THE EQUATIONS OF STOCHASTIC NONLINEAR OSCILLATOR DRIVEN BY FRACTIONAL BROWNIAN MOTION

Jana Šnupárková

Abstract

Existence of a weak solution to the n-dimensional equation of stochastic nonlinear oscillator driven by a fractional Brownian motion with Hurst parameter $H \in(0,1) \backslash\left\{\frac{1}{2}\right\}$ has been shown if a diffusion matrix is time-dependent but state-independent and a drift may be singular but has to satisfy conditions of Girsanov Theorem.

Keywords: Fractional Brownian Motion, Girsanov Theorem, Weak Solution, Stochastic Nonlinear Oscillator.

1 Introduction

In this paper, we prove an existence of a weak solution to the n-dimensional equation of stochastic oscillator

$$
\frac{d^{2}}{d t^{2}} x_{t}+F\left(t, x_{t}, \frac{d}{d t} x_{t}\right)=\bar{\sigma}(t) \frac{d}{d t} B_{t}^{H}
$$

where $B^{H}=\left(\left(B^{H}\right)^{i}\right)_{i=1}^{n}$ is an n-dimensional fractional Brownian motion with Hurst parameter $H \in(0,1)$, i.e. B^{H} is a centered Gaussian process with covariance function

$$
\mathbb{E}\left[\left(B_{s}^{H}\right)^{i}\left(B_{t}^{H}\right)^{j}\right]=\frac{1}{2}\left(s^{2 H}+t^{2 H}-|s-t|^{2 H}\right) \delta_{i j}, \quad s, t \geq 0, i, j=1, \ldots, n
$$

Process B^{H} is a standard Wiener process for $H=\frac{1}{2}$. For $H \neq \frac{1}{2} B^{H}$ has a version with Hölder continuous trajectories of order γ for any $0<\gamma<H$ and has stationary increments. Nevertheless, B^{H} is neither Markov process nor a semimartingale, hence standard methods of integration are not applicable. This example of a stochastic oscillator and other results about existence of weak solutions with full proofs will appear in [11]. There are many papers devoted to equations driven by a fractional Brownian motion, e.g. in [2], [8] the strong existence and uniqueness of solutions to one-dimensional SDE's for any $H \in(0,1)$ is established. In the case $H>\frac{1}{2}$ the existence and uniqueness of solutions is also proved in [4], [5] (by the rough path approach, using Young type integrals and the concept on p-variation) and in [10]. An existence of weak solutions in one-dimensional case is studied in [8], [9], [7] and [1] using Girsanov Theorem for fractional Brownian motion. Stochastic equations in Hilbert spaces driven by a fractional Brownian motion are studied in [3], [6].

2 Preliminaries

Consider an n-dimensional stochastic differential equation

$$
\begin{equation*}
X_{t}=\tilde{x}+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma(s) d B_{s}^{H} \tag{2.1}
\end{equation*}
$$

where $\tilde{x} \in \mathbb{R}^{n}$ is deterministic initial condition, $b:[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a drift which can be divided into a regular part and a singular part and σ : $[0, T] \rightarrow \mathcal{L}\left(\mathbb{R}^{n}\right)$ is a diffusion, which is time-dependent but state-independent. $\mathcal{L}\left(\mathbb{R}^{n}\right)$ is a space of all linear bounded operators from \mathbb{R}^{n} to \mathbb{R}^{n}. Furthermore, consider another simplier equation

$$
\begin{equation*}
Y_{t}=\tilde{x}+\int_{0}^{t} b_{1}\left(s, Y_{s}\right) d s+\int_{0}^{t} \sigma(s) d B_{s}^{H} \tag{2.2}
\end{equation*}
$$

Definition 2.1. An adapted process with continuous trajectories is a solution to the equation (2.2) if $\left\{Y_{t}, t \in[0, T]\right\}$ satisfies the equation (2.2). The solution to the equation (2.2) is pathwise unique if

$$
\mathbb{P}\left\{Y_{t}=\tilde{Y}_{t} \quad \forall t \in[0, T]\right\}=1
$$

holds for any two solutions $\left\{Y_{t}, t \in[0, T]\right\},\left\{\tilde{Y}_{t}, t \in[0, T]\right\}$.
By a weak solution to the equation (2.1) we mean a couple of adapted processes $\left(B^{H}, X\right)$ with continuous trajectories on a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that B^{H} is an n-dimensional fractional Brownian motion on the interval $[0, T]$ and X and B^{H} satisfy (2.1).
The next theorem is a main result in [11]. Remark that $\mathcal{C}^{\delta}\left([0, T] ; \mathcal{L}\left(\mathbb{R}^{n}\right)\right)$ is a space of all Hölder continuous mappings of order $\delta, 0<\delta<1$, from the interval $[0, T]$ to the space $\mathcal{L}\left(\mathbb{R}^{n}\right)$.

