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Abstract. This paper focuses on testing composite hypotheses about param-
eters of s independent samples of different sizes. With this purpose, it intro-
duces test statistics based on the family of Rényi divergences between likeli-
hoods. The asymptotic distributions of the proposed test statistics and of the
likelihood ratio statistic are derived under standard regularity assumptions.
An application to test the homogeneity of variances in data from families
belonging to different populations is described and, under this setup, a simu-
lation experiment compares the small sample performance of the likelihood
ratio test and some members of the Rényi family of tests. The experiment
indicates that some of the Rényi tests perform better under null hypothesis.

1 Introduction

The likelihood ratio test is a standard tool for testing a general hypothesis about
parameters of one population. It works by calculating a measure of deviation be-
tween the maximum likelihood achieved under the null hypothesis and the maxi-
mum achieved over the whole parameter space. Following similar philosophy but
using different measures of deviation such as divergences, different tests can be
obtained. Some tests based on divergences have already been proposed, and the
literature indicates that in many cases these tests represent good competitors to
classical tests. Our first available reference on this issue is Kupperman (1957),
who suggested to test a simple null hypothesis using the Kullback–Leibler di-
vergence (Kullback (1959)), providing its asymptotic distribution. Salicrú et al.
(1994), Morales, Pardo and Vajda (1997, 2000) and Morales et al. (2004) extended
these results to the problem of testing composite hypotheses using families of di-
vergences such as Csiszár’s φ-divergence (Csiszár (2006)) or the Rényi family of
divergences (Rényi, 1961).

This work proposes to construct statistics based on the Rényi family of diver-
gences, for testing general composite hypotheses about parameters of s popula-
tions. Comparing characteristics of several populations is a problem that appears in
many practical applications. An interesting example is the familial data problem,
in which families coming from different populations follow multivariate normal
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distributions with a specified covariance structure common for all families of the
same population. Under this setup, it is of interest to test whether some parameters
are common for all populations or not. Section 4 introduces this application and
describes a simulation experiment for testing the homogeneity of variances across
populations.

Under a general setup, this paper defines the family of Rényi test statistics de-
pending on a parameter that can be moved to provide different members of the
family. This family includes some well-known test statistics such as the Kullback–
Leibler statistic (KLS) and also the likelihood ratio statistic (LRS) when the dis-
tributions at hand belong to the exponential family. The widespread use of the
LRS may not be so justified since for finite samples it may not perform better than
other members. In fact, in the simulation experiments described in Section 4.2,
other Rényi tests performed better than the LR test under null hypothesis. Thus,
the family of Rényi tests allows flexibility in the selection of a particular test for
the problem at hand. Moreover, spelled-out formulas for the divergences can be
easily obtained for probability distributions belonging to the exponential family
(Morales, Pardo and Vajda (2000)), and these formulas may not be much more
complicated than the expression of the LRS, see for example, formulas (4.4) and
(4.5) of this paper.

The problem of testing under multiple populations was considered before by
Morales, Pardo and Pardo (2001), but their results are not applicable when there
is some equality restriction on the parameters of the s populations. Hobza, Molina
and Morales (2003) treated a particular case of this situation. They defined the
family of Rényi statistics for testing the equality of intraclass correlations of sev-
eral multivariate normal populations under the setup of the familial data problem.
Under this particular data structure, they obtained the asymptotic distributions of
the Rényi test statistics. Here we extend the results of Hobza, Molina and Morales
(2003) to general hypotheses and general populations, in which equality restric-
tions on some of the parameters of the s populations are allowed. In order to de-
fine the test statistics under the setup of several populations (Section 2), we shall
consider the product statistical space, the joint sample and the product of likeli-
hoods of each sample. The null hypothesis will be formulated in terms of a vector
γ containing all the different parameters of the s populations. With these consider-
ations, the statistics for testing a statement about γ are defined analogously to the
one-sample case. In Section 3, the asymptotic distribution of the proposed multi-
sample test statistics is obtained under regular null hypotheses. The proofs are
based on the asymptotic equivalence of test statistics to quadratic forms and some
of them are presented in the Appendix. In Section 4, an application is given for
testing the homogeneity of variances of several multivariate normal populations
having the structure of the familial data problem, and simulations are developed
for studying small-sample properties of the proposed tests.
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2 Definition of the problem and test statistics

In this section we introduce notation and formulate the problem of testing hypothe-
ses about several populations with a common set of parameters. Under this setup,
the Rényi family of test statistics is introduced.

Let (Xi ,BXi
, Pi,θi

)θi∈�i
, i = 1, . . . , s, be statistical spaces associated with in-

dependent populations, where Xi ⊂ R
pi is the sample space, BXi

is the Borel
σ -field of subsets of Xi , �i ⊂ R

ki is an open set, and fi,θi
is the p.d.f. of Pi,θi

with respect to a σ -finite measure μi , i = 1, . . . , s. Assume that from the ith pop-
ulation, a sample (Xi1, . . . ,Xini

) of independent and identically distributed ran-
dom variables with common p.d.f. fi,θi

, is extracted, i = 1, . . . , s, and that the s

samples are independent. Let μ � μ
n1
1 ⊗ · · · ⊗ μ

ns
s be the product measure and

X � Xn1
1 × · · · × Xns

s be the product sample space. Suppose that the sample sizes
ni tend to infinity at the same rate, that is, if n =∑s

i=1 ni , then
ni

n
−→

n1−→∞
...

ns−→∞

λi ∈ (0,1), i = 1, . . . , s, (2.1)

where
∑s

i=1 λi = 1. Unless otherwise explicitly stated, in this paper all conver-
gence results and symbols oP (1) and OP (1) are referred to n1 → ∞, . . . , ns → ∞
satisfying (2.1).

