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Abstract— In Bayesian normal vector AR model (BVAR) of
data evolution in a discrete time we are trying to predict the dis-
tribution of data up to horizon t+h. Since the analytical solution
of such a prediction is difficult due to the high dimensionality
of the problem, we are forced to search for approximative
solutions. We propose a solution using Monte Carlo sampling
from parameter distribution and later reconstruction of the
predictive distribution of data.

I. INTRODUCTION

Modelling dynamic systems is a building stone for system
optimization and control. In the case of modelling time
series, the probably most systematically used tool is the
Box-Jenkins methodology [1], where an ARMA process is
associated with the time series and fitted to the data. In this
paper we restrict ourselves to a Gaussian AR process of
order p. The process can be fitted to the data using classical
statistics [2], where the parameters are considered unknown
and replaced by their estimates or from a Bayesian viewpoint,
where parameters are taken as random variables [3], [4].

Since the goal of our project is modelling financial time se-
ries and optimal portfolio selection [5], we need to construct
multi-step ahead prediction of the VAR process associated
with the time series to use for optimization by Dynamic
Programming. Such predictions have been already proposed
under the assumptions of classical statistics [6] or when mean
values of estimated parameters were taken as true values [7].
In this paper we propose an approximate solution of h-step
prediction of evolution of the stochastic process related to the
data in a full distribution form. Such a solution hasn’t been
given to the best knowledge of the author. Such a solution
is needed if we need to find a mean-variance optimization
approximation of Dynamic Programming – then we only
need the first two moments of the distribution or when the
optimizing agent has a non-flat (convex or concave) utility
function [8]. To obtain the distribution we draw Monte Carlo
samples from the estimated parameter distribution, we let
the AR process evolve with the sampled parameters and
reconstruct the predictive distribution by simple numerical
integration.

In the next section of this article a detailed description
of the modelling method is given. In the first subsection we
give a brief introduction into the notation used throughout
the text. Subsection (B) describes model choice and a few
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reasons for choosing such a model. Such a choice have
to be made based on expertise, even though we try to
minimize such influence on the model choice, by trying to
choose the model objectively based on the observed data
entries. An example of such automatization is the model
structure estimation presented in (C). In (D) we describe the
Bayesian parameter estimation. In (E) we try to compensate
for ignoring parameter evolution of the model by the use of
exponential forgetting. Section (F) is the main part of this
article. It is the section where the Monte Carlo approximation
of prediction is presented.

II. MODELLING

A. Basic concepts and notation

We try to model the time series of a market price yt of
some commodity futures contract, where t is from a discrete
finite set of times – an index set T = {1, . . . , T}. We
suppose that the price evolution is also influenced by other
observable data and we collect all these data channels into
a vector of data dt = (d1;t = yt, d2;t, . . . , dk;t)

′, where the
apostrophe stands for transposition. To such data, we try to
assign a discrete-time stochastic process Dt – an adpated
stochastic process meaning that now the Dt are random
vectors, defined on a probability space (Ω,F , µ), where the
space is equipped with a filtration Ft1 (collection of σ-
algebras) and for each time s ≥ t the random vector Dt is
measurable Fs and Dt = dt – the realization of the random
vector Dt is known to the observer from time t on. Capital
letters are used for random variables and matrices and small
letters for realizations and values.

We suppose, the joint probability distribution of
D1, . . . ,DT is absolutely continuous with respect to the
underlying Lebesgue measure λTk, so that there exists a
joint probability density f(d1, . . . ,dT ) specifying the dis-
tribution. For a more detailed discussion on this issue see
Chapter 6 in [10].

Remark 1: In the following text more densities of a dif-
ferent functional form can be denoted by f if they differ
in arguments (either in number or type). This is a concept
similar to that of function overloading often used in computer
programming and leads to a less complicated notation.

Except for random vectors Dt, there are other random
variables θ defined on (Ω,F , µ), called parameters, some
of which can describe the relations between D1, . . . ,DT by
a parameteric model - one of such will be introduced in the
next section. These variables are not measurable Ft ∀t ∈

1See [9] page 51 for details



T , but are measurable F . We again suppose, there exists a
joint density of data and parameters determining their joint
distribution.

