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a b s t r a c t

Spatial alignment is an essential step before any further processing (such as fusion and change detection)
of multiframe images can be done. We present a new algorithm that aligns translated and rotated pair of
3D images by means of phase correlation method (PCM). PCM is a computationally efficient method for
translation estimation. We generalize a known polar-mapping approach of 2D image registration by PCM
to estimate mutual rotation of a pair of 3D images about known axis. An improvement of this technique is
given to eliminate influence of noise and image differences in non-ideal conditions. Finally, an iterative
optimization procedure called cylindrical phase correlation method (CPCM) is proposed which uses these
techniques in rigid body registration tasks. We utilize CPCM to register 3D tomographic images of human
brain and study its performance in several experiments. CPCM shows extreme robustness to noise and is
able to reliably and rapidly align even highly misregistered images.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Image registration plays a major role in multiframe image pro-
cessing. The purpose of image registration is to geometrically align
two or more images differing by the imaging time, viewpoint, sen-
sor modality and/or the subject of the images. Among many areas
where the image registration is employed (such as remote sensing
and computer vision), medical image processing is one of the most
important.

Image registration methods are usually classified into two main
groups (e.g. Zitová and Flusser, 2003). Feature-based methods
incorporate a feature selection step to detect a set of control points,
a feature matching step to find the correspondences between two
sets of control points and a transform model estimation step to
determine parameters of the selected transformation from the cor-
respondences. Very popular in medical image registration – espe-
cially in tomographic brain image registration – is an
optimization scheme that aims to find, by a certain numerical opti-
mization process, an extreme of similarity or dissimilarity measure
on a multidimensional space of parameters of a selected transform
model. Methods based on mutual information are state-of-the-art
among these approaches (e.g. Gholipour et al., 2007).

Fourier methods form a special group of approaches based on
the phase correlation method (PCM). PCM was first introduced
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by Kuglin and Hines (1975) as a fast and robust method for estima-
tion of inter-image shifts. The method was extended by De Castro
and Morandi (1987) to register translated and rotated images and
later by Reddy and Chatterji (1996) to register translated, rotated
and scaled images. The authors use a log-polar transform of shift
invariant spectral magnitudes to turn rotation and scaling to trans-
lation handled analogically by PCM. This approach is not applicable
for 3D image registration as there is no mapping that converts
rotation to translation in 3D.

Keller et al. (2006) introduced an algorithm for registration of
rotated and translated 3D volumes based on the pseudopolar Fou-
rier transform. Their approach uses the pseudopolar representation
of spectral magnitudes to find the rotation axis and to estimate the
rotation angle without using interpolation.

Other authors aim to refine the precision of PCM to subpixel le-
vel. Foroosh et al. (2002) estimate the subpixel shifts by analyzing
polyphase decomposition of cross-power spectrum. Stone et al.
(2001) first eliminate the effect of aliasing and then use least-
squares fit to 2D phase difference data. As this is a difficult task,
authors of Hoge (2003) and Hoge and Westin (2005) separate the
shift estimation in every dimension by SVD or high-order SVD of
cross-power spectrum. An improvement of robustness of this ap-
proach is given in (Keller et al., 2004).

All the Fourier approaches mentioned above estimate the rota-
tions on the shift invariant spectral magnitudes of the images. In
cases of images with a low structural nature of spectral magni-
tudes (e.g. many medical imaging modalities) we find this difficult
and unreliable as most of the information important for the PCM
(e.g. image edges) has been lost as the image phase was discarded
from the rotation estimation. Landmark and metric optimization
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methods can be used even for registration of higher-order trans-
forms (elastic registrations) and for multi-modal registrations,
but for landmark methods there is a serious problem in robust
detection and matching significant landmarks in certain modalities
and metric optimization methods face trade-offs between conver-
gence speed and reliability. Both approaches are usually sensitive
to noise and their performance and reliability decrease with
increasing misregistration of the data.