Suppose that the parameters θi = (θi,1, . . . , θi,ki
)t , i = 1, . . . , s, from the s pop-

ulations have the same k first components, that is,

θ1,� = θ2,� = · · · = θs,�, � = 1, . . . , k, (2.2)

where k ≤ min{k1, . . . , ks}. Let (xi1, . . . , xini
) be a realization of the sample

(Xi1, . . . ,Xini
), i = 1, . . . , s. We define the joint sample as

x = (x11, . . . , x1n1;x21, . . . , x2n2; . . . ;xs1, . . . , xsns )

and the joint parameter as the vector with all different parameters of the s popula-
tions,

γ = (θ1,1, . . . , θ1,k1; θ2,k+1, . . . , θ2,k2; . . . ; θs,k+1, . . . , θs,ks )
t .

We assume that γ ∈ 	, where the parameter space 	 is an open subset of R
M and

M =∑s
i=1 ki − (s − 1)k. This work deals with testing a composite null hypothesis

about γ , that is, with testing

H0 :γ ∈ 	0 versus H1 :γ ∈ 	1, (2.3)

where 	0 ⊂ 	 and 	1 = 	−	0. The set 	0 defining the null hypothesis is assumed
to satisfy the regularity condition (A3) stated in the Appendix. The likelihood and
log-likelihood of θi based on the ith sample xi = (xi1, . . . , xini

) are given by

fi,θi
(xi) =

ni∏
j=1

fi,θi
(xij ) and li(θi) =

ni∑
j=1

logfi,θi
(xij ).



Multi-sample Rényi test statistics 199

Since the populations are independent, the likelihood and log-likelihood of the
joint parameter γ = (γ1, . . . , γM)t based on the joint sample x are, respectively,

fγ (x) =
s∏

i=1

fi,θi
(xi) and l(γ ) =

s∑
i=1

li(θi).

Let I i(θi) denote the Fisher Information matrix of fi,θi
. We split I i(θi) into

blocks as follows:

I i(θi) =
(

I i
k,k(θi) I i

k,ki
(θi)

I i
ki ,k

(θi) I i
ki ,ki

(θi)

)
ki×ki

,

where I i
k,k(θi), I i

k,ki
(θi), I i

ki ,k
(θi), and I i

ki ,ki
(θi) are the submatrices with sizes

k × k, k × (ki − k), (ki − k) × k, and (ki − k) × (ki − k), respectively. The fol-
lowing matrix, constructed using the s Fisher information matrices, will play the
fundamental role of the Fisher information matrix in this multi-sample problem

V (γ ) =

⎛⎜⎜⎜⎜⎜⎜⎝

∑s
i=1 λiI

i
k,k(θi) λ1I

1
k,k1

(θ1) · · · λsI
s
k,ks

(θs)

λ1I
1
k1,k

(θ1) λ1I
1
k1,k1

(θ1) 0 0
... 0

. . . 0

λsI
s
ks,k

(θs) 0 0 λsI
s
ks,ks

(θs)

⎞⎟⎟⎟⎟⎟⎟⎠
M×M

. (2.4)

Maximum likelihood estimators are generally obtained by solving the likelihood
equations

∂l(γ )/∂γp =
s∑

i=1

ni∑
j=1

∂ logfi,θi
(xij )/∂γp = 0, p = 1, . . . ,M. (2.5)

Let γ̂ = γ̂ (x) denote a consistent sequence of solutions of (2.5). Observe that in
virtue of assumption (A3) of the Appendix, H0 can be expressed as H0 :γ = g(β),
for β = (β1, . . . , βM0)

t . Then, the likelihood equations for the model restricted to
H0 are

∂l(g(β))/∂βp = 0, p = 1, . . . ,M0. (2.6)

A consistent sequence of solutions of (2.6) will be denoted β̂ = β̂(x).
In this paper we consider several statistics for testing (2.3). The first one is the

likelihood ratio statistic (LRS), defined as

λ(γ̂ , g(β̂)) = −2 log
(
fg(β̂)(x)/fγ̂ (x)

)
.

In Theorem 3 we prove that the asymptotic distribution of the LRS for testing (2.3)
is χ2

M−M0
. Thus, the likelihood ratio test (LRT) with asymptotic significance level

α is the decision rule

Reject H0 if λ(γ̂ , g(β̂)) > X2
M−M0,1−α,
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where X2
M−M0,1−α is the (1 − α)-quantile of a chi-squared distribution with M −

M0 degrees of freedom.
We consider also test statistics based on the family of Rényi divergences. Fol-

lowing the definition given by Liese and Vajda (1987), the Rényi divergence of
order a between fγ̂ (x) and fg(β̂)(x) is obtained by the formula

Da(γ̂ , g(β̂)) = 1

a(a − 1)
log
∫
X

f a
γ̂ (x)f 1−a

g(β̂)
(x) dμ(x), a ∈ R − {0,1}.

Using these divergences, the Rényi statistic (RS) of order a is defined as

2Da(γ̂ , g(β̂)), a ∈ R − {0,1}.
In Theorem 1 we show that, under regularity assumptions, the asymptotic distri-
bution of the RS of order a ∈ R − {0,1} is also χ2

M−M0
. Therefore, the Rényi test

(RT) of order a ∈ R − {0,1} and asymptotic significance level α is given by the
decision rule

Reject H0 if 2Da(γ̂ , g(β̂)) > X2
M−M0,1−α. (2.7)

Finally, we consider the statistic based on the Kullback–Leibler divergence be-
tween fγ̂ (x) and fg(β̂)(x). This divergence is obtained by taking limit as a → 1 in
the Rényi divergence of order a, and is equal to

D1(γ̂ , g(β̂)) =
∫
X

fγ̂ (x) log
(
fγ̂ (x)/fg(β̂)(x)

)
dμ(x).