B. Model choice

There are various ways how to choose an appropriate
parametric model to describe the behavior of stochastic
process D1, . . . ,DT (see for example [11],[2]). We will
use a special type of ARMA processes - multivariate AR
processes reduced to the first p time-lags (AR processes
were first systematically studied by Box and Jenkins in [1]
and are also presented in great detail in [12]). The reason
for choosing such processes is their relative richness and
also computational ease, when it comes to their parameter
estimation. We start by splitting the joint probability density
mentioned earlier into factors similar to each other, but
shifted in time with the use of basic theorems of probability
theory [10], [13]

f(d1, . . . ,dT ,θ) = (1)
f(dT ,θT |θT−1, . . . ,θp,FT−1)

f(dT−1,θT−1|θT−2, . . . ,θp,FT−2) · · ·
f(dp+1,θ|θp,Fp)

where θ = (θT , . . . ,θp) and we start modelling at time p+1,
when the first p data values are available.

In a general case, the set of parameters θ can be very large
and they can evolve over time similarly to the measured data.
In such a case, we would also need to associate a stochastic
process with the parameter evolution. In such a situation,
we would index the parameters by t ∈ T and we would
model them similarly to the data. We would then have to
describe the causal dependence of the parameters in terms
of probability density f(θt|θt−1, . . . ,θp,Ft−1) ∀t ∈ T .
Instead we choose a smaller set of parameters θ, which we
believe evolve slowly over time, so that we can account for
their evolution by applying an exponential forgetting in their
estimation [11],[14]. In this approximation we have

f(θt|θt−1, . . . ,θp,Ft−1) = f(θ|Ft−1) ∀t ∈ T (2)

We now come to the modelling of individual factors in
(1). We split the factors again to get

f(dt,θ|Ft−1) = f(dt|θ,Ft−1)f(θ|Ft−1) (3)

where the first factor on the right-hand side is the actual
parameteric model we will choose now conditioned on the
past and the parameters. The second factor in (3) is the
posterior probability density we will estimate from past data.

We choose the probability density of data conditioned on
the parameters to be multivariate Gaussian of the form

f(dt|θ,Ft−1) = (4)

1
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where θ = {A,R} are matrices of parameters (in large
capitals because of their matrix nature despite in this con-
text, these are realizations, not random matrices), φt =

[dt−1 dt−2 · · ·dt−p]′. Parameter R stands for a covariance
matrix of the model, A are parameters of the autoregression
relating past observations of data to present or future ob-
servations (more detailed description will follow). There are
several reasons for choosing such a model:
• Bayesian estimation of parameters of such a model is

feasible, since it is from the so called exponential family
of models [11], [14] and reduces the possibly difficult
assimilation of data to a simple algebraic operation.

• The model contains as a subset the kind of models
used by modern Financial Mathematics in the case that
Efficient Market Hypothesis holds. These models are
usually of the continuous-time type – they have to be
discretized to obtain values at times t ∈ T . For financial
models of such kind see [9], [15], [16], [8] and others.

Since the probability density in (4) represents a conditional
density of random vector Dt, we can use the rules of
probability theory [10] and decompose the random vector
into conditional mean value and innovation

Dt = E [Dt|θ,Ft−1] + εt = AΦt−1 + Σet = (5)
= A1Dt−1 + A2Dt−2 + · · ·+ ApDt−p + c + Σet

where et is a noise vector having a normal distribution with
mean value 0 and covariance matrix I and E stands for
mathematical expectation. The matrices A1, . . . ,Ap, vector
c and matrix Σ, representing square root of the covariance
R being now the parameters of the model. If the original
noise is uncorrelated, the matrix Σ is diagonal.

Remark 2: Note we have changed the realizations of data
variables on the right-hand side of (5) to their random
variable representation. Since at time t− 1 or greater the σ-
algebra Ft−1 is available and Φt−1 is measurable Ft−1, the
relationship (5) therefore holds unchanged. The new feature
of (5) is that it holds also for future times, when the data
in the condition are unknown. This feature will allow us to
construct predictions of data evolution into the future.

For further computation, previous equation can be embed-
ded into a wider scheme to be recursive and have the Markov
property – see [15] page 49
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where we have used same notation for the embedded as
for some of the original quantities, which should cause no



confusion, as we will speak of the extended quantities only
from now on.

C. Structure estimation

Although we could use a full dimensional model of a
predefined maximal time-lag and predefined number of data
channels k such a practice can lead to large models with
unnecessary AR component or even unnecessary channel,
bringing additional inaccuracy to the model. For that reason
Kárný and Kulhavý [17] have proposed a systematic way of
Bayesian testing of most suitable model hypothesis through
maximum aposteriori likelihood estimation.