In this paper, we present a new way of employing PCM to reg-
ister 3D images to use its speed and robustness in 3D rigid registra-
tion tasks. Our method is based on cylindrical coordinate mapping
of the image in spatial domain and iteratively uses PCM to estimate
the update of rigid body transform with respect to certain trans-
form components: rotation or translation. We experimentally
study the method’s performance in the case of tomographic brain
image registration tasks.
2. Phase correlation method

Phase correlation method by Kuglin and Hines (1975) takes
advantage of Fourier shift theorem that relates the phase informa-
tion of spectrums of an reference image fM and its shifted copy. If
moving image fM is the shifted copy of fM then the spectra of the
images are according to the Fourier shift theorem related as
follows:

FMð~xÞ ¼ eiðxxDxxþxyDxyþxzDxzÞFRð~xÞ;

F�1 FMð~xÞ
FRð~xÞ

� �
¼ F�1 eiðxxDxxþxyDxyþxzDxzÞ

� �
¼ d ~xþ D~xð Þ:

Quotient of spectrums FM and FR is in practise (even if fM is not
exactly the shifted copy of fR) computed as

corrð~xÞ ¼ F�1 FMF�R
FMj j FRj j

� �
;

so that PCM computes the correlation of whitened images (images
with jFj ¼ 1).

Thus, locating a peak in a correlation surface corr results in off-
set D~x that can be used to align fR and fM at pixel-level

PCMðfR; fMÞ ¼ D~x ¼ argmax~x corrð~xÞð Þ:
3. Cylindrical phase correlation method

In this section, we introduce new image registration algorithms.
First, we describe a technique for using PCM to find a rotation angle
in case two volumes are only rotated about a known axis. Then, we
give important improvements that increase the performance of the
technique in non-ideal conditions. Finally, we use this technique in
an iterative algorithm that registers volumes differing by a rigid
body transform.

3.1. Finding rotation with known axis

Now consider two 3D images fR and fM that are related by a
rotation.

In the 2D case, it is possible to convert the rotation around some
central point to a translation by polar transforming the images
with the origin of the polar coordinates located in the centre of
the rotation. The angle of rotation then can be determined by using
2D version of PCM described above. The direct generalization of
this approach for the 3D case by using spherical coordinates does
not work as these coordinates do not convert 3D rotation to a
translation. If the rotation axis is known, PCM can be used on cylin-
drically mapped images to estimate the rotation angle.
Let us represent the rotation by axis ~v and angle a and assume
the rotation axis~v is known. For simplicity let us suppose, that the
rotation axis is the z-axis of the Cartesian coordinate system.
Transformation to cylindrical coordinates about z-axis is computed
as f �ða; r; zÞ ¼ f ðr cos a; r sin a; zÞ. Rotation of the image fR by an an-
gle Da has the same effect as shifting the periodically extended im-
age f � by D~x� ¼ ðDa;0;0Þ

fMð~xÞ ¼ fRðRzðDaÞ~xÞ;

f �Mð~x�Þ ¼ f �R ~x� þ D~x�ð Þ mod Sf �R

� �
;

where RzðDaÞ is the rotation matrix for rotation about z-axis (Baker,
1998–2007) and Sf �R

is the size of the image f �R . (Asterisk superscript
(*) denotes a cylindrical coordinate system.)

Now, it is clear that the rotation angle Da can be estimated by
PCM on cylindrically transformed images f �R and f �M.

In fact, this technique of rotation estimation is very similar to
that of Reddy and Chatterji (1996). In every plane orthogonal to
the axis of the cylinder, the image is transformed to polar
coordinates that convert rotation about the axis to translation.
PCM of all transformed planes then computes overall rotation
around the axis. The cylindrically (or polar) transformed image is
periodic in the angular direction (after passing angle 2p we may
continue again from 0). As well, Fourier transform of the discrete
and bounded image assumes that the image is periodically ex-
tended beyond its bounds. Therefore the intrinsic presumption of
periodicity is fulfilled in case of PCM on cylindrically mapped
images.

3.2. Improving the performance

The approach described in the previous section has two main
drawbacks. The first one is caused by performing computations
in discrete domain: when making cylindrical transform of the
images, it is necessary to use higher-order interpolation, because
the cylindrical transform (alike the polar transform) is sampling
the space very non-uniformly.