Thus, the Kullback–Leibler statistic (KLS) for testing (2.3) is defined as

2D1(γ̂ , g(β̂)) (2.8)

and the corresponding test is obtained by taking a = 1 in (2.7).

3 Asymptotic distribution of test statistics

In this section we derive the asymptotic distributions of the test statistics for test-
ing (2.3) that were introduced in Section 2, namely the likelihood ratio and the
Rényi family of test statistics, which includes the Kullback–Leibler statistic. This
is achieved by taking second-order Taylor expansions that lead, up to terms of
order oP (1), to particular quadratic forms. Theorem 5 of the Appendix gives
the asymptotic distribution of these quadratic forms. The regularity assumptions
(A1)–(A3) required for the results of this section are listed at the beginning of the
Appendix. Hereafter γ 0 and β0 denote the true values of γ and β .

Theorem 1. Let the null hypothesis H0 :γ ∈ 	0 be true, where 	0 satisfies (A3).
For each i = 1, . . . , s, let (Xi1, . . . ,Xini

) be independent samples of i.i.d. ran-
dom variables with common p.d.f. fiθi

(x) satisfying (2.1), (A1) and (A2). Assume
further that there exist measurable and μ-integrable functions P1,P2,P3 :X →
[0,∞), possibly depending on γ 0, such that for each γ 1, γ 2 in a neighborhood
N(γ 0) and for each 1 ≤ p,q ≤ M , it holds



Multi-sample Rényi test statistics 201

(H1) |f a
γ 1(x)f 1−a

γ 2 (x)| ≤ P1(x), x ∈ X,

(H2) | ∂
∂γ 1

p
f a

γ 1(x)f 1−a

γ 2 (x)| ≤ P2(x), x ∈ X,

(H3) | ∂2

∂γ 1
p ∂γ 1

q
f a

γ 1(x)f 1−a

γ 2 (x)| ≤ P3(x), x ∈ X.

Then

2Da(γ̂ , g(β̂))
L−→ χ2

M−M0
, a ∈ R − {0,1}.

Proof. Let us fix g(β̂) and define the function h(γ̂ ) � Da(γ̂ , g(β̂)). A second-
order Taylor expansion of h(γ̂ ) around g(β̂) gives

h(γ̂ ) = h(g(β̂)) +
M∑

p=1

∂h(γ̂ )

∂γ̂p

∣∣∣∣
γ̂=g(β̂)

(
γ̂p − gp(β̂)

)

+ 1

2

M∑
p=1

M∑
q=1

∂2h(γ̂ )

∂γ̂p ∂γ̂q

∣∣∣∣
γ̂=γ∗

(
γ̂p − gp(β̂)

)(
γ̂q − gq(β̂)

)
,

where ‖γ ∗ − g(β̂)‖ < ‖γ̂ − g(β̂)‖. Obviously, it holds h(g(β̂)) = Da(g(β̂),

g(β̂)) = 0. From (H2), derivatives can be introduced into the integral and then
the first-order derivatives are zero. Using (H3), the second-order partial derivative
is

∂2h(γ̂ )

∂γ̂p ∂γ̂q

= 1

a(a − 1)[∫X F 2
γ̂ ,g(β̂)

(x) dμ(x)]2

×
{∫

X
F 1

γ̂ ,g(β̂)
(x) dμ(x)

∫
X

F 2
γ̂ ,g(β̂)

(x) dμ(x)

−
∫
X

F 3
γ̂ ,g(β̂)

(x) dμ(x)

∫
X

F 4
γ̂ ,g(β̂)

dμ(x)

}
,

where, for simplicity, the dependence of F i
γ̂ ,g(β̂)

(x) on p and q has been omitted,
and

F 1
γ̂ ,g(β̂)

(x) � af a−2
γ̂ (x)

[
(a − 1)

∂fγ̂ (x)

∂γ̂p

∂fγ̂ (x)

∂γ̂q

+ fγ̂ (x)
∂2fγ̂ (x)

∂γ̂p ∂γ̂q

]
f 1−a

g(β̂)
(x),

F 2
γ̂ ,g(β̂)

(x) � f a
γ̂ (x)f 1−a

g(β̂)
(x),

F 3
γ̂ ,g(β̂)

(x) � af a−1
γ̂ (x)

∂fγ̂ (x)

∂γ̂q

f 1−a

g(β̂)
(x),

F 4
γ̂ ,g(β̂)

(x) � af a−1
γ̂ (x)

∂fγ̂ (x)

∂γ̂p

f 1−a

g(β̂)
(x).
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But under H0, it holds that γ∗
a.s.−→ γ 0 and g(β̂)

a.s.−→ γ 0. Furthermore, since
F i

γ 0,γ 0(x) is continuous in γ 0, i = 1,2,3,4, we get

F i
γ∗,g(β̂)

(x) − F i
γ 0,γ 0(x)

a.s.−→ 0, i = 1,2,3,4.

Applying (H1)–(H3) and the dominated convergence theorem, under H0 it holds∫
X

F i
γ∗,g(β̂)

(x) dμ(x) −
∫
X

F i
γ 0,γ 0(x) dμ(x)

a.s.−→ 0, i = 1,2,3,4,

where it is immediate to see that∫
X

F 2
γ 0,γ 0(x) dμ(x) = 1,

∫
X

F i
γ 0,γ 0(x) dμ(x) = 0, i = 3,4.

These results imply

1

n

∂2h(γ̂ )

∂γ̂p ∂γ̂q

∣∣∣∣
γ̂=γ∗

− 1

na(a − 1)

∫
X

F 1
γ 0,γ 0 dμ(x)

P−→ 0. (3.1)

Moreover,

1

na(a − 1)

∫
X

F 1
γ 0,γ 0(x) dμ(x) = 1

n
E

[
∂ logfγ (x)

∂γp

∂ logfγ (x)

∂γq

]∣∣∣∣
γ=γ 0

,

and applying Lemma 2 we get

1

n
E

[
∂ logfγ (x)

∂γp

∂ logf∂γ (x)

∂γq

]
−→ Vp,q(γ ) for all γ ∈ 	.

