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Abstract

In this paper we introduce a new concept of solution for games with fuzzy coalitions, which we call an enlarged core. The enlarged
core captures an idea that various groups of fuzzy coalitions can have different bargaining power or influence on the final distribution
of wealth resulting from the cooperation process.We study a bargaining scheme for the enlarged core, which is an iterative procedure
for generating sequences converging to elements of the enlarged core. It is shown that the enlarged core coincides with Aubin’s core
for a specific class of games with fuzzy coalitions.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Let N = {1, . . . , n} be a set of elements that are called players. By 2N we denote the set of all subsets of N whose
elements are called crisp coalitions. A vector a = (a1, . . . , an) ∈ [0, 1]n is called a fuzzy coalition. The set of all
fuzzy coalitions forms the n-dimensional unit cube [0, 1]n . Each crisp coalition is identified with the fuzzy coalition a
whose coordinates ai ∈ {0, 1} for i ∈ N determine whether the player i belongs (or not) to the crisp coalition a.
We put 0 = (0, . . . , 0) and 1 = (1, . . . , 1). The Łukasiewicz t-norm � and the Łukasiewicz t-conorm ⊕ are the
binary operations on [0, 1] defined by � � � = max(� + � − 1, 0) and � ⊕ � = min(� + �, 1) for every �, � ∈ [0, 1],
respectively. The Łukasiewicz operations are natural generalizations of the intersection and the union of coalitions [1,6].
Precisely, when a and b are fuzzy coalitions, Łukasiewicz t-norm and Łukasiewicz t-conorm are applied coordinatewise:
a�b = (a1 �b1, . . . , an �bn) and a⊕b = (a1 ⊕b1, . . . , an ⊕bn), respectively. In this way the fuzzy coalitions a�b
and a ⊕ b can be viewed as the intersection and the union of a and b, respectively.
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Definition 1. A (cooperative) game with fuzzy coalitions is a function v : [0, 1]n → R with v(0) = 0. A game with
fuzzy coalitions v is called superadditive when the following implication holds true:

if a, b ∈ [0, 1]n and a � b = 0 then v(a ⊕ b)�v(a) + v(b).

A function v : 2N → R with v(0) = 0 is called a game with crisp coalitions only. A game with fuzzy coalitions v

can be associated with the game v0 with crisp coalitions only, where v0 is the restriction of the function v to 2N . Note
that a � b = 0 is a “disjointness condition’’ (see [6, Section 4]), which is equivalent to a ⊕ b = a + b. Therefore,
the notion of superadditivity introduced in Definition 1 is a natural generalization of the classical superadditivity
notion. Aubin defined in [1,2] the concept of core for games with fuzzy coalitions which he called “fuzzy games’’
(jeux floux).

Definition 2. Let v be a game with fuzzy coalitions. The core of v is the (possibly empty) set

C(v) = {x ∈ Rn|〈1, x〉 = v(1) and 〈a, x〉�v(a) for every a ∈ [0, 1]n \ {1}}.

If C(v) �∅, then v is said to be balanced.

This definition generalizes the classical concept of core for superadditive games with crisp coalitions only, which is
exactly the set of undominated imputations—see [9]. An axiomatic characterization of the core for games with fuzzy
coalitions was given by Hwang in [10].

For every a ∈ [0, 1]n, put

Ca(v) =
{ {x ∈ Rn|〈a, x〉�v(a)} if a ∈ [0, 1]n \ {1},

{x ∈ Rn|〈1, x〉 = v(1)} if a = 1.

Obviously, C0(v) = Rn and

C(v) =
⋂

a∈[0,1]n
Ca(v).

In general, a game with fuzzy coalitions can be unbalanced as the example below shows.

Example 1. Let N = {1, 2}. Define

u(a1, a2) =
{
0 a1 � a2 = 0,
1 otherwise,

and observe that the game with fuzzy coalitions u is superadditive. This case captures an economic situation in which
two players have no incentive to form a fuzzy coalition a unless a1 � a2 > 0, and every fuzzy coalition satisfying
this condition generates precisely the worth u(1) = 1 of the “grand’’ coalition 1. The game with fuzzy coalitions u is
unbalanced. Indeed, the hyperplane C1(u) misses every halfspace Cb(u) with b = (b1, b2) such that b1 ∈ ( 12 , 1) and
b2 = b1. In other words, while the worth of the “grand’’ coalition 1 is generated with a full participation of the two
players, the same worth can be equivalently produced only by every fuzzy coalition b. The “smaller’’ coalition b has
thus no motivation to accept the identical worth of the “grand’’ coalition 1.