Theorem 2.2. Let $b_{1}, b_{2}:[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \sigma:[0, T] \rightarrow \mathcal{L}\left(\mathbb{R}^{n}\right)$ be Borel mappings such that $b=b_{1}+b_{2}$ on $[0, T] \times \mathbb{R}^{n}$ and assume that there exists a Borel measurable inverse σ^{-1} of σ. Suppose that

$$
\begin{equation*}
\exists K_{b}>0 \forall t \in[0, T] \forall x \in \mathbb{R}^{n} \quad\left\|b_{1}(t, x)\right\| \leq K_{b}(1+\|x\|) \tag{2.3}
\end{equation*}
$$

and there exists a solution Y to the equation (2.2). Set $u(t)=\sigma^{-1}(t) b_{2}\left(t, Y_{t}\right)$, $t \in[0, T]$. Assume that $u \in L^{\infty}\left([0, T] ; \mathbb{R}^{n}\right) \mathbb{P}$-almost surely and either $H<\frac{1}{2}, \sigma \in \mathcal{C}^{\delta^{*}}\left([0, T] ; \mathcal{L}\left(\mathbb{R}^{n}\right)\right)$ for some $\delta^{*} \in\left(\frac{1}{2}-H, 1\right)$ and $\exists K>0$ $\forall t \in[0, T] \forall x \in \mathbb{R}^{n}$

$$
\left\|\sigma^{-1}(t) b_{2}(t, x)\right\| \leq K(1+\|x\|)
$$

or
$H>\frac{1}{2}, \sigma \in L^{\infty}\left([0, T] ; \mathcal{L}\left(\mathbb{R}^{n}\right)\right)$ and $\exists \alpha \in\left(1-\frac{1}{2 H}, 1\right) \exists \beta \in\left(H-\frac{1}{2}, 1\right)$
$\exists C>0 \forall s, t \in[0, T] \forall x, y \in \mathbb{R}^{n}$

$$
\left\|\sigma^{-1}(t) b_{2}(t, x)-\sigma^{-1}(s) b_{2}(s, y)\right\| \leq C\left(\|x-y\|^{\alpha}+|t-s|^{\beta}\right) .
$$

Then there exists a weak solution to the equation (2.1).

Sketch of the proof (cf. [11] for details) First we show that there exists a version of the stochastic integral $\left\{\int_{0}^{t} \sigma(s) d B_{s}^{H}, t \in[0, T]\right\}$ with Hölder continuous trajectories of order $\gamma, 0<\gamma<H$, using Kolmogorov-Chentsov Theorem. As H increases, conditions on integrand σ are less restrictive and computations in the proof of Hölder continuity are easier for $H>\frac{1}{2}$ then for $H<\frac{1}{2}$. Next we prove that if we have solution Y to the equation (2.2), where b_{1} is a Borel function satisfying condition (2.3), then there exists a version of $\left\{Y_{t}, t \in[0, T]\right\}$ with Hölder continuous trajectories of order $\gamma, 0<\gamma<H$. The next aim is to use Girsanov Theorem which for a fractional Brownian motion takes the following form

Theorem 2.3. Let $B^{H}=\left\{B_{t}^{H}, t \in[0, T]\right\}$ be an n-dimensional fractional Brownian motion with Hurst parameter H on the interval $[0, T]$. Consider an adapted n-dimensional process $u=\left\{u_{t}, t \in[0, T]\right\}$ with integrable trajectories. Set

$$
\begin{aligned}
& v(s)=K_{H}^{-1}\left(\int_{0} u_{r} d r\right)(s), \quad s \in[0, T], \\
& \xi_{T}=\exp \left\{\int_{0}^{T} v_{s}^{T} d W_{s}-\frac{1}{2} \int_{0}^{T}\left\|v_{s}\right\|^{2} d s\right\}
\end{aligned}
$$

and assume that

$$
\begin{aligned}
& \text { (i) } \quad \int_{0} u_{s} d s \in I_{0+}^{H+\frac{1}{2}}\left(L^{2}\left([0, T] ; \mathbb{R}^{n}\right)\right) \quad \mathbb{P} \text { - a.s. } \\
& \text { (ii) } \mathbb{E}\left(\xi_{T}\right)=1
\end{aligned}
$$

Then $\left\{B_{t}^{H}-\int_{0}^{t} u_{s} d s, t \in[0, T]\right\}$ is an n-dimensional fractional Brownian motion with Hurst parameter $H_{\tilde{\sim}}$ on the interval $[0, T]$ under the probability $\tilde{\mathbb{P}}$ defined by the density $\xi_{T}=\frac{d \tilde{\mathbb{P}}}{d \mathbb{P}}$ with respect to \mathbb{P}.