Therefore,

1

na(a − 1)

∫
X

F 1
γ 0,γ 0(x) dμ(x) − Vp,q(γ 0)

P−→ 0. (3.2)

Formulas (3.1) and (3.2) together lead to

1

n

∂2h(γ̂ )

∂γ̂p ∂γ̂q

∣∣∣∣
γ̂=γ∗

− Vpq(γ
0)

P−→ 0,

and this in turn implies

2h(γ̂ ) − n
(
γ̂ − g(β̂)

)t
V (γ 0)

(
γ̂ − g(β̂)

) P−→ 0.

Finally, applying Theorem 5 of the Appendix we obtain the desired result. �

Theorem 2. Let the null hypothesis H0 :γ ∈ 	0 be true, where 	0 satisfies (A3).
For each i = 1, . . . , s, let (Xi1, . . . ,Xini

) be independent samples of i.i.d. random
variables with common p.d.f. fiθi

(x) satisfying (2.1), (A1), and (A2). Assume fur-
ther that there exist measurable and μ-integrable functions Q1,Q2 :X → [0,∞),
possibly depending on γ 0, such that for each γ 1, γ 2 in a neighborhood N(γ 0)

and for each 1 ≤ p,q ≤ M



Multi-sample Rényi test statistics 203

(H4) | ∂
∂γ 1

p
(fγ 1(x) log

f
γ 1 (x)

f
γ 2 (x)

)| ≤ Q1(x), x ∈ X,

(H5) | ∂2

∂γ 1
p ∂γ 1

q
(fγ 1(x) log

f
γ 1 (x)

f
γ 2 (x)

)| ≤ Q2(x), x ∈ X.

Then

2D1(γ̂ , g(β̂))
L−→ χ2

M−M0
.

Proof. The proof follows the same arguments as that of Theorem 1. �

Theorem 3. Let the null hypothesis H0 :γ ∈ 	0 be true, where 	0 satisfies (A3).
For each i = 1, . . . , s, let (Xi1, . . . ,Xini

) be independent samples of i.i.d. random
variables with common p.d.f. fiθi

(x) satisfying (2.1), (A1), and (A2). Then

λ(γ̂ , g(β̂))
L−→ χ2

M−M0
.

Proof. Let us fix g(β̂) and define the function h(γ ) = λ(γ, g(β̂)). A second-order
Taylor expansion of h(γ ) around γ̂ evaluated at point γ = g(β̂) and the facts that
h(g(β̂)) = 0 and that γ̂ is solution of likelihood equations (2.5) lead to

h(γ̂ ) = −n
(
γ̂ − g(β̂)

)t
n−1B(γ∗)

(
γ̂ − g(β̂)

)
,

where B(γ ) is defined in (A.3). From assumption (A1), it follows that for each
p,q ∈ {1, . . . ,M}, the (p, q)th element of n−1B(γ ), is continuous in θi , i =
1, . . . , s. Since γ∗

a.s.−→ γ 0 holds under H0, we deduce that

n−1B(γ∗) − n−1B(γ 0)
P−→ 0.

Applying part (B) of the proof of Theorem 4 and the Slutsky theorem, we get

n−1B(γ∗) + V (γ 0)
P−→ 0.

Then Lemma 1 implies

h(γ̂ ) − n
(
γ̂ − g(β̂)

)
V (γ 0)

(
γ̂ − g(β̂)

)t
= −n

(
γ̂ − g(β̂)

)t [n−1B(γ∗) + V (γ 0)](γ̂ − g(β̂)
) P−→ 0,

and the desired result follows from Theorem 5. �

4 Application to familial data

4.1 Description of the problem

Suppose that some biometric or anthropometric characteristic such as blood pres-
sure, cholesterol, weight, height, stature, lung capacity, etc. has been measured to



204 T. Hobza, I. Molina and D. Morales

randomly selected ni families from different populations i = 1, . . . , s; for example,
in different geographical areas. Let Xi = (Xi1, . . . ,Xini

) be the vector of observa-
tions from population i, i = 1, . . . , s, where Xij are random vectors whose pi coor-
dinates are the values that the measured characteristic takes at each of the pi mem-
bers of j th family in ith sample. Suppose that {Xij : i = 1, . . . , s, j = 1, . . . , ni}
are independent and multivariate normal, that is,

Xij ∼ Npi
(μi ,�i), j = 1, . . . , ni, (4.1)

with mean vector and covariance matrix given by

μi = (μi, . . . ,μi)1×pi
,

(4.2)

�i = σ 2
i

⎛⎜⎜⎜⎝
1 �i · · · �i

�i 1 · · · �i
...

...
. . .

...

�i �i · · · 1

⎞⎟⎟⎟⎠
pi×pi

, i = 1, . . . , s.

The parameter �i is the correlation between two members of the same family ex-
tracted from population i and it is called intraclass correlation coefficient of pop-
ulation i.

