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Abstract

Structure of each Compositional model can be visualized by a tool
called persegram. Every persegram over a finite non-empty set of vari-
ables N induces an independence model over N , which is a list of condi-
tional independence statements over N . The equivalence problem is how
to characterize (in graphical terms) whether all independence statements
in the model induced by persegram P are in the model induced by a sec-
ond persegram P ′ and vice versa. In the previous paper [6] some kind
of direct characterization of equivalence was done. We introduced two
invariant properties of equivalent persegrams. Are these invariants suffi-
cient to decide of equivalence of given persegrams? This question has not
been answered yet.

In this paper we give the motivation and introduction for indirect char-
acterization of equivalence. We have found three operations on persegram
remaining induced independence model. By combining them together, one
can generate a class of equivalent models. We are not sure whether one
can generate the whole class. This problem is closely connected with the
above mentioned problem of invariant properties.

1 Introduction

The ability to represent and process multidimensional probability distributions
is a necessary condition for the application of probabilistic methods in Artificial
Intelligence. Among the most popular approaches are the methods based on
Graphical Markov Models, e.g., Bayesian Networks. The Compositional mod-
els are an alternative approach to Graphical Markov Models. These models
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are generated by a sequence (generating sequence) of low-dimensional distri-
butions, which, composed together, create a distribution - the so called Com-
positional model. Moreover, while a model is composed together, a system of
(un)conditional independencies is simultaneously introduced by the structure of
the generating sequence.

The structure can be visualized by a tool called persegram and one can
read induced independencies directly using this tool. That is why we can say
that every persegram over a finite non-empty set of variables N induces an
independence model over N - a list of conditional independence statements over
N . The equivalence problem is how to characterize (in graphical terms) whether
all independence statements in the model induced by persegram P are also in
the independence model induced by a second persegram P ′ and vice versa.

2 Notation and Basic Properties

Throughout the paper the symbol N will denote a non-empty set of finite-valued
variables. From the next chapter on, variables will be represented by markers
of a persegram. All probability distributions of this variables will be denoted
by Greek letters (usually π, κ); thus for K ⊂ N , we consider a distribution
(a probability measure over K) π(K) which is defined for variables K. When
several distributions will be considered, we shall distinguish them by indices.
For a probability distribution π(K) and U ⊂ K we will consider a marginal
distribution π(U).

The following conventions will be used throughout the paper. Given sets
K,L ⊂ N the juxtaposition KL will denote their union K ∪ L. The following
symbols will be reserved for special subsets of N : K,R, S. The symbol U, V, W,Z
will be used for general subsets of N . The symbol |U | will be used to denote the
number of elements of a finite set U , that is, its cardinality. u, v, w, z denotes
variables as well as singletons {x}, . . .

Independence and dependence statements over N correspond to special dis-
joint triples over N . The symbol 〈U, V |Z〉 denotes a triplet of pairwise disjoint
subsets U, V, Z of N . This notations anticipates the intended meaning: the set
of variables U is conditionally independent or dependent of the set of variables
V given the set of variables Z. This is why the third set Z is separated by
a straight line: it has a special meaning of the conditioning set. The symbol
T (N) will denote the class of all disjoint triplets over N :

T (N) = {〈U, V |Z〉; U, V, Z ⊆ N U ∩ V = V ∩ Z = Z ∩ U = ∅}
To describe how to compose low-dimensional distributions to get a distribu-

tion of a higher dimension we use the following operator of composition.

Definition 2.1. For arbitrary two distributions π(K) and κ(L) their composi-
tion is given by the formula

π(K) B κ(L) =

{
π(K)κ(L)
κ(K∩L) if π↓K∩L ¿ κ↓K∩L,

undefined otherwise,
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where the symbol π(M) ¿ κ(M) denotes that π(M) is dominated by κ(M),
which means (in the considered finite setting)

∀x ∈ ×j∈MXj ; (κ(x) = 0 =⇒ π(x) = 0).

The result of the composition (if defined) is a new distribution. We can
iteratively repeat the process of composition to obtain a multidimensional dis-
tribution - a model approximating the original distribution with corresponding
marginals. That is why the multidimensional distribution (and the whole theory
as well) is called Compositional model . To describe such a model it is sufficient
to introduce an ordered system of low-dimensional distributions π1, π2, . . . , πn.
If all compositions are defined, we call this ordered system a generating sequence.