Note that $\left\{W_{t}, t \geq 0\right\}$ is an n-dimensional Wiener process defined by

$$
W_{t}=\int_{0}^{T}\left(\mathcal{K}_{H}^{*}\right)^{-1}\left(I_{[0, t]} i d\right)(s) d B_{s}^{H}, \quad t \in[0, T]
$$

where \mathcal{K}_{H}^{*} is an isometry between the space $\left(\mathcal{H},\|\cdot\|_{\mathcal{H}}\right)$ of all deterministic time-dependent integrable functions with respect to the fractional Brownian motion and a space $L^{2}\left(\Omega, \mathcal{L}\left(\mathbb{R}^{n}\right)\right)$ (for precise definitions see [11]). The space $I_{0+}^{H+\frac{1}{2}}\left(L^{2}\left([0, T] ; \mathbb{R}^{n}\right)\right)$ is an image of $\left.L^{2}\left([0, T] ; \mathbb{R}^{n}\right)\right)$ under the operator $I_{0+}^{H+\frac{1}{2}}$ defined by the formula

$$
\left(I_{0+}^{H+\frac{1}{2}} \varphi\right)(t):=\frac{1}{\Gamma\left(H+\frac{1}{2}\right)} \int_{0}^{t}(t-s)^{H-\frac{1}{2}} \varphi(s) d s
$$

for $\varphi \in L^{1}\left([0, T] ; \mathbb{R}^{n}\right)$. The above integral is well-defined for a.e. $t \in[0, T]$ and Γ denotes Gamma function.

The operator $K_{H}^{-1}: I_{0+}^{H+\frac{1}{2}}\left(L^{2}\left([0, T] ; \mathbb{R}^{n}\right)\right) \longrightarrow L^{2}\left([0, T] ; \mathbb{R}^{n}\right)$ is the inverse of the linear operator $K_{H}: L^{2}\left([0, T] ; \mathbb{R}^{n}\right) \longrightarrow I_{0+}^{H+\frac{1}{2}}\left(L^{2}\left([0, T] ; \mathbb{R}^{n}\right)\right)$ defined by

$$
\left(K_{H} \varphi\right)(t):=\int_{0}^{t} K_{H}(t, s) \varphi(s) d s
$$

where $K_{H}(t, s)$ is an integral kernel having a form

$$
K_{H}(t, s)= \begin{cases}\frac{C_{H}}{H^{*}} s^{-H^{*}}\left[(t .(t-s))^{H^{*}}-H^{*} . I_{H}\right] & , \quad s<t \\ 0 & , \quad s \geq t\end{cases}
$$

where $H^{*}=H-\frac{1}{2}, I_{H}=\int_{s}^{t} u^{H^{*}-1}(u-s)^{H^{*}} d u$ and

$$
C_{H}=\sqrt{\frac{H \cdot H^{*}}{2 B\left(2-2 H, H^{*}\right)}},
$$

and B denotes Beta function.
To verify conditions $(i),(i i)$ of Girsanov Theorem it is sufficient to show that

$$
\mathbb{E} \exp \left\{\int_{t_{1}}^{t_{2}}\left\|v_{s}\right\|^{2} d s\right\}<+\infty
$$

for any $0 \leq t_{1}<t_{2} \leq T$ enough small. This can be shown using Fernique theorem

Theorem 2.4. Let $(V,\|\|,. \mathcal{B}(V))$ be a separable Banach space with a Borel σ-field $\mathcal{B}(V)$. Suppose that G is a V-valued zero-mean Gaussian random variable. Then there exists $\zeta>0$ such that

$$
\mathbb{E} \exp \left\{\zeta\|G\|_{V}^{2}\right\}<+\infty
$$

Contrary to the regularity of trajectories of the process $\left\{\int_{0}^{t} \sigma(s) d B_{s}^{H}, t \in\right.$ $[0, T]\}$, conditions on the product $\sigma^{-1} b_{2}$ are more restrictive and computations are more difficult in the case $H>\frac{1}{2}$ than in the case $H<\frac{1}{2}$. Finally we show that the couple $\left(\left\{B_{t}^{H}-\int_{0}^{t} u_{s} d s, t \in[0, T]\right\}, Y\right)$ is a weak solution to the equation (2.1) on the probability space $(\Omega, \mathcal{F}, \tilde{\mathbb{P}})$, where $\tilde{\mathbb{P}}$ is a changed probability measure defined by a density ξ_{T} with respect to probability measure \mathbb{P}.