The second drawback is that the voxels of the original volume
located near the axis of the cylinder have much greater impact
than the voxels located at the perimeter. If the angular and radial
coordinates are sampled so that the perimeter of the cylinder is
not subsampled and no information is lost, every voxel near the
axis is stretched (or interpolated) to several voxels, while the vox-
els at the perimeter are resampled approximately one-to-one.
Moreover, the PCM gives the same significance to well-sampled
voxels at the perimeter as to resampled voxels originating from
the voxels near the axis, which are also highly affected by an inter-
polation error.

These drawbacks led us to develop technique computing PCM
separately for every layer of the cylinder defined by a fixed radius.
Every such layer has a different angular resolution that suitably
samples the original data: layer at radius r is in angular direction
sampled by 2pr samples, i.e. with resolution (spacing)
2p=2pr ¼ 1=r radians.

lr
Rða; zÞ ¼ f �R ða; r; zÞ 8a ¼ 0;1=r; . . . ; ð2p� 1=rÞ;
8z ¼ 0;1; . . . ; Sz

f� :
ð1Þ

Corresponding layers from reference and moving image are reg-
istered by PCM which results in a correlation surface that provides
a degree of match for each angle. Correlation surfaces from all lay-
ers are then summed up to obtain the global correlation surface

corrimpða; zÞ ¼
XSr

f�
R

r¼1

F�1 LRL�M
LRj j LMj j

� �
ða; zÞ; ð2Þ
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where LRjM are Fourier transforms of layers lRjM. Off-grid image val-
ues in Eq. (1) are computed using linear interpolation. Off-grid layer
correlation surface values in Eq. (2) are computed using nearest-
neighbour interpolation. Finally, position of the highest peak in
the combined correlation surface corrimp provides the final result
of the registration

IREðfR; fMÞ ¼ argmaxa;z corrimpða; zÞ
� �

:

Properties of the cylinder – i.e. number of layers Sr
f �R

, inter-layer
spacing, and height of the cylinder Sz

f �R
– are determined with the

strategy to rather oversample than subsample. The number of layers
is determined using the largest size and lowest spacing across all
dimensions of both reference and moving image. The height of the
cylinder is the double of the number of layers with the same spacing.
Such strategy works perfectly well for approximately symmetric
volumes but should be adjusted for significantly asymmetric ones.

We call this algorithm improved rotation estimation later in the
text. A comparison with basic version is shown in the experimental
section of the paper.
Fig. 1. BrainWeb (Collins et al., 1998) simulated MRI brain image. Volume size is
181� 217� 180 with regular 1 mm spacing in all dimensions.
3.3. Rigid body registration

Rigid body transform is a transform that combines rotations and
translations. Finding optimal parameters of a rigid body transform
(six parameters in 3D) is a very common task in image registration
(Zitová and Flusser, 2003) (intra-subject studies, multimodal regis-
tration, etc). As it is mentioned in the introduction, there is a class of
registration methods that employ a numerical optimization process
to find the optimum of similarity measure on a space of parameters
of a transformation model. Our algorithm uses above-described
procedures to find parameters of rigid body transform so that the
PCM metric – the correlation of whitened images – reaches its max-
imum. The optimization runs in iterations. Each iteration aims to
improve the measure with respect to some subset of parameters.
Such optimization resembles some well-known optimizers (e.g.
Powell’s direction set method Press et al., 1992) and is sometimes
called alternating optimization. We call the algorithm described in
this section cylindrical phase correlation method (CPCM).

Let us start with the identity transform T and a set of three lin-
ear independent axes. For example x, y and z are a suitable selec-
tion. We repeat the following iterations to compute a transform
update Tupd:

Odd iterations compute PCM to estimate the shift between the
reference volume fR and moving volume transformed by actual
transform TðfMÞ.

Tupd  PCM fR; T fMð Þð Þ:

Even iterations estimate the rotation component with respect to
one of the axes by above-mentioned procedure.

Tupd  IRE xjyjzf g fR; T fMð Þð Þ:

Axes cyclically alternate as the algorithm advances so that for
example in iterations 2;4;6;8;10; . . ., axes x; y; z; x; y; . . . are used,
respectively.