From now on, we consider generating sequence π1(K1), π2(K2), . . . , πn(Kn)
which defines a distribution (where the operator B is applied from left to right)

π1(K1) B π2(K2) B . . . B πn(Kn).

Therefore, whenever distribution πi is used, we assume it is defined for vari-
ables Ki. In addition, each set Ki can be divided into two disjoint parts. We
denote them Ri and Si with the following sense:

Ri = Ki\(K1 ∪ . . . ∪Ki−1), Si = Ki ∩ (K1 ∪ . . . ∪Ki−1)

.
Ri denotes variables from Ki with the first appeared with respect to the

sequence (meaning from left to right). Si denotes the already used.

2.1 Graphical concepts

It is well-known that one can read conditional independence relations of a
Bayesian network from its graph. A similar technique is used in compositional
models. An appropriate tool for this is a persegram. Persegram is used to
visualize the structure of a compositional model and is defined bellow.

Definition 2.2. Persegram P of a generating sequence is a table in which rows
correspond to variables (in an arbitrary order) and columns to low-dimensional
distributions; ordering of the columns corresponds to the generating sequence
ordering. A position in the table is marked if the respective distribution is defined
for the corresponding variable. Markers for the first occurrence of each variable
(i.e., the leftmost markers in rows) are squares (we call them box-markers) and
for other occurrences there are bullets.

Since the markers in the i-th column represent variables Ki, we denote mark-
ers in i-th column as Ki. Box-markers in i-th column of P are denoted like Ri

and bullets like Si. Ki = Ri ∪ Si. This notation is purposely in accordance
with notation of variable sets in generating sequences to simplify readability
and lucidity of the text.
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Persegrams are usually denoted by P and if it is not specified otherwise, P
corresponds to the generating sequence π1(K1), . . . , πn(Kn) where K1 ∪ . . . ∪
Kn = N . We say that P is defined over N . (i.e. P over N has n columns with
markers K1, . . . , Kn where K1 ∪ . . . ∪Kn = N .)

To simplify the notation we will use the following symbol: Let P be a perseg-
ram over N . We introduce a function ][P : N → N, which for every variable
u ∈ N returns the index of set Ki with the first appearance of u in the perseg-
ram P. Due to the previously established notation can be said that K]u[P is a
column Ki where u ∈ Ri. In other words: ]u[P= i : u ∈ Ri.

Definition 2.3. Let P be a persegram over N and ¹P a binary relation. For
arbitrary u, v ∈ N we denote u ¹P v if ]u[P≤]v[P . Moreover we introduce the
relation ≺P : u ≺P v ⇔ u ¹P v AND v �P u.

The following convention will be used throughout the paper: Given variables
u, v, w ∈ N and P over N , the term u, v ≺P w denotes that u ≺P w and v ≺P w.
The symbol P may be omitted, if the content is clear.

2.2 Conditional independence

Conditional independence statements over N induced by the structure of Com-
positional model can be read from its persegram. Such independence is indicated
by the absence of a trail connecting or avoiding relevant markers. It is defined
below.

Definition 2.4. Consider a persegram over N and a subset Z ⊂ N . A sequence
of markers m0, . . . , mt is called a Z-avoiding trail that connects m0 and mt if
it meets the following 4 conditions:

1. for each s = 1, . . . , t a couple (ms−1, ms) is in the same row (i.e., hori-
zontal connection) or in the same column (vertical connection);

2. each vertical connection must be adjacent to a box-marker (one of the
markers is a box-marker);

3. no horizontal connection corresponds to a variable from Z;

4. vertical and horizontal connections regularly alternate with the following
possible exception: two vertical connections may be in direct succession if
their common adjacent marker is a box-marker of a variable from Z;

If a Z-avoiding trail connects two-box markers corresponding to variables u and
v, we also say that these variables are connected by a Z-avoiding trail. Suppose
〈U, V |Z〉 ∈ T (N) is a disjoint triplet over N . One says that U and V are
conditionally dependent by Z, written U 6⊥⊥V |Z[P], if there exists a Z-avoiding
trail between variable u ∈ U and variable v ∈ V in P. In the opposite case one
says that U and V are conditionally independent by Z in P, written U⊥⊥V |Z[P].
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We also say that 〈U, V |Z〉 is represented in P. The induced independence model
I(P) and the induced dependence model D(P) are defined as follows:

IP = {〈U, V |Z〉 ∈ T (N); U⊥⊥V |Z[P]}

DP = {〈U, V |Z〉 ∈ T (N); U 6⊥⊥V |Z[P]}
Example 2.5. Consider persegram from Figures 1 and 2.