3 Equation of stochastic oscillator

Consider the formal equation

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} x_{t}+F\left(t, x_{t}, \frac{d}{d t} x_{t}\right)=\bar{\sigma}(t) \frac{d}{d t} \bar{B}_{t}^{H} \tag{3.1}
\end{equation*}
$$

the weak solution of which is defined as the weak solution to

$$
\begin{equation*}
X_{t}=y_{0}+\int_{0}^{t}\left(b_{1}\left(X_{s}\right)+b_{2}\left(s, X_{s}\right)\right) d s+\int_{0}^{t} \sigma(s) d B_{s}^{H} \tag{3.2}
\end{equation*}
$$

where $\left\{B_{t}^{H}, t \in[0, T]\right\}$ is a $2 n$-dimensional fractional Brownian motion whose first n components are components of \bar{B}^{H} and where for $t \in[0, T]$ and $y=$ $(x, v)^{\mathrm{T}} \in \mathbb{R}^{2 n}$

$$
\begin{aligned}
X_{t} & :=\binom{x_{t}}{v_{t}}, \\
b_{1}(y) & :=\binom{v}{0}, \\
b_{2}(t, y) & :=\binom{0}{-F(t, y)}, \\
y_{0} & :=\binom{x_{0}}{v_{0}}
\end{aligned}
$$

and

$$
\sigma(t):=\left(\begin{array}{cc}
0 & 0 \\
0 & \bar{\sigma}(t)
\end{array}\right)
$$

$\sigma(t)$ being a $2 n \times 2 n$-dimensional matrix.
Moreover, consider the linear equation

$$
\begin{equation*}
Y_{t}=y_{0}+\int_{0}^{t} b_{1}\left(Y_{s}\right) d s+\int_{0}^{t} \sigma(s) d B_{s}^{H} . \tag{3.3}
\end{equation*}
$$

Proposition 3.1. Suppose that $\sigma:[0, T] \rightarrow \mathcal{L}\left(\mathbb{R}^{n}\right)$ is a Borel mapping satisfying either $H<\frac{1}{2}$ and $\sigma \in \mathcal{C}^{\delta^{*}}\left([0, T] ; \mathcal{L}\left(\mathbb{R}^{n}\right)\right)$ for some $\delta^{*} \in\left(\frac{1}{2}-H, 1\right)$ or $H>\frac{1}{2}$ and $\sigma \in L^{\infty}\left([0, T] ; \mathcal{L}\left(\mathbb{R}^{n}\right)\right)$. Further, let $b_{1}:[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a Borel function satisfying the following conditions:

$$
\begin{array}{r}
\forall N \in \mathbb{N} \exists K_{N}>0 \forall t \in[0, T] \forall x, y \in \mathbb{R}^{n}\|x\|+\|y\| \leq N \\
\left\|b_{1}(t, x)-b_{1}(t, y)\right\| \leq K_{N}\|x-y\|,
\end{array}
$$

and

$$
\exists K_{b}>0 \forall t \in[0, T] \forall x \in \mathbb{R}^{n} \quad\left\|b_{1}(t, x)\right\| \leq K_{b}(1+\|x\|) .
$$

Then there exists the pathwise unique solution to the equation (2.2).
Proof. Cf. [11].
Suppose that matrix $\bar{\sigma}$ is regular for all $t \in[0, T]$. Let

$$
\Sigma(t)=\left(\begin{array}{cc}
0 & 0 \\
0 & \bar{\sigma}^{-1}(t)
\end{array}\right), \quad t \in[0, T]
$$