D. Parameter estimation

To estimate parameters from past data means to evaluate
the second factor on the right-hand side in (3) at each time.
We will perform the estimation in a Bayesian manner [4],[3]
and use the Bayes theorem. First we have to note that the new
σ-algebra Ft contains only information about the world that
doesn’t influence the process and the information making Dt

measurable Ft. Now we can use Bayes theorem to write

f(θ|Ft) =
f(dt|θ,Ft−1)f(θ|Ft−1)∫
R f(dt|θ,Ft−1)f(θ|Ft−1)dθ

(7)

where R is the range of the parameters. Usually R = Rn,
where n is the number of parameters and R is the set of real
numbers. We can use this procedure at every time step to
update the posterior probability density function (pdf), since
we have already chosen the first factor in numerator on right
hand-side in (4). At the first estimation step we need the
initial condition - the prior pdf. At the first estimation step
we need the initial condition - the prior pdf. Since we don’t
know anything about the time series, before the first data are
obtained, we should choose a non-informative or Jeffrey’s
prior pdf. Such a choice is a special case of a wider class
of prior distributions defined by a conjugate prior density
[4]. Since the model chosen is from the exponential family
of models a conjugate prior pdf can be chosen in a closed
form. In [17] it is shown, such a pdf is of Gauss-Inverse-
Wishart (Inverse-Gamma in one-dimensional case) type

GiW (V, ν) ∝ (8)
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where V is a positive definite extended information matrix
and ν is a positive number of degrees of freedom. These
parameters have to be chosen before the estimation starts.
Such a choice can have a considerable impact on estimation
of parameters A,R, but since in time series analysis T is
usually large, the prior pdf choice can be treated with a little
less care.

As described in [4], conjugate priors are chosen so that
they are self-reproducing when estimation (7) is performed
- the probability density function retains form (8) with V, ν
replaced by Vt, νt respectively. The estimation step comes

down to simple algebraic operation on these parameters,
written recursively

Vt = Vt−1 +
[

dt
φt−1

] [
dt φt−1

]
(9)

νt = νt−1 + 1

where
V0 = V ν0 = ν (10)

Remark 3: For computational reasons, the model can
be decomposed into individual one dimensional regression
models as follows. Because R is a regular positive defi-
nite and symmetric covariance matrix, it can be Cholesky-
decomposed [18] and we obtain

R = ΣΣ′ = LDL′ (11)

L is a lower triangular matrix with units on the diagonal
and its inverse B is also a lower triangular matrix with
units on the diagonal. By multiplying the model in (6) by B
and transferring additional terms from left-hand to right-hand
side we obtain

Φt = [I−B] Φt + BAΦt−1 + D
1
2 et (12)

where the square-root of D is well defined, since all the diag-
onal elements of D are strictly positive. The channels of such
a model are no longer correlated and the parameters of the
model can be estimated for k univariate models instead. Then
by a backward transformation, the model can be brought
back to its original form. When such a transformation is
carried through, the prior information on the parameters is
also transformed. Anyhow, in time series analysis, such a
change shouldn’t be important for the reasons mentioned.

E. Exponential forgetting
In case of slow parameter evolution, we can use the

exponential forgetting technique, described in [11], page 46.
Before the parameter estimation step a forgetting step is
added, accounting for parameter evolution. This step replaces
the parameter time-update step [11]. A forgetting factor
κ ∈ (0, 1) is chosen and previous parameter probability
density is flattened

f(θt = θ|Ft−1) = f(θt−1 = θ|Ft−1)λ (13)

For GiW model, inclusion of the forgetting causes a change
of (9) to

Vt = λVt−1 +
[

dt
φt−1

] [
dt φt−1

]
(14)

νt = κνt−1 + 1

The choice of optimal forgetting factor and also the structure
of the forgetting are difficult tasks. These tasks can be left
for consideration of an expert, but attempts were made to
choose this factor systematically [19].

Remark 4: Exponential forgetting influences the model
structure choice discussed in subsection (B). To the best
knowledge of the author, no satisfactory feasible algorithm
of structure estimation has been proposed yet for κ < 1.
Therefore, the practice used is to estimate model structure
using κ = 1.