When the game with fuzzy coalitions v is balanced, then each vector x ∈ C(v) describes a “rational’’ way of
distributing the rewards of cooperation among the players: the vector x is efficient (that is,

∑n
i=1 xi = v(1)) and

each fuzzy coalition a ∈ [0, 1]n distributes to the players at least its cooperative profit v(a) by taking into account
their individual membership degrees (that is,

∑n
i=1 ai xi �v(a)). An example of a balanced game with fuzzy coalitions

follows.
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Example 2. Given a nonempty set I, take any family of functions ( fi )i∈I , where fi : Rn → R is a concave 1 and
positively homogeneous 2 for every i ∈ I . Put

v(a) = inf{ fi (a)|i ∈ I } for every a ∈ Rn,

and observe that the function v is also concave and positively homogeneous on Rn . The function v restricted to [0, 1]n

is a superadditive game with fuzzy coalitions. Indeed, for any pair a, b ∈ [0, 1]n with a � b = 0, we have

v(a ⊕ b) = v( 12 (2a) + 1
2 (2b))�

1
2v(2a) + 1

2v(2b) = v(a) + v(b),

where the last inequality results from concavity of v and the last equality from positive homogeneity of v. It follows
from Remark 1 in [2] that the core C(v) is nonempty and coincides with the (necessarily nonempty) superdifferential

�v(1) = {x ∈ Rn|〈x, 1 − c〉�v(1) − v(c) for every c ∈ Rn}
of the function v at 1.

In general, deciding balancedness of a game with fuzzy coalitions v is difficult because this problem is equivalent to
that of the existence of solutions for a system of infinitely many affine inequalities. However, in some circumstances,
one can reduce the problem of deciding balancedness of a game with fuzzy coalitions v to deciding the balancedness
problem of a game with crisp coalitions only. This aspect was studied by Tijs et al. in [5]. Theorem 7 from [5] says that
when a game with fuzzy coalitions v is supermodular, that is, if

v(max(a, b)) + v(min(a, b))�v(a) + v(b) for every a, b ∈ [0, 1]n,

and when for every i ∈ N and every (a1, . . . , ai−1, ai+1, . . . , an) ∈ [0, 1]n−1,

the function ai ∈ [0, 1]�v(a1, . . . , ai , . . . , an) is convex, (1)

then C(v) and the set

C(v0) = {x ∈ Rn|〈1, x〉 = v(1) and 〈a, x〉�v(a), for every a ∈ 2N \ {1}}
coincide. Hence deciding balancedness of v amounts to deciding balancedness of v0 under the above conditions. Note
that even whenC(v) equalsC(v0), balancedness of v cannot be easily decided. In practical cases the set 2N can contain
a huge number of crisp coalitions even for relatively small numbers n. For example, deciding balancedness of v with
n = 20 via balancedness of v0 amounts to solving the large linear programming problem involving 220 constraints
(that is, much more than one million of constraints).

Balanced games with fuzzy coalitions were completely characterized by Azrieli and Lehrer in Theorem 1 from [3]:
a game with fuzzy coalitions v is balanced if and only if

v(1) = sup

{
m∑
i=1

�iv(a
i )|m ∈ N, 1 =

m∑
i=1

�i a
i , � j �0, a j ∈ [0, 1]n, j�m

}
.

In this paper we introduce a new concept of solution for games with fuzzy coalitions: the enlarged core. The core
of v is the set of common points of all the sets Ca(v) with a ∈ [0, 1]n . The enlarged core of v is the set of vectors
x in Rn , which belong to all but “negligibly many’’ sets Ca(v) in the sense that the collection of fuzzy coalitions a
such that x /∈ Ca(v) is “negligible’’. What “negligible’’ means depends on the way in which one assesses the relative
importance or power of various sets of fuzzy coalitions in the context of the game (see Section 2). The enlarged core
contains, but does not necessarily equals, the core of the game. We show (see Theorem 2 below) that under quite mild
conditions concerning the game with fuzzy coalitions v, there are “bargaining procedures’’ producing sequences of
vectors whose convergence behavior is indicative for the nonemptiness of the enlarged core of v. For games with fuzzy
coalitions whose core and enlarged core coincide (like those described by Theorem 1) these procedures are tools for
observing balancedness of the game and for approximating elements of the core provided that such vectors exist.