For s = 1 (one population), Srivastava (1984) developed estimators for the in-
traclass correlation coefficient and the variance that are easier to calculate than
MLE’s. Srivastava and Katapa (1986) studied their asymptotic properties. We will
use similar estimators as initial values for solving maximum likelihood equations.
Bhandary and Alam (2006) proposed the likelihood ratio statistic for testing the
equality of intraclass correlation coefficients between three populations (s = 3),
under the assumption σ 2

1 = σ 2
2 = σ 2

3 . Here we use the family of Rényi divergences
for testing this last assumption. Since previous works deal with the case s = 3 and
generalization to any natural s is straightforward, we restrict ourselves to s = 3 as
well. Thus, we are concerned with testing the following hypotheses

H0 :σ 2
1 = σ 2

2 = σ 2
3 versus H1 :σ 2

i �= σ 2
j for some i �= j. (4.3)

There exists a one-to-one transformation of Xij that leads to a model with diag-
onal covariance matrix (see Hobza, Molina and Morales (2003)). Under the trans-
formed model, explicit expressions for the test statistics can be easily obtained. Let
us denote by μ̂i , σ̂ 2

i and �̂i the unrestricted MLE’s of μi , σ 2
i , and �i , respectively,

i = 1,2,3, and by μ̂i,0, σ̂ 2
0 , and �̂i,0 the H0-restricted MLE’s of the corresponding

parameters. The Rényi test statistic of order a ∈ R−{0,1} for testing (4.3) is given
by

2Da(γ̂ , g(β̂))

= − 1

a(a − 1)

{ 3∑
i=1

ni log [aσ̂ 2
0 η̂i,0 + (1 − a)σ̂ 2

i η̂i] (4.4)
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+
3∑

i=1

ni(pi − 1) log [aσ̂ 2
0 (1 − �̂i,0) + (1 − a)σ̂ 2

i (1 − �̂i)]

−
3∑

i=1

nipi[a log σ̂ 2
0 + (1 − a) log σ̂ 2

i ]

−
3∑

i=1

ni[a log η̂i,0 + (1 − a) log η̂i]

−
3∑

i=1

ni(pi − 1)[a log (1 − �̂i,0) + (1 − a) log (1 − �̂i)]
}
,

where η̂i and η̂i,0 are defined as

η̂i = p−1
i {1 + (pi − 1)�̂i}, η̂i,0 = p−1

i {1 + (pi − 1)�̂i,0}, i = 1,2,3.

Similarly, the Kullback–Leibler statistic for testing (4.3) is

2D1(γ̂ , g(β̂)) =
3∑

i=1

ni

σ̂ 2
i

σ̂ 2
0

1 + (pi − 1)�̂i

1 + (pi − 1)�̂i,0
+

3∑
i=1

ni(pi − 1)
σ̂ 2

i

σ̂ 2
0

1 − �̂i

1 − �̂i,0

+
3∑

i=1

nipi log
σ̂ 2

0

σ̂ 2
i

+
3∑

i=1

ni log
1 + (pi − 1)�̂i,0

1 + (pi − 1)�̂i

−
3∑

i=1

nipi (4.5)

+
3∑

i=1

ni(pi − 1) log
1 − �̂i,0

1 − �̂i

.

It is not difficult to see that, under the model defined by (4.1) and (4.2), the
likelihood ratio statistic coincides with the Kullback–Leibler statistic, that is,
λ(γ̂ , g(β̂)) = 2D1(γ̂ , g(β̂)). Sufficient conditions for this equality can be found
in Morales, Pardo and Vajda (1997, 2000). Furthermore, since all regularity as-
sumptions (A1) and (A2) and (H1)–(H5) are satisfied in this case, Theorems 1–3
imply that Rényi, Kullback–Leibler, and likelihood ratio statistics for testing (4.3)
are asymptotically chi-squared distributed with two degrees of freedom.

4.2 Simulation study

Previous section established that the asymptotic distributions of all members of
the Rényi family of statistics and of the LRS are the same. Then, the selection of
a particular member should be done on the basis of small sample properties. Thus,
this section describes a simulation study designed to compare test sizes and powers
of the Rényi tests and the likelihood ratio test and to support the asymptotic results.
We will also analyze the robustness of the tests under particular departures from
the assumed probability distribution; concretely, under the heavy tails distributions
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Table 1 Sets of parameters

Set n1 n2 n3 �1 �2 �3

I 20 20 20 0.5 0.5 0.5
II 50 50 50 0.5 0.5 0.5
III 10 20 30 0.5 0.5 0.5
IV 20 20 20 0.25 0.5 0.75

Student t with 10 degrees of freedom (t10) and Logistic. For this, the following
Monte Carlo simulation procedure was implemented:

(1) Generate data from the transformed model using as initial values the pa-
rameters listed in the first row of Table 1 and taking pi = 3, μi = 0, �i =
0.5, and σ 2

i = 1, for i = 1,2,3. Calculate the restricted and unrestricted
MLE’s. Plug these MLE’s in the formulas of Rényi test statistics for a ∈ A =
{0.5,0.75,1,1.25,1.5,1.75,2,2.25}. Remember that a = 1 gives the likeli-
hood ratio test statistic.

(2) Repeat step (1) independently 104 times and calculate, for α = 0.05 and for
a ∈ A, the test sizes as

α̂a = 10−4#{2Da(γ̂ , g(β̂)) > χ2
2,0.95}, (4.6)

where #{condition} denotes the number of replications in which condition is
true.

(3) Repeat steps (1) and (2) for a grid of values σ 2
3 = 1 + 0.05ν, where ν ∈

{−10, . . . ,−1,1, . . . ,10} instead of σ 2
3 = 1 and estimate the corresponding

powers β̂a,ν by using formula (4.6).
(4) Repeat steps (1)–(3) for each set of parameters in Table 1.
(5) Repeat steps (1)–(4) by generating the data from Logistic and Student’s t10

distributions.