π1 π2 π3 π4 π5

z

y

x

w

v

u

Figure 1: P : u 6⊥⊥z|∅, u 6⊥⊥z|v

π1 π2 π3 π4 π5

z

y

x

w

v

u

Figure 2: P : u 6⊥⊥x|z

In Figure 1 a ∅-avoiding trail is depicted. Therefore u 6⊥⊥z|∅. Moreover, one
can replace ∅ by any subset of {v, w, x, y} which is avoiding Z as well. In
Figure 2, there is depicted another trail connecting u and x. Therefore u6⊥⊥x|z.
On the contrary to Figure 1, one can not replace z by any other variable except
v. Otherwise, the condition 3. from the Definition 2.4 will be corrupted. (i.e.
u⊥⊥x|y[P] for example)

The following specific notation for certain composite dependence statements
will be useful. Given a persegram P over N , distinct variables u, v ∈ N and
disjoint set U ⊆ N \ {u, v} the symbol u 6⊥⊥v| + U [P] will be interpreted as the
condition

u6⊥⊥v|+ U [P] ≡ ∀W such that U ⊆ W ⊆ N \ {u, v} one has u6⊥⊥v|W [P].

In words, u and v are (conditionally) dependent in P given any superset of
U . If U is empty we write ∗ instead of +∅. I.e.

u6⊥⊥v| ∗ [P] ≡ ∀W such that W ⊆ N \ {u, v} u6⊥⊥v|W [P].

We give a certain graphical characterization of composite dependence state-
ments of this kind below.

3 Equivalence problem

By the equivalence problem we understand the problem how to recognize whether
two given persegrams P1,P2 over N induce the same independence model (IP1 =
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IP2). It is of special importance to have an easy rule to recognize that two
persegrams are equivalent in this sense and an easy way to convert P1 into P2

in terms of some elementary operations on persegrams. Another very important
aspect is the ability to generate all persegrams which are equivalent to a given
persegram.

Definition 3.1. Persegrams P1,P2 (over the same variable set N) are called
independence equivalent, if they induce the same independence model IP1 =
IP2 .

Remark 3.2. One may easily see that the above mentioned definition could
be formulated with the term of dependence model. Persegrams P1,P2 (over the
same variable set N) are independence equivalent, iff DP1 = DP2 . This alter-
native is used in most proofs primarily.

3.1 Direct characterization

The solution of equivalence problem can be done in several ways. Some kind of
direct characterization of equivalence follows was done in the paper [6] where
we introduced two invariant properties of equivalent persegrams. Let us remind
these invariant together with necessary definitions of connection and ordering
condition. Proofs can be found in [6].

Definition 3.3. Let P be a persegram over N and u, v ∈ N be two distinct
variables, and u ¹P v. u, v are connected in P (u ↔ v[P]) if u ∈ K]v[. The set
of all pairs E(P) = {〈u, v〉 : u, v ∈ N, u ↔ v[P]} is called a connection set of P.

Lemma 3.4. Let P be a persegram over N and u, v ∈ N are distinct variables.
Then

u ↔ v[P] ⇔ u6⊥⊥v| ∗ [P].

Definition 3.5. Let P be a persegram over N . An Ordering condition is a
triplet of variables u, v, w ∈ N where u, v ≺ w; u, v ↔ w; and u= v in P. Such
an ordering condition is denoted by [u, v] ≺ w[P].

Lemma 3.6. Let P be a persegram over N , u, v, w ∈ N distinct nodes. Then

[u, v] ≺ w ⇔ u6⊥⊥v|+ w[P].

The previous lemmata show two invariant properties of equivalent perseg-
rams. Two persegrams, if equivalent, have the same set of connections and
induce the same set of ordering conditions.

