊂ N \ {u, v}.
Then u⊥⊥v|Z[P [u∪ v ∪ Z]] ⇔ u⊥⊥v|Z[P ].

The following specific notation for certain composite dependence statements
will be useful. Given a persegram P over N , distinct variables u, v ∈ N and
disjoint set U ⊆ N \ {u, v} the symbol u 6⊥⊥v| + U [P ] will be interpreted as the
condition

∀W such that U ⊆ W ⊆ N \ {u, v} one has u 6⊥⊥v|W [P ].

In words, u and v are (conditionally) dependent in P given any superset of
U . If U is empty we write ∗ instead of +U . In particular, the following two
symbols will be sometimes used

u 6⊥⊥v| ∗ [P ] ≡ ∀W such that W ⊆ N \ {u, v} u 6⊥⊥v|W [P ].

for distinct nodes u, v ∈ N , and
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u 6⊥⊥v| + w[P ] ≡ ∀W such that {w} ⊆ W ⊆ N \ {u, v} one has u 6⊥⊥v|W [P ].

for distinct nodes u, v, w ∈ N . We give a certain graphical characterization of
composite dependence statements of this kind below.

3 Equivalence problem

By the equivalence problem we understand the problem how to recognize whether
two given persegramsP1,P2 over N induce the same independence model (IP1

=
IP2

). It is of special importance to have an easy rule to recognize that two
persegrams are equivalent in this sense and an easy way to convert P1 into P2

in terms of some elementary operations on persegrams. Another very important
aspect is the ability to generate all persegrams which are equivalent to a given
persegram.

Definition 3.1. Persegrams P1,P2 (over the same variable set N) are called
independence equivalent, if they induce the same independence model IP1

=
IP2

.

Remark 3.2. One may easily see that the above mentioned definition could
be formulated with the term of dependence model. Persegrams P1,P2 (over the
same variable set N) are independence equivalent, iff DP1

= DP2
. This alter-

native is used in most proofs primarily.

Like in Bayesian networks, it may happen that different persegrams induce
the same independence model.

Example 3.3. 1. The following example is simple: N = {u, v} and the fol-
lowing two persegrams P1,P2:

P1:

π1 π2

u

v

P2:

π1 π2

u

v

IP1
= IP2

= {〈u, v|∅〉} in this case.

2. On the other hand, the persegrams which have the same variable sets in
columns in different order do not have to be equivalent. Let N = {u, v, w}
and consider the following persegrams:

u⊥⊥v|∅[P1] but u 6⊥⊥v|∅[P2]. On the contrary, u 6⊥⊥v|w[P1] and u 6⊥⊥v|w[P2].
The order of the columns in persegram is important.

3.1 Direct characterization

The solution of equivalence problem can be done in several ways. Some kind of
indirect characterization of equivalence follows was done in the paper [5] where
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P1:

π1 π2 π3

u

v

w

P2:

π1 π2 π3

u

v

w

four special operations on persegrams were introduced. These operations are
called IE operations (Independence equivalent) and they preserve independence
statements induced by a persegram. These operations give us a tool to equiva-
lence recognition: If two persegrams can be transformed from one to the other by
a sequence of IE operations, then the persegrams are independence equivalent.
Anyway, this characterization is indirect in the sense that, if two persegrams
over same set of variables are given, then searching of such a sequence can be
time demanding or even impossible. However, indirect characterization offers a
method to generate a class of equivalent persegrams.

We are more interested in some type of direct characterization which allows
us to decide on equivalence ”immediately”. This characterization should be
based on some independence equivalence invariants.

Definition 3.4. Let P be a persegram over N and u, v ∈ N be two distinct
variables. u, v are connected in P (u ↔ v[P ]) if there is a column in P con-
taining markers of both variables and where at least one of them is a box-marker.
Otherwise u, v are disconnected (u = v).

The following convention will be used thorough the paper: Given variables
u, v, w ∈ N and P over N , the term u, v ↔ w denotes that u ↔ w and v ↔ w.

For the purpose of the following text one should realize the obvious paral-
lel between relation u ↔ v and columns order and content. This parallel is
summarized in the following remark.

Remark 3.5. Let u, v are two different variables in P and u �P v. Then
u ↔ v[P ] ⇔ u ∈ K]v[.

Lemma 3.6. Let P be a persegram over N and u, v ∈ N are distinct variables,
u �P v. Then

u⊥⊥v|S]v[[P ] ⇔ u = v[P ]

Proof. ⇒ Suppose u⊥⊥v|S]v[[P ] and u ↔ v[P ]. Since u � v then by Remark 3.5
u ∈ S]v[. This however contradicts with the fact that sets involved in
independence statements are not disjoint.

⇐ Suppose u = v and u 6⊥⊥v|S]v[[P ]. Since u � v, and S]v[ ≺ v then by
Lemma 2.6 u⊥⊥v|S]v[[P [v]]. By corollary 2.11 u⊥⊥v|S]v[[P ], which con-
tradicts with assumptions.
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Anyway, please realize that because of using an induced subpersegram P [v]
in the proof, the equation u � v; u = v ⇔ u⊥⊥v| + S]v[[P ] generally does not
hold.

With the help of the previous lemma one can prove the following important
assertion.

Lemma 3.7. Let P be a persegram over N and u, v ∈ N are distinct variables.
Then

u ↔ v[P ] ⇔ u 6⊥⊥v| ∗ [P ].