be a $2 n \times 2 n$-dimensional matrix. It is easy to see from the proof that the statement of Theorem 2.2 holds if we replace σ^{-1} in this theorem by Σ.
Suppose that $\bar{\sigma}$ is a Borel function satisfying either
(A1) $H<\frac{1}{2}$ and $\bar{\sigma} \in \mathcal{C}^{\delta^{*}}\left([0, T] ; \mathcal{L}\left(\mathbb{R}^{n}\right)\right)$ for some $\delta^{*} \in\left(\frac{1}{2}-H, 1\right)$,
or
(A2) $H>\frac{1}{2}$ and $\bar{\sigma} \in L^{\infty}\left([0, T] ; \mathcal{L}\left(\mathbb{R}^{n}\right)\right)$.
Function $b_{1}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n} ; y=(x, v)^{\mathrm{T}} \mapsto(v, 0)^{\mathrm{T}}$ is Lipschitz (consequently b_{1} satisfies condition (2.3)). Then there exists the pathwise unique solution $\left\{Y_{t}, t \in[0, T]\right\}$ to the equation (3.3) (cf. Proposition 3.1).
Assume that trajectories of the process $\left\{\bar{\sigma}^{-1}(t) F\left(t, Y_{t}\right), t \in[0, T]\right\}$ are in $L^{\infty}\left([0, T] ; \mathbb{R}^{n}\right)$ and suppose moreover either
(B1) $H<\frac{1}{2}$ and $\exists K>0 \forall t \in[0, T] \forall y \in \mathbb{R}^{2 n}$

$$
\left\|\bar{\sigma}^{-1}(t) F(t, y)\right\| \leq K(1+\|y\|)
$$

or
(B2) $H>\frac{1}{2}$ and $\exists \alpha \in\left(1-\frac{1}{2 H}, 1\right) \exists \beta \in\left(H-\frac{1}{2}, 1\right) \exists C>0 \forall s, t \in[0, T]$ $\forall y_{1}, y_{2} \in \mathbb{R}^{2 n}$

$$
\left\|\bar{\sigma}^{-1}(t) F\left(t, y_{1}\right)-\bar{\sigma}^{-1}(s) F\left(t, y_{2}\right)\right\| \leq C\left(\left\|y_{1}-y_{2}\right\|^{\alpha}+|t-s|^{\beta}\right)
$$

Then assumptions of Theorem 2.2 on a map $(t, y) \mapsto \Sigma(t) b_{2}(t, y), t \in[0, T]$, $y \in \mathbb{R}^{2 n}$, are satisfied because

$$
\Sigma(t) b_{2}(t, y)=\binom{0}{-\bar{\sigma}(t) F(t, y)}
$$

hence equations (3.2) and thereby (3.1) have weak solutions.

References

[1] B. Boufoussi, Y. Ouknine: On a SDE driven by a fractional Brownian motion and with monotone drift, Elect. Comm. Probab. 8 (2003), 122134
[2] L. Denis, M. Erraoni, Y. Ouknine: Existence and uniqueness for solutions of one dimensional SDE's driven by an additive fractional noise, Stoch. Stoch. Rep., 76 (2004), 409-427
[3] T.E. Duncan, B. Maslowski, B. Pasik-Duncan: Semilinear stochastic equations in a Hilbert space with a fractional Brownian motion, to appear in SIAM J. Math. Anal.
[4] T. Lyons: Differential Equations Driven by Rough Signals, Rev. Mat. Iberoamericana, 14 (1998), 215-310
[5] T. Lyons: Differential Equations Driven by Rough Signals (I): an extension of an inequality of L. C. Young, Math. Res. Lett., 1 (1994), 451-464
[6] B. Maslowski, D. Nualart: Evolution equations driven by a fractional Brownian motion, J. Funct. Anal., 202 (2003), 277-305
[7] Yu. Mishura, D. Nualart: Weak solutions for stochastic differential equations with additive fractional noise, Stat. Probab. Lett., 70 (2004), 253261
[8] D. Nualart, Y. Ouknine: Regularization of Differential equations by fractional noise, Stochastic Process. Appl., 102 (2002), 103-116
[9] D. Nualart, Y. Ouknine: Stochastic differential equations with additive fractional noise and locally unbounded drift, Stochastic inequalities and applications, 353-365, Birkhäuser, Basel, 2003
[10] D. Nualart, A. Răşcanu: Differential Equations driven by Fractional Brownian Motion, Collect. Math., 53 (2002), 55-81
[11] J. Šnupárková: Weak solutions to stochastic differential equations driven by fractional Brownian motion, to appear in Czech. Math. J.

Acknowledgement: This work was partially supported by the GAČR grant no. 201/07/0237.
Address: Institute of Information Theory and Automation of the ASCR, Pod Vodárenskou věží 4, 18208 Prague 8
Czech Republic

E-mail: snupark@utia.cas.cz