Corollary 3.7. Let P,P ′ be two persegrams over N . If IP = IP′ then E(P) = E(P ′)
and they induce the same set of ordering conditions.

The question is: Does this implication hold also in the opposite direction?
I.e. if two persegrams P,P ′ over the same set N induce the same ordering
conditions and E(P) = E(P ′), are P,P ′ independence equivalent? The answer
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for this question is still unknown. Despite the fact that all experiments confirm
this theory, the formal proof has not been finished yet.

We can introduce a set of operations on persegram preserving induced inde-
pendence model with the help of these properties.

3.2 IE operations

Suppose we are interested in the solution of the third part of the Equivalence
problem. We want to find some operations on persegram that preserve inde-
pendence model. What are the possible operations on persegram?

If you realize the Definition 2.2 Change row ordering has no effect on the
persegram. By adding a row one adds a new variable into a model. It makes
sense to consider equivalent persegrams over the same set of variables N only
and therefore Change row amount does not need to be consider.

Add/remove marker: Suppose one adds a bullet corresponding to v ∈ N into
K]u[. Then by Definition 3.3 one adds a connection u ↔ v that was not there
before. By adding of a box-marker corresponding to v into K]u[ new connections
v ↔ K]u[ \ S]v[ appear and v ↔ S]v[ \K]u[ disappear simultaneously. It will not
happen if K]u[ = S]v[ (see Example 3.8).

Change column ordering could be possible under special circumstances as
well as Change column amount. One can always add a column consisting of
bullets only.

Example 3.8. Let P1 be a persegram over N , u, v ∈ N , and K]u[ = S]v[.
These two columns are given in Figure 3. Then one can add a box-marker
corresponding to v into K]u[ to get persegram P2. Since one adds a new box-
marker, the old one turns into bullet and v ↔ S]v[\K]u[ disappear. v ↔ K]u[\S]v[

appears in K]u[. These connections are highlighted in Figure 3. Since K]u[ = S]v[

then E(P1) = E(P2).

P1:

K]u[ K]v[

v

u

P2:

K]u[ K]v[

v

u

Figure 3: Since K]u[ = S]v[, one can add box-marker of v into K]u[.

The previous discussion shows that we can restrict to the operations with
columns only. Moreover, a box marker can be added/removed under special
circumstances.

Four different simple operations on persegram preserving independence model
were discovered. We call them IE operations (Independence Equivalent). These
operations can be divided into two groups according to how they do by columns:
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Either changing ordering (this group is called permutations) or adding/removing
them (extensions/reductions).

The idea of proofs is very simple. We will prove that every Z-avoiding trail
either remains the same or it can be easily transformed according to the Remark
3.2. We consider the following operations:

Definition 3.9. Let P be a persegram over N and two adjacent columns Ki, Ki+1.
The so called IE operations are the following set of operations with columns.

• Independent permutation: We can swap two columns Ki, Ki+1, if no box-
marker turns into bullet and vice-versa. (∪i−1

j=1Kj ⊇ Ki ∩Ki+1)

• Intersection permutation: We can swap two columns Ki,Ki+1, if all bul-
lets Si ∪ Si+1 belong to its intersection. (Si ∪ Si+1 ⊆ Ki ∩Ki+1)

• Removing of a column containing bullets only is called Bullets exten-
sion/reduction. (Ki = Si)

• Removing of a column i, which is a subset of the column i + 1 that has
box-markers elsewhere only, is called Subset extension/reduction. (Ki =
Si+1.)

Claim that Independent permutation preserve the model was demonstrated
in the [5]. It is a little bit more complicated in case of Intersection permutation.

Lemma 3.10. Let P be a persegram over N . If P ′ arises from P by applying
of Intersection permutation then IP = IP′ .
Proof. We show that DP = DP′ . By the definition of Intersection Permutation
the role of P and P ′ is interchangeable. It suffices to verify DP ⊆ DP′ . Suppose,
that P ′ arises from P by applying of Intersection permutation on two adjacent
columns Ki, Ki+1.

Suppose there is a Z-avoiding trail u6⊥⊥v|Z[P] Without loss of generality,
consider a Z-avoiding trail τ which involves the minimal number of markers
among trails of this type. Since P differs from P ′ in Ki,Ki+1 columns only (its
order and markers form), we show how to convert that part of τ into P ′ and
therefore that u 6⊥⊥v|Z[P ′].