Proof. ⇒ Let u ↔ v and u⊥⊥v|w where w ∈ N \{u, v}. Because u ↔ v then the
trail u ∅ v consists of one vertical and perhaps one horizontal connection
and avoid any w ∈ N \ {u, v}. It contradicts the fact a⊥⊥v|w.

⇐ Suppose u 6⊥⊥v|∗ and u = v; one can assume without loss of generality that
u ≺ v. Then u⊥⊥v|S]v[ according to the lemma 3.6.

The previous two lemmata shows an interesting invariant of independence
equivalence. Two persegrams, if equivalent, have the same set of connections.

Definition 3.8. Let P be a persegram over N . A connection set E(P) is a set of
all pairs 〈u, v〉 : u, v ∈ N , where u ↔ v[P ]. E(P) = {〈u, v〉 : u, v ∈ N, u ↔ v[P ]}

Corollary 3.9. Let P ,P ′ are persegrams over N . If IP = IP′ then E(P) = E(P ′).

Example 3.10. In the Example 3.3 four different persegrams are shown. The
first two are equivalent, the second two are not. Let us show this example again
with knowledge of the previous lemma.

1. Let P1,P2 are the following simple persegrams over N = {u, v}: One can

P1:

π1 π2

u

v

P2:

π1 π2

u

v

easily see that E(P1) = E(P2) = ∅. The claim IP1
= IP2

= {〈u, v|∅〉} is
known from the Example 3.3.

2. On the other hand, consider the following persegrams over N = {u, v, w}.
Connections between variables are highlighted by arrows.

Thanks to Example 3.3 one knows that IP1
6= IP2

. Since E(P1) =
{〈u, w〉, 〈v, w〉} but E(P2) = E(P1) ∪ {〈u, v〉}, non-equivalence is obvious
now.

3. Anyway, there exist persegrams P1,P2 where E(P1) = E(P2) but IP1
6=

IP2
.

E(P1) = {〈u, w〉, 〈v, w〉} = E(P2). However IP1
6= IP2

since u 6⊥⊥v|w[P1]
and u⊥⊥v|w[P2].
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P1:

π1 π2 π3

u

v

w

P2:

π1 π2 π3

u

v

w

P1:

π1 π2 π3

u

v

w

P2:

π1 π2 π3

u

v

w

It follows from the previous example, that the previous invariant is not strong
enough to ensure the equivalence. It is necessary to try to find an another
invariant.

When one consider a relation �P , then every persegram satisfy some partial
variables ordering. For example, u ≺ v ≺ w in persegram P1 but u � w ≺ v in
persegram P2 in the third part of the previous Example 3.10. Is it possible that
the order of the variables will be some kind of invariant? It will be definitely
not in that simple way. It can be easily seen in the first part of the previous
Example 3.10, where u ≺ v in P1 but v ≺ u in P2.

Two equivalent persegrams may have different ordering of variables. If,
however, we are interested in the ordering of several specially connected variables
only, then we obtain an another invariant of independence equivalence. It is
based on Ordering conditions defined bellow.

Definition 3.11. Let P be a persegram over N . An Ordering condition is a
triplet of variables u, v, w ∈ N where u, v ≺ w; u, v ↔ w; and u = v in P. Such
an ordering condition is denoted by [u, v] ≺ w[P ].

An example of an ordering condition can be found it the second and third
part of the Example 3.10 in P1. [u, v] ≺ w[P1] in that case. Persegrams P2 from
both those parts of that Example do not contain any ordering condition.

Lemma 3.12. Let P be a persegram over N , u, v, w ∈ N distinct nodes. Then

[u, v] ≺ w ⇔ u 6⊥⊥v| + w[P ].

Proof. Suppose [u, v] ≺ w[P ]. By Remark 3.5 u, v ∈ Sn. Then Let W ⊂
N \ {u, v} such that w ∈ W . As one can see on the Figure 5 W -avoiding trail
composed from u, w, v connects u, v for every W . Hence, u 6⊥⊥v|W [P ] for every
W (denoted by u 6⊥⊥v| + w[P ]). To prove sufficiency suppose by contradiction
that u ≻ w ∨ v ≻ w. (Since u = v, one does not have to consider equalities in
u � w, v � w ) Suppose u ≺ v, then by remark 3.5 w ∈ S]v[. Since u = v the
lemma 3.6 leads to contradiction.
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w

v

u

Figure 5: u 6⊥⊥v| + w

The above mentioned invariant can be easily concluded into the following
implication.

Corollary 3.13. Let P ,P ′ be two persegrams over N . If IP = IP′ then E(P) = E(P ′)
and they induce the same set of ordering conditions.

The question is: Does this implication hold also in the opposite direction?
I.e. If two persegrams P ,P ′ over the same set N induce the same ordering
conditions and E(P) = E(P ′), are P ,P ′ independence equivalent? The answer
for this question is still unknown. Despite the fact that all experiments confirm
this theory, the formal proof has not been finished yet.

4 Conclusion

In this paper we gave a short introduction into equivalence problem. This
problem includes several sub-problems where one of them is how to simply
recognize whether two given persegrams are equivalent. One can say, how to
recognize equivalence ”on the first sight”. The solution to this problem is a direct
characterization involving some invariants sufficient for equivalence decision.

Two invariants we introduced: Connections set and Ordering conditions.
Are these invariants sufficient to decide whether two given persegrams are equiv-
alent? This question remains open.
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