1 A function f : Rn → R is said to be concave if, for every x, y ∈ Rn and every � ∈ (0, 1), we have f (�x + (1 − �)y)�� f (x) + (1 − �) f (y).
2 A function f : Rn → R is called positively homogeneous when f (�x) = � f (x) for every � > 0 and every x ∈ Rn .
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2. Enlarged core

A coalitional assessment of a game with fuzzy coalitions v is a complete probability measure � defined on the
�-algebra A of Lebesgue measurable subsets of [0, 1]n . When v is provided with a coalitional assessment �, a set
of fuzzy coalitions A ∈ A is assigned a certain probability �(A) of simultaneous formation in the game with fuzzy
coalitions v. The number �(A) can also be thought of as a relative assessment of the collective power or influence of
the fuzzy coalitions in A on the outcome of the game with fuzzy coalitions v.

For example, if there is no reason to prefer any measurable subsets of fuzzy coalitions against others in a game with
fuzzy coalitions v, then the coalitional assessment of v can be the Lebesgue measure � on [0, 1]n . On the other hand,
the coalitional assessment can also model the situation in which the collective power of fuzzy coalitions in A reflects
the worth of every fuzzy coalition in A. This idea is illustrated by the case of a nonnegative game with fuzzy coalitions v

that is also Lebesgue measurable and

0 <

∫
[0,1]n

v d� < ∞.

It is clear that the mapping defined by

�(A) = 1∫
[0,1]n v d�

∫
A

v d�, A ∈ A,

is a coalitional assessment because it is a probability measure onA, which is also absolutely continuous with respect to
the Lebesguemeasure �. It is obvious that �(A) represents the fraction of the total worth that the set of fuzzy coalitions A
controls in the game v.

Any set of fuzzy coalitions A ∈ A with �(A) = 0 is viewed as “negligible’’ in the sense that the conditions
〈a, x〉�v(a) can be discarded for each a ∈ A in deciding how the outcomes of the cooperative process described by the
game with fuzzy coalitions v are distributed. In other words, a collection of fuzzy coalitions A ∈ Awith �(A) = 0 does
not have either the power or the influence to rise “objections’’, which will be further considered by the players in the
decision process (either because the players do not expect that the fuzzy coalitions in Awill be effectively constituted or
because the collective influence of the fuzzy coalitions in A is null). Balancedness of the game with fuzzy coalitions v

depends on satisfying the conditions

〈1, x〉 = v(1), 〈a, x〉�v(a) (2)

for every fuzzy coalition a ∈ [0, 1]n \ {1}. Balancing a game with fuzzy coalitions (that is, finding a satisfactory
distribution x of the outcomes of the cooperative process) may sometimes be blocked by mutually incompatible
demands of some negligible families of fuzzy coalitions. Under these circumstances, neglecting the demands of such
families can lead to a “more balanced’’ outcome although it is not necessarily an element of the core. Denote

C�(v) =
⋃
A∈A|

�(A)=0

⋂
a∈[0,1]n\A

Ca(v), (3)

the set of “imputations’’ x ∈ Rn satisfying all but a negligible set of the conditions (2). Clearly, we have

C(v) ⊆ C�(v). (4)

We call the setC�(v) the enlarged core (with respect to the coalitional assessment�) of the gamewith fuzzy coalitions v.
A question of interest in that follows is whether the enlarged core C�(v) coincides with the set of �-almost common

points of the sets Ca(v) defined in [7]. This question amounts to verifying whether the equality

C�(v) = {x ∈ Rn|�({a ∈ [0, 1]n|x ∈ Ca(v)}) = 1} (5)

holds true. In general, given x ∈ Rn , the set

Ax := {a ∈ [0, 1]n|x ∈ Ca(v)} (6)
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may even fail to be measurable (that is, it may not belong to A), which makes the question above meaningless. The
next result shows that measurability of the sets Ax can be ensured and equality (5) holds under reasonably general
conditions.