1. Red-line the sequence of markers τ in P.

2. Apply the Intersection permutation on Ki,Ki+1 columns of P (Ki[P] ⇒
K ′

i+1[P ′], Ki+1[P] ⇒ K ′
i[P ′]) and move the corresponding parts of τ to-

gether with columns Ki,Ki+1 to create τ ′.

3. If exists a vertical connection of τ ′ not adjacent to any box-marker (in
K ′

i+1) move it into K ′
i column. (It is possible since (S′i∪S′i+1 = Si+1∪Si) ⊆

(Ki ∩Ki+1 = K ′
i+1 ∩K ′

i))

4. Reduce or extend the corresponding horizontal connection.
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Ki Ki+1

a

b

c

d

e

f

Figure 4: Step 1

Ki+1 Ki

a

b

c

d

e

f

Figure 5: Step 2

Ki+1 Ki

a

b

c

d

e

f

Figure 6: Steps 3,4

The execution phase of the algorithm is demonstrated on figures 4, 5, and 6.
The only part where τ ′ differs from τ (and where it can breaks the conditions
of definition 2.4) is in Ki, Ki+1. Since τ satisfied all conditions of Definition 2.4
then one can easily see that, except the condition 4, τ ′ does as well - Horizontal
and vertical connections regularly alternate. Let us test this condition too.

Ki Ki+1

a

b

c

d

e

f

Ki+1 Ki

a

b

c

d

e

f

Ki+1 Ki

a

b

c

d

e

f

Ki Ki+1

a

b

c

d

e

f

Figure 7: First trail, which leads to two verticals, contradicts with the fact that
we use the shortest trail. The fourth trail which is shorter.

Suppose that vertical and horizontal connections do not regularly alternate
in τ ′. It may happen only if in step 3, after moving the two vertical connections
appear in the same column. However, it can not happen because in that case
τ is not the shortest sequence avoiding Z (see on figure 7), which contradicts
with assumptions.

Lemma 3.11. Let P be a persegram. If P ′ arises from P by applying of Subset
extension/reduction then IP = IP′ .

Proof. This lemma can by proved the same way as lemma 3.10, or one can realize
that Subset extension/reduction can be spread out into Intersection permutation
and Bullets extension/reduction, where both of them preserve Independence
model MP .
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We have found four operations on persegrams preserving the induce inde-
pendence model till now. Two of them change the columns ordering, the other
two extend/reduce its length. With the help the extend operations we can it-
eratively enlarge persegram till infinity and simultaneously create a sequence
of equivalent persegrams (equivalence subclass). Since we want to find some
simple characterization of equivalence, we should restrict our attention on the
shortest possible representative of each such sequence to simplify the following
lemmata and make the whole theory more lucid.

In other words, it means that we should consider persegrams on which no
reduce operation can be applied only. Since bullets extension/reduction is a
special part of the subset extension/reduction we may define so called reduced
persegram as a persegram on which subset reduction can not be applied.

4 Conclusion

In this paper we gave a short introduction into equivalence problem. This
problem includes several sub-problems where one of them is how to recognize
whether two given persegrams are equivalent ”on the first sight”. The solution
to this problem could be a direct characterization involving some invariants
sufficient for equivalence.

We reminded two invariant properties introduced earlier: Connections set
and Ordering conditions. The question whether these invariants are sufficient
to decide of equivalence of given persegrams remains open.

We introduced four different operations (IE operations) on persegrams which
preserve induced independence model. Combined together, they are able to gen-
erate the class of equivalent persegrams. That characterization is indirect in the
following sense: If two persegrams can be transformed from one to the other by
a sequence of IE operations, then the persegrams are independence equivalent.
Anyway, this characterization is indirect in the sense that, if two persegrams
over same set of variables are given, then searching of such a sequence can be
time demanding or even impossible. However, indirect characterization offers a
method to generate a class of equivalent persegrams. The following questions
remain open: Can IE-operations generate the whole class of equivalent perseg-
rams? Does there always exist a sequence of IE-operations transforming one
persegram into another equivalent?

We also introduced some motivation that could be helpful for the following
research. We should restrict our attention to some representative of every equiv-
alence subclass. We hope, it makes answering the previous questions easier.
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