F. Prediction using Monte Carlo sampling from parameter
distribution

Let’s now suppose we know the model parameters per-
fectly – e.g. their estimated joint probability density is a
delta function f(θ|Ft) = δ(θ − θ0 = [A,Σ]) where A,Σ
are now matrices of numbers, not random variables. We now
want to construct the prediction of the stochastic process Φt

up to a horizon t+ h, with the information contained in Ft.
We therefore need to estimate probability density function
f(φt+h|Ft), characterizing the distribution. Since we know
the stochastic process evolves as in (6), if the parameters are
known we obtain a predicted random variable

Φt+h = AhΦt +
h−1∑
i=0

AiΣet+h−i (15)

and we can also compute the mean value (point prediction)
and covariance of this random variable

µh = E [Φt+h|Ft,θ] = (16)
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where A0 ≡ I, since we consider a model with
cov [et, es| Ft] = 0 for s > t. These first two moments of
distribution of Φt+h will be important in the next paragraph.
Since et are normally distributed ∀t ∈ T , we obtain the pdf
of random variable on the left-hand side in (15) as

f(φt+h|Ft) = ϕµh,Rh
(φt+h) (18)

where ϕµ,R is the normal multivariate probability density
fuction of a random variable with mean value µ and covari-
ance R.

If instead of the delta function, the parameter values
are uncertain, we can proceed with the multi-step ahead
prediction by drawing N Monte Carlo samples θi, where
i ∈ {1, . . . , N} from their probability distribution charac-
terized by f(θ|Ft). After having estimated the predictions,
we reconstruct the predictive probability density by simple
numerical integration.

In an honest computation, we should consider the pre-
dicted value for t + 1 to estimate new probability density
f(θ|Ft+1) and we should perform the forgetting (13). In-
stead, for computational feasibility, we can use a so called

receding horizon or moving window approximation. In this
approximation

f(θ|Fs) = f(θ|Ft) t < s ≤ t+ h (19)

for purposes of prediction up to time t + h – we do not
update the parameter distribution with the use of estimated
data. Once we obtain new real data at time t+1, we proceed
with parameter estimation (7), forget (13), again fix the
distribution, draw new N samples and predict up to horizon
t+1+h and so on. This approximation allows us to use the
previously obtained result (18) for multistep-ahead predictive
probability density function, except now we obtain N such
result, each conditioned on the drawn parameter value θi.

We now reconstruct the final predictive probability den-
sity function f(φt+h|Ft) by integrating out the parameters,
which in the Monte Carlo approximation results in an
averaging

fN (φt+h|Ft) =
1
N

N∑
i=1

f(φt+h|θi,Ft) (20)

In the moving window approximation such a probability
density function should converge pointwise to the distribution
obtained by a general integration for N →∞.

From the distribution obtained we can generally compute
its central moments, which characterize the distribution of the
predicted values of the stochastic process Φt. For illustration
we now compute the first two central moments of the
distribution. With the first two moments known, we could fit
a normal distribution to the prediction, although it is certain,
that the uncertainty in parameters θ causes the real predictive
distribution to be heavy–tailed. For the mean value we get

EN [Φt+h|Ft] =
∫

Rkp+1
φt+hfN (φt+h|Ft) dφt+h =∫

Rkp+1
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if the sum and integral can be transposed, which we as-
sume. From knowledge of the covariance matrices Rh;i =
cov(φt+h|θi,Ft) we can compute
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where Ω = Rkp+1 and we again suppose, we can transpose
sums and integrals. Higher moments could be computed to
obtain a more accurate approximation of the final distribu-
tion.

III. CONCLUSIONS AND FUTURE WORKS

In the article a prediction procedure has been proposed,
that can be applied to wide variety of problems, where
the use of AR models is appropriate. In case of financial
time series, the model has to be extensively tested. The
usual practice in Financial Mathematics [15], [9], [16] is
to construct a model in agreement with so called Efficient
Market Hypothesis (EMH), proposed by E.Fama in his PhD.
thesis in 1960 later supported in [20], [21]. This hypothesis,
especially in its stronger forms is in contradiction with
presented model. Tests proposal should play a considerable
part of future work on the project.

Although the Monte Carlo approximation should converge
to the distribution obtained by original integration, it can
be quite computationally demanding. Possibly the moments
of the predictive distribution (21) and (22) and even further
moments could be computed analytically under the moving
window approximation using moment generating function of
the GiW distribution.

Except for normally distributed data channels, the expert
can assume, some of the data should be rather log-normally
distributed, when the mean value is subtracted. Such channels
can be incorporated into the model, but bring a few compu-
tational difficulties. Computations have been already made,
leading to incorporation of such channels into the model and
should be presented soon.
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