Lemma 1. Let v be a game with fuzzy coalitions endowed with a coalitional assessment �. If the function v is Lebesgue
measurable, then the set Ax is Lebesgue measurable for every x ∈ Rn , and the equality (5) holds.

Proof. Let � : [0, 1]n → 2Rn
be the point-to-set mapping defined by �(a) = Ca(v). The claim that Ax ∈ A is proved

if we show that � is measurable as a point-to-set mapping, that is, if we show that for any closed set B ⊆ Rn , we have

�−(B) := {a ∈ [0, 1]n|�(a) ∩ B �∅} ∈ A. (7)

This is true because Ax is precisely �−({x}) for every x ∈ Rn . According to [8, Theorem III.30], in order to prove (7),
it suffices to show that the function dist(x, �(·)) : [0, 1]n → R is A-measurable (as a real function) for every x ∈ Rn .
Note that

dist(x, �(a)) = ‖x − Pa(x)‖ for every a ∈ [0, 1]n,

where Pa(x) is the metric projection of x onto Ca(v), which is given by

Pax =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x + max{0, v(a) − 〈a, x〉}
‖a‖2 a if a ∈ [0, 1]n \ {0, 1},

x + v(1) − 〈1, x〉
n

1 if a = 1,

x if a = 0.

By consequence,

dist(x, �(a)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

‖a‖ max{0, v(a) − 〈a, x〉} if a ∈ [0, 1]n \ {0, 1},
1√
n
|v(1) − 〈1, x〉| if a = 1,

0 if a = 0.

The last formula implies that the function dist(x, �(·)) is A-measurable due to the measurability of v. Hence Ax =
�−({x}) ∈ A, whenever x ∈ Rn .

It remains to verify the equality (5). Suppose that x ∈ Rn is such that �(Ax ) = 1. Then the set A := [0, 1]n \ Ax

satisfies �(A) = 0 and x ∈ ⋂
a∈[0,1]n\A Ca(v). Hence x ∈ C�(v). Conversely, if x ∈ C�(v), then there exists some

A ∈ A with �(A) = 0 and x ∈ ⋂
a∈[0,1]n\A Ca(v). Since Ax includes [0, 1]n \ A, we get

�(Ax )��([0, 1]n \ A) = �([0, 1]n) − �(A) = �([0, 1]n) = 1,

and (5) thus holds true. �

Due to (4), the enlarged core C�(v) includes the core C(v). The next example shows that the two sets need not
coincide, and that the enlarged core can be in fact much larger than the core.

Example 3. Consider a game with fuzzy coalitions w : [0, 1]2 → R given by w(a1, a2) = a1 � a2. It can be
straightforwardly verified that w is superadditive, supermodular, and satisfies (1). Thus Theorem 7 in [5] by Tijs et al.
yields

C(w) = C1(w) ∩ C(1,0)(w) ∩ C(0,1)(w) = {x ∈ [0, 1]2|x1 + x2 = 1}. (8)

Assume that the coalitional assessment inw is the Lebesgue measure �. We claim that the enlarged coreC�(w) contains
every payoff x ′ = (x ′

1, x
′
2) such that x ′

1, x
′
2�0. Indeed, since �({1}) = 0, it follows from (3) that it suffices to show

(x ′
1, x

′
2) ∈ ⋂

a∈[0,1]2\{1} Ca(w). However, the first equality in (8) implies
⋂

a∈[0,1]2\{1} Ca(w) = C(1,0)(w) ∩ C(0,1)(w)
and since (x ′

1, x
′
2) ∈ C(1,0)(w) ∩ C(0,1)(w), we have (x ′

1, x
′
2) ∈ C�(w) in conclusion.
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In Theorem 1 below we show that the core coincides with the enlarged core for a fairly large class of games with
fuzzy coalitions and coalitional assessments.

Theorem 1. Let v be a game with fuzzy coalitions that is a continuous real function on [0, 1]n and let � be a coalitional
assessment such that the following condition holds true:

for every A ∈ A, if A is open or 1 ∈ A, then �(A) > 0. (9)

Then C(v) = C�(v).