Table 2 lists the resulting test sizes for the considered test statistics, the un-
derlying probability distributions and the sets of parameters specified in Table 1.
Figures 1–4 plot the power functions for sets I–IV respectively. Sets I and II are
useful for observing the asymptotic behavior of power functions when increasing
sample sizes. See how the power functions in Figure 2 are very close to each other
in contrast to Figure 1. Sets I and III allow to compare test powers in the cases of
equal and different sample sizes. Figure 1 shows that on the right-hand side of null
hypothesis (σ 2

3 ≥ 1), power functions are closer than on the left side. The opposite
can be observed in Figure 3. Finally, sets I and IV allow the comparison of equal
and unequal intraclass correlation coefficients. Note that Figure 4 is slightly more
asymmetric than Figure 1. Thus, in Figure 4, the tests with higher power on one
side of null hypothesis are not necessarily those with higher power on the other
side. This asymmetry is typical for the Rényi family of tests.
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Table 2 Estimated type I error probabilities α̂a , a ∈ A and α̂LR

F Set α̂0.5 α̂0.75 α̂LR α̂1.25 α̂1.5 α̂1.75 α̂2 α̂2.25

Normal I 0.087 0.075 0.065 0.058 0.054 0.052 0.052 0.055
II 0.064 0.059 0.056 0.054 0.052 0.051 0.051 0.052
III 0.096 0.081 0.069 0.062 0.057 0.057 0.058 0.059
IV 0.088 0.075 0.066 0.059 0.054 0.052 0.053 0.056

Logistic I 0.190 0.172 0.158 0.148 0.139 0.134 0.133 0.137
II 0.172 0.165 0.159 0.156 0.153 0.151 0.151 0.153
III 0.191 0.171 0.156 0.146 0.138 0.134 0.130 0.123
IV 0.186 0.169 0.154 0.145 0.138 0.137 0.136 0.138

t10 I 0.164 0.147 0.134 0.122 0.117 0.114 0.117 0.123
II 0.143 0.136 0.130 0.126 0.123 0.121 0.122 0.123
III 0.170 0.152 0.136 0.128 0.121 0.117 0.115 0.108
IV 0.166 0.150 0.137 0.128 0.120 0.117 0.117 0.118

Figure 1 Powers of LRT and RT’s for a ∈ A with n1 = n2 = n3 = 20 and �1 = �2 = �3 = 0.5.

Now we focus on the comparison of tests for each set of parameters. A fair com-
parison of powers should be based on tests with the same sizes, but the only way of
obtaining tests with similar sizes would be to increase the sample sizes until a level
in which all powers would be also very similar due to the asymptotic equivalence
of test statistics (see Figure 2). For sample sizes above 50 all test are approxi-
mately equivalent. Therefore, we restrict ourselves to the sets of parameters I, III,
and IV with smaller sample sizes. From the tests with sizes closer to the desired
level α = 0.05 we choose those whose maximum difference in size is at most 0.01
and we call them acceptable tests. Then, from the set of acceptable tests, we prefer
the ones with higher power. Applying this rule to Table 2 we obtain that the RT’s
with a ∈ {1.25,1.5,1.75,2,2.25} belong to the set of acceptable tests for the three
sets of parameters I, III, and IV. In addition, when the true (but unknown) distribu-
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Figure 2 Powers of LRT and RT’s for a ∈ A with n1 = n2 = n3 = 50 and �1 = �2 = �3 = 0.5.

Figure 3 Powers of LRT and RT’s for a ∈ A with n1 = 10, n2 = 20, n3 = 30, and �1 = �2 =
�3 = 0.5.

tion has heavier tails than normal such as the Logistic and Student’s t10, these tests
seem to be more robust under H0. Comparing powers, Figures 1 and 3 show that
among the acceptable tests (LRT is not included), the one with the highest power
is RT of order a = 1.25, followed by the one with a = 1.5. In Figure 4 we observe
the mentioned asymmetry, namely that some tests with better power on one side
of null hypothesis are those with worse power on the other side. Since on the right
side all power functions are very close to each other, a reasonable choice is to se-
lect, among tests that do not compromise the type I error, those with better power
on the left side. Thus, among the acceptable tests, the RT’s with a ∈ {1.25,1.5}
have the highest powers.

The conclusion of this simulation study is that, for small sample sizes, RT’s
with a ∈ [1.25,1.5] have sizes closer to the nominal value α = 0.05 than the rest of
members of the family including LRT, and at the same time they have the highest
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Figure 4 Powers of LRT and RT’s for a ∈ A with n1 = n2 = n3 = 20, �1 = 0.25, �2 = 0.5, and
�3 = 0.75.

powers among tests with acceptable size. Moreover, they seem to have a more
robust test size under extreme values. In cases where the type I error has serious
consequences, we recommend to use the RT of order a = 1.5.

Appendix

This appendix states the regularity conditions assumed throughout the paper and
includes some auxiliary results needed in the proofs of Theorems 1–3.

Regularity assumptions:

(A1) Assume that each statistical space (Xi ,BXi
, Pi,θi

)θi∈�i
, with its correspond-

ing sample (Xi1, . . . ,Xini
) and p.d.f. fi,θi

satisfies regularity assumptions
(M1)–(M8) stated in Lehmann (1999, pages 499–501), and additionally all
the partial derivatives of fi,θi

till third order are continuous and finite on a
(open) neighborhood of the true parameter θi , i = 1, . . . , s.

(A2) The matrix V (γ ) defined in (2.4) is positive definite.
(A3) The set 	0 defining H0 in (2.3) can be expressed as

	0 = {γ ∈ 	 :Ri(γ ) = 0, i = 1, . . . ,M − M0},
or alternatively as

	0 = {γ ∈ 	 :γi = gi(β), i = 1, . . . ,M},
where β = (β1, . . . , βM0)

t ∈ B and B ⊂ R
M0 is open, and where functions

gi and Rj have continuous first-order partial derivatives and the ranks of
matrices

Tγ = (
∂Ri(γ )/∂γj

)
i=1,...,M−M0
j=1,...,M

and Mβ = (∂gi(β)/∂βj )i=1,...,M
j=1,...,M0

are M − M0 and M0, respectively.
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In order to derive the asymptotic distribution of the multi-sample test statis-
tics proposed in Section 2, the first step is to obtain the asymptotic distribution of
MLE’s. But they may not exist or not be solutions of likelihood equations, lying
on the border of the parameter space. However, for the asymptotic results of the
present paper it is enough to have consistent estimators that are solution of likeli-
hood equations. Thus, the following theorem gives the asymptotic distribution of
consistent solutions of the likelihood equations.