Proof. Let x ∈ C�(v). Due to Lemma 1, there exists the nonempty set Ax defined by (6) such that Ax ∈ A and

�([0, 1]n \ Ax ) = 0. (10)

Our aim is to show Ax = [0, 1]n since this implies x ∈ ⋂
a∈[0,1]n Ca(v) = C(v). Assume, by contradiction, that Ax is

a nonempty proper subset of [0, 1]n .
If 1 ∈ [0, 1]n \ Ax , then (10) gives the contradiction with the assumption (9). Hence 1 /∈ [0, 1]n \ Ax . Therefore, if

a ∈ [0, 1]n \ Ax , then x /∈ Ca(v), which is equivalent to 〈a, x〉 − v(a) < 0 since a � 1. As the mapping 〈· , x〉 − v(·)
is continuous at a, there exists an open neighborhood B ⊆ [0, 1]n of a with 〈b, x〉 − v(b) < 0 for every b ∈ B. Hence
x /∈ Cb(v) for every b ∈ B, which implies that B ⊆ [0, 1]n \ Ax . This inclusion gives a contradiction: while �(B) > 0
due to the assumption (9), the set [0, 1]n \ Ax has measure zero due to (10). As a conclusion, the set [0, 1]n \ Ax must
be empty and we have Ax = [0, 1]n . �

The coalitional assessment � satisfying (9) guarantees that neither any open set A nor any measurable set of fuzzy
coalitions A containing the “grand’’ coalition 1 is negligible, which means that A cannot be completely disregarded
during the negotiations about the distribution of theworth. There exist a host of examples of such coalitional assessments.
Let �′ be a coalitional assessment such that �′(A) > 0 for every open set A ⊆ [0, 1]n and � ∈ (0, 1). Define

� = ��′ + (1 − �)	1,

where 	1 is the Dirac measure concentrated at the point 1, and note that � satisfies the conditions from Theorem 1.

3. Bargaining schemes

Let v be a game with fuzzy coalitions. As noted above, deciding balancedness of v and, when the game with fuzzy
coalitions v is balanced, computing elements of C(v), are difficult problems because they involve extremely “large’’
systems of affine inequalities (in general, those systems involve infinitely many inequalities). In the framework of
games with crisp coalitions only, this led Wu [12] to the question whether, and under which conditions, players can
“bargain’’ for an element of the core or of the “enlarged core’’ (note that Wu’s notion of enlarged core is different from
ours). Following Wu’s idea, a bargaining scheme for the core (or for the enlarged core) of v is an iterative procedure
which, starting from an arbitrarily chosen initial distribution of wealth x0 ∈ Rn among the players, generates a sequence
(xk)k∈N in Rn converging to a point of the core C(v) (or of the enlarged core C�(v)), provided that such a point exists.
In this context, each vector xk+1 is seen as a redistribution of wealth emerging as the result of a bargaining process in
which the terms of the distribution of wealth xk are renegotiated at each step k according to specific rules. These rules
are determined by the procedure generating the sequence (xk)k∈N.

The core of a game v with crisp coalitions only is the solution set of a finite (although usually large) convex feasibility
problem and, therefore, iterative projection methods for solving finite feasibility problems can be naturally interpreted
as bargaining schemes for the core or for the enlarged core in the sense of Wu. The bargaining scheme analyzed by
Wu in [12] can be seen as one of the many bargaining schemes resulting from the game-theoretical interpretation of
projection methods for solving finite convex feasibility problems (see [4] for a survey on this topic). In contrast to the
case of a game with crisp coalitions only (for which the number of crisp coalitions in 2N is 2n), in games with fuzzy
coalitions the set of all fuzzy coalitions [0, 1]n is infinite.

This rises the question whether bargaining schemes for the core (or for the enlarged core in the sense of (3)) can be
found even in this setting. We will show in the sequel that this is indeed the case when the game with fuzzy coalitions v
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endowed with a coalitional assessment � satisfies the following conditions:
(A1) The function v is Lebesgue measurable;
(A2) The function 
 : [0, 1]n → R given by


(a) =
⎧⎨
⎩

(max{0, v(a)})2
‖a‖2 if a � 0,

0 if a = 0,

is �-integrable.
Lemma 1 together with the condition (A1) guarantee that the enlarged core of v is precisely the set of �-almost

common points of the sets Ca(v), a ∈ [0, 1]n . Observe that 
(a) = ‖Pa0‖2, where Pa0 is the minimal norm element
of the set Ca(v) and it is given by

Pa0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max{0, v(a)}
‖a‖2 a if a ∈ [0, 1]n \ {0, 1},

v(1)

n
1 if a = 1,

0 if a = 0.

The condition (A2) implies that the function a ∈ [0, 1]n�Pa0 is a square �-integrable selector of the family of the sets
Ca(v), a ∈ [0, 1]n . According to [7], the mapping P : Rn → Rn defined by3

Px =
∫

[0,1]n
(Pax) d�(a),

as well as the function g : Rn → [0, ∞] given by

g(x) = 1

2

∫
[0,1]n

‖Pax − x‖2 d�(a),

are then well defined. It can be easily seen that g is a convex differentiable function with ∇g(x) = Px − x , for every
x ∈ Rn . This implies that the set of global minimizers of g coincides with the set of fixed points of P.

Definition 3. The Cimmino type bargaining scheme (in a game with fuzzy coalitions v) is the following rule of
generating sequences (xk)k∈N in Rn :

x0 ∈ Rn and xk+1 = Pxk for every k = 0, 1, 2, . . . .

The vector x0 is called the initial point of the bargaining scheme.

It is worth noting that the initial point x0 completely determines the sequence (xk)k∈N generated by the Cimmino
type bargaining scheme. The question of convergence of the sequences generated by the Cimmino type bargaining
scheme to the enlarged core is the subject of the theorem below. The theorem shows that, whenever C�(v) �∅, the
Cimmino type bargaining scheme generates approximations for elements in the enlarged core. Otherwise, the sequences
generated by the Cimmino type bargaining scheme are unbounded.

Theorem 2. Let y0 ∈ Rn and let (yk)k∈N be the sequence generated by the Cimmino type bargaining scheme starting
from the initial point y0. The next two statements are true:

(A) If the sequence (yk)k∈N is bounded, then
(i) for any x0 ∈ Rn , the sequence (xk)k∈N generated by the Cimmino type bargaining scheme starting from the

initial point x0 converges, its limit x∗ is a (global) minimizer of the function g, and limk→∞ g(xk) = g(x∗);
(ii) the enlarged core C�(v) is nonempty if and only if limk→∞ g(yk) = 0.

(B) If the sequence (yk)k∈N is unbounded or limk→∞ g(yk) � 0, then C�(v) is empty.

3 The integral below of the vector-valued function a�Pax is the vector of integrals of its coordinates.
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Proof. (A)(i) It results from [7, Theorem 2.1(A)] that if the sequence (yk)k∈N is bounded, then all the sequences
generated by the Cimmino type bargaining scheme are convergent and their limits are global minimizers of g. Since
the function g is also continuous (as being convex and finite on Rn), it follows that limk→∞ g(xk) = g(x∗) whenever
(xk)k∈N is a sequence generated by the Cimmino type bargaining scheme.

(A)(ii) Suppose thatC�(v) is nonempty. Then, by [7, Theorem 2.1(B)], since (yk)k∈N is bounded it is also convergent.
By the continuity of g we have limk→∞ g(yk) = g(y∗), where y∗ = limk→∞ yk and y∗ is a global minimizer of g. If
z is any point in C�(v), we have by Lemma 1 that there exists a set A ∈ A with �(A) = 0 such that z ∈ Ca for every
a ∈ [0, 1]n \ A. Hence, for any a ∈ [0, 1]n \ A, we have Paz = z, that is,

g(z) = 1

2

∫
[0,1]n

‖Paz − z‖2 d� = 1

2

∫
[0,1]n\A

‖Paz − z‖2 d� = 0.

This and the minimality of g(y∗) imply g(y∗) = 0.
Conversely, suppose that limk→∞ g(yk) = 0. Since (yk)k∈N is bounded, it has a convergent subsequence (yik )k∈N.