Theorem 4. For each i = 1, . . . , s, let (Xi1, . . . ,Xini
) be independent samples

of i.i.d. random variables with common p.d.f. fiθi
(x) satisfying (A1) and (A2).

Suppose that (n1, . . . , ns) is a sequence of sample sizes satisfying (2.1). Then, any
consistent sequence γ̂ = γ̂ (x) of solutions of likelihood equations (2.5) satisfies

√
n(γ̂ − γ 0)

L−→ N (0,V −1(γ 0)). (A.1)

Proof. The proof is based on the facts that γ̂ satisfies (2.5) and γ̂ is known to be
close to γ 0. Taking a second-order Taylor expansion of ∂l(γ̂ )/∂γp around γ 0, for
all p = 1, . . . ,M , and multiplying by 1/

√
n, we obtain in matrix notation

0 = 1√
n
∇l(γ 0) +

⎡⎣1

n
B(γ 0) + 1

2n

⎛⎝ (γ̂ − γ 0)tD1(γ
1)

· · ·
(γ̂ − γ 0)tDM(γ M)

⎞⎠⎤⎦√
n(γ̂ − γ 0), (A.2)

where

∇l(γ ) =
(

∂l(γ )

∂γ1
, . . . ,

∂l(γ )

∂γM

)t

, B(γ ) =
(

∂2l(γ )

∂γp ∂γq

)
p,q=1,...,M

,

(A.3)

Dp(γ ) =
(

∂3l(γ )

∂γr ∂γq ∂γp

)
q,r=1,...,M

, p = 1, . . . ,M,

and γ p satisfies ‖γ p − γ 0‖ ≤ ‖γ̂ − γ 0‖, p = 1, . . . ,M .
The proof is based on the following three results:

(A) n−1/2∇l(γ 0)
L−→ N (0,V (γ 0)), which follows simply by expressing the vec-

tor n−1/2∇l(γ 0) as a double sum, where the first sum is over the s samples,
and then applying the central limit theorem s times, one for each sample.

(B) n−1B(γ 0)
P−→ −V (γ 0), which follows similarly, by writing each element of

the matrix n−1B(γ 0) as a double sum, then expressing the derivatives of the
log-densities in terms of the derivatives of the densities, and finally applying
the weak law of large numbers and assumption (A1).

(C) n−1Dp(γ p) is bounded in probability, p = 1, . . . ,M . Again, this result can
be proved by expressing the elements of n−1Dp(γ p) as a double sum of third-
order derivatives, and combining the consistency of γ̂ to γ 0 with assumption
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(A1), so that

lim
n→∞P

(∣∣∣∣1n ∂3l(γ )

∂γr ∂γq ∂γp

∣∣∣∣
γ=γ p

∣∣∣∣< 1

n

s∑
i=1

ni∑
j=1

Hi(xij )

)
= 1.

From the law of large numbers and (A1), we have

1

n

s∑
i=1

ni∑
j=1

Hi(xij )
P−→

s∑
i=1

λiE[Hi(xij )] < ∞,

which implies the result.

Now, let us define

Zn � 1

n
B(γ 0) + 1

2n

⎛⎝ (γ̂ − γ 0)tD1(γ
1)

· · ·
(γ̂ − γ 0)tDM(γ M)

⎞⎠ .

From part (A) and (A.2), we know that

n−1/2∇l(γ 0) = −Zn

√
n(γ̂ − γ 0)

L−→ N (0,V (γ 0)). (A.4)

Now parts (B) and (C) and γ̂
P−→ γ 0 imply −Zn − V (γ 0) = oP (1). This fact

together with (A.4) imply
√

n(γ̂ − γ 0) = OP (1). Then

−Zn

√
n(γ̂ − γ 0) − V (γ 0)

√
n(γ̂ − γ 0) = (−Zn − V (γ 0)

)√
n(γ̂ − γ 0)

P−→ 0.

Therefore, by Slutsky’s theorem (see, e.g., Ferguson (1996), page 39) V (γ 0) ×√
n(γ̂ −γ 0)t is asymptotically equivalent to −Zn

√
n(γ̂ −γ 0). Thus, (A.4) implies

V (γ 0)
√

n(γ̂ − γ 0)
L−→ N (0,V (γ 0))

and under assumption (A2) we get (A.1). �

Let us now assume that the s submodels (Xi ,BXi
, Pi,θi

)θi∈�i
, i = 1, . . . , s,

restricted to null hypothesis (i.e., with γ ∈ 	0) satisfy assumptions (A1) and (A2),
with derivatives taken with respect to the new parameter β . The following lemma
sets up a relation between the matrix Tγ , defined in the statement of assumption
(A3), and V (γ ).

Lemma 1. If γ ∈ 	0, then V (γ ) = T t
γ (Tγ V −1(γ )T t

γ )−1Tγ .

Proof. It follows the same steps as the proof on page 159 in Serfling (1980). �

Let us define Rγ = (R1(γ ), . . . ,RM−M0(γ ))t , for Ri(γ ) defined in (A3). The
following proposition provides the asymptotic distribution of Rγ̂ .
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Proposition 1. Under the assumptions of Theorem 4, if H0 :γ ∈ 	0 satisfies (A3),
it holds

√
n(Rγ̂ − Rγ 0)

L−→ N (0, Tγ 0V
−1(γ 0)T t

γ 0).