Let ȳ be the limit of this subsequence. Due to the continuity of g we get

g(ȳ) = lim
k→∞

g(yik ) = lim
k→∞

g(yk) = 0.

This implies by the definition of g that ȳ = Pa(ȳ) ∈ Ca for �-almost all a ∈ [0, 1]n . In other words, we have that
ȳ ∈ C�(v), that is, C�(v) �∅.

(B) If the sequence (yk)k∈N is unbounded, then [7, Theorem 2.1(B)] implies thatC�(v) = ∅. If the sequence (yk)k∈N

is bounded and limk→∞ g(yk) � 0, then the limit y∗ = limk→∞ yk exists. We have 0 � limk→∞ g(yk) = g(y∗), where
y∗ is a global minimizer of g (see (i)). Suppose by contradiction that in this situation C�(v) �∅. An argument similar
to that involved in the proof of (A)(ii) shows that for some z ∈ [0, 1]n we have g(z) = 0. Since 0�g(y∗)�g(z) = 0,
we deduce that g(y∗) = 0 and this is a contradiction. �

The next result is a direct consequence of Theorem 2 combined with Theorem 1. It shows that, in special circum-
stances, Cimmino type bargaining scheme approximates elements of the core of the games with fuzzy coalitions.

Theorem 3. Let v be a game with fuzzy coalitions that is a continuous function [0, 1]n → R and � be a coalitional
assessment satisfying (9). For any initial point x0, if (xk)k∈N is a bounded sequence generated by the Cimmino type
bargaining scheme in the game with fuzzy coalitions v and limk→∞ g(xk) = 0, then limk→∞ xk ∈ C(v).

The following examples show how the Cimmino type bargaining scheme can be used in balancedness analysis
of games with fuzzy coalitions. The numerical experiments were carried out in the software package Mathematica.
Since the precise calculation of Px involves rather complicated primitive functions, standard numerical integrations
techniques were employed (see [11, Chapter 12], for example).

Example 4. Let u be a game defined in Example 1, which was shown to be unbalanced.

1. Let the coalitional assessment be given by

� = 1
2� + 1

2	1, (11)

where � is Lebesgue measure and 	1 is the Dirac measure concentrated at the point 1. The enlarged core C�(u) is
empty. Let us see how the emptiness of C�(u) (and thus C(u) too) can be observed from one run of Cimmino type
bargaining scheme by using Theorem 2.
Take the initial point y0 = (1, 2), for example. The Cimmino type bargaining scheme generates a sequence (yk)k∈N

such that the vector y644 = (0.583, 0.583) is the fixed point of P. As noted above, the fixed points of P are the
global minimizers of g. The value of the function g in each iteration is depicted in Fig. 1. Since g(y∗) = 0.022, it
follows from Theorem 2 that C�(u) is indeed empty.

2. Consider now the same game u as above endowed with the coalitional assessment given by Lebesgue measure �.
Note that the enlarged core C�(u) is nonempty because it contains every payoff vector (x1, x2) such that x1, x2 > 0
and x1 + x2�1.
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Fig. 1. Function g from Example 4.

Starting from the initial point y0 = (1, 2), the Cimmino type bargaining scheme generates in 1000 iterations
only the constant sequence equal to y0 and thus y∗ = y0. The computed value g(y∗) ≈ 10−50 can be safely
attributed to the error of numerical integration. Hence we can conclude by Theorem 2 that C�(u) is nonempty and
y0 = (1, 2) ∈ C�(u).

Example 5. Let w be the game from Example 3. Its core C(w) is nonempty—see (8).

1. Assume that the coalitional assessment � is given by (11). The Cimmino type bargaining scheme starting from the
initial point x0 = (0.05, 0.2) converges to x∗ = (0.426, 0.574), which is reached in the 20th iteration. This is a
fixed point of P and the almost null value g(x∗) ≈ 10−32 together with Theorem 3 suggests that x∗ ∈ C(w).
When the initial point is y0 = (1.3, 0.1), the convergence of the Cimmino type bargaining scheme to a point from
C(w) is much slower: after 1000 iterations, x1000 = (1.010, −0.010) with g(x1000) ≈ 10−7. Nevertheless, the
convergence to a point from the core C(w) is guaranteed by Theorem 3.
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