Proof. The first-order Taylor expansion of Rγ̂ around γ 0 is

Rγ̂ = Rγ 0 + T∗(γ̂ − γ 0),

where

T∗ = (
∂Ri(γ )/∂γj |γ=γ i

)
i=1,...,M−M0
j=1,...,M

(A.5)

and ‖γ i − γ 0‖ < ‖γ̂ − γ 0‖, i = 1, . . . ,M − M0. The consistency of γ̂ and the
continuity of the elements of T∗ imply

T∗ − Tγ 0
P−→ 0.

By Theorem 4, we know that
√

n(γ̂ − γ 0) = Op(1), and so

√
nT∗(γ̂ − γ 0) − √

nTγ 0(γ̂ − γ 0)
P−→ 0.

Consequently, Slutsky’s theorem and Theorem 4 lead to the desired result. �

Proposition 2. Under the assumptions of Theorem 4, if H0 :γ ∈ 	0 is true, where
	0 satisfies (A3), then

nRt
γ̂ (Tγ 0V

−1(γ 0)T t
γ 0)

−1Rγ̂
L−→ χ2

M−M0
.

Proof. It is immediate by applying Proposition 1 under H0 :Rγ 0 = 0. �

Suppose that H0 :γ ∈ 	0 is true (that is, γ 0 = g(β0)). By Theorem 4, we have

√
n(β̂ − β0)

L−→ N (0,V −1(β0)),

where V (β0) is defined in (2.4) and from Crámer’s theorem (see, e.g., Ferguson
(1996), page 45) it follows that

√
n
(
g(β̂) − γ 0) L−→ N (0,MβV −1(β0)Mt

β)

for Mβ defined in (A3). As β̂
P→ β0 and g is continuous, it holds g(β̂)

P→ γ 0. Now
the following result can be proved.
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Theorem 5. Under the assumptions of Theorem 4, if H0 :γ ∈ 	0 is true, where
	0 satisfies (A3), then for any consistent sequences γ̂ = γ̂ (x) and β̂ = β̂(x) of
solutions of the likelihood equations (2.5) and (2.6), it holds

n
(
γ̂ − g(β̂)

)t
V (γ 0)

(
γ̂ − g(β̂)

) L−→ χ2
M−M0

,

where V (γ ) is defined in (2.4).

Proof. From Lemma 1, we obtain

n
(
γ̂ − g(β̂)

)t
V (γ 0)

(
γ̂ − g(β̂)

)
(A.6)

= n
(
γ̂ − g(β̂)

)t
T t

γ 0(Tγ 0V
−1(γ 0)T t

γ 0)
−1Tγ 0

(
γ̂ − g(β̂)

)
.

A first-order Taylor expansion of Rγ̂ around g(β̂) leads to

Rγ̂ = Rg(β̂) + T∗
(
γ̂ − g(β̂)

)
,

where the matrix T∗ is defined in (A.5) and γ i satisfies

‖γ i − g(β̂)‖ < ‖γ̂ − g(β̂)‖ < ‖γ̂ − γ 0‖ + ‖g(β̂) − γ 0‖, i = 1, . . . ,M − M0.

As Rg(β) = (0, . . . ,0)t for each β , in particular for β̂ , we have

Rγ̂ = T∗
(
γ̂ − g(β̂)

)
.

The consistency of γ̂ and g(β̂) and the continuity of the elements of T∗ lead to

T∗
P−→ Tγ 0 . By Theorem 4, it holds

√
n(γ̂ − g(β̂)) = √

n(γ̂ − γ 0) + √
n(γ 0 −

g(β̂)) = OP (1). From this fact we deduce
√

nT∗
(
γ̂ − g(β̂)

)− √
nTγ 0

(
γ̂ − g(β̂)

) P−→ 0.

Consequently
√

nRγ̂ − √
nTγ 0

(
γ̂ − g(β̂)

) P−→ 0. (A.7)

Using (A.6), (A.7), and Slutsky’s theorem, we get

n
(
γ̂ − g(β̂)

)t
V (γ 0)

(
γ̂ − g(β̂)

)− nRt
γ̂ (Tγ 0V

−1(γ 0)T t
γ 0)

−1Rγ̂
P−→ 0.

Finally, applying Proposition 2 and Slutsky’s theorem again, we get the desired
result. �

Lemma 2. For each γ ∈ 	 it holds that

1

n
E

[
∂ logfγ (X)

∂γp

∂ logfγ (X)

∂γq

]
−→ Vpq(γ ),

where Vpq(γ ) is the (p, q)th element of V (γ ).
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Proof. We must consider three cases depending on the relative position of p and
q with respect to k (see (2.2)): (i) p > k, q > k, (ii) p ≤ k, q ≤ k, and (iii) p ≤ k,
q > k. Since the proofs of the three cases follow similar steps, here we give only
the proof of (i). Assume that γq is one of the components of θr . Then the value of
the second-order partial derivative of logfγ (X) with respect to γq and γp depends
on whether γp belongs also to the same parameter θr or not, that is,

∂2 logfγ (X)

∂γp ∂γq

=
⎧⎪⎨⎪⎩

nr∑
j=1

∂2 logfr,θr (Xrj )

∂γp ∂γq

, if γp and γq are both components of θr ,

0, otherwise.

Since the random variables Xrj , j = 1, . . . , nr are i.i.d., then

1

n
E

[
∂ logfγ (X)

∂γp

∂ logfγ (X)

∂γq

]
= −nr

n
E

[
∂2 logfr,θr (Xrj )

∂γp ∂γq

]

= nr

n
E

[
∂ logfr,θr (Xrj )

∂γp

∂ logfr,θr (Xrj )

∂γq

]
−→ λrV

r
p,q(θr) = Vpq(γ ). �
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