After each iteration, the current transform T is updated by new
Tupd

T  T � Tupd:

This iterating process is terminated if there is no non-zero up-
date found in the last six iterations (no transform parameter can
be further optimized), or if the maximum number of iterations is
met (time limit) or if the actual result is satisfactory (e.g. algorithm
is stopped by an operator).
The convergence of our algorithm faces similar problems as
common optimization techniques. It is not ensured that the at-
tained optimum will be the global optimum of the similarity met-
ric and that it is approached in some well-defined time limit. But in
contrast to other methods our method is optimal in every step (PCM
and IRE find the global optimum with respect to the given param-
eter subset). Furthermore, in the case of PCM, the optimum is
found over three shift parameters in one step. Hence, the method
should be capable of registering images with low spatial correla-
tion and with high initial misregistration, which are usual proper-
ties that limit other methods. Again (as can be seen in
experimental results) this does not guarantee the convergence to
global optimum.

4. Experimental results

In this section, we present several experiments that study the
method’s performance. First, an influence of non-ideal conditions
on PCM estimation of rotation angle on cylindrically mapped
images is studied along with the performance of the improved
algorithm in the same situation. In the second experiment, we dis-
cover the behaviour of CPCM on various initial misalignments and
give certain conclusions about the accuracy, speed and robustness
of the method. Consequently, we show the method’s dependence
on the selection of the axes set. In the fourth experiment, CPCM
is compared with some reference methods. As all these experi-
ments are simulated, we finally execute the method on a real data
set in a real registration task.

In all experiments, we run our C++ implementation of the algo-
rithms on an ordinary contemporary PC. The method is imple-
mented as a module to Insight toolkit ITK (Ibanez et al., 2005).

4.1. Influence of noise and rotation axis error on rotation estimation

Algorithms for estimation of rotation angle (Sections 3.1 and
3.2) were tested for robustness under non-ideal conditions. First,
we want to examine the influence of these conditions on an algo-
rithm’s behaviour and second, we want to justify the improve-
ments given in Section 3.2.

In the first part of this experiment, a simulated MRI brain image
(Fig. 1) was rotated around fixed axis by a random angle (from full
2p range) and Gaussian noise was added to the rotated image. The
rotation angle was then recovered by both basic and improved ver-
sions of the algorithm and an absolute difference between the esti-
mated and the original angle was measured as an estimation error.
We generated many random angles for each level of noise with a
new instance of noise for each measurement. Fig. 3a shows aver-
aged errors over all measurements for each level of noise. Fig. 2
shows slice of MRI volume affected by �30 dB noise.

The second part of this experiment was similar but instead of
adding noise we shifted the rotation axis in a random direction.
Hence, the algorithms were estimated rotation around different
axes than when the image was originally rotated (note that these



Fig. 2. BrainWeb image affected by noise of �30 dB. Such image pair is registered
successfully by both basic and improved versions of the method. (In the image,
noise is thresholded to fit in the range of h0;255i.)

Fig. 4. Real MRI brain image. Volume size is 128� 128� 40 with 1:8� 1:8�
4:58 mm spacing.
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algorithms may not recover original rotation axis). Fig. 3b shows
dependency of rotation angle error on the distance of the axis shift
(again, the error was averaged over many measurements for each
shift distance).

Algorithms proved extreme robustness with respect to noise.
This can be explained due to the averaging nature of the PCM:
we search for a single peak (ideally delta function) in a correlation
surface which is a result of an inverse DFT of frequency spectra
combined from the two images. The single peak is a kind-of-aver-
age (linear combination) of all frequency samples that are affected
by the same noise as spatial samples of the original images. The
variance of noise is reduced by averaging, hence, thanks to the
large number of samples of 3D volume, the error of estimated rota-
tion angle is low even for extreme noise.

If the rotation axis is shifted during rotation estimation, the
algorithms were able to recover the angle as long as some struc-
tures in the data match. In both parts of the experiment, there is
a clearly observable positive effect of the improvements given in
Section 3.2. The effect of noise as well as the effect of disturbances
is reduced between the two images (shifting the axis affects mainly
the area near the rotation axis which causes most problems in the
basic version of the algorithm). Hence, an improved algorithm is
recommended and used in further experiments in this paper.

4.2. 3D rigid registration performance

Next, we aim to study the influence of initial misregistration le-
vel on the rigid body registration result and the number of itera-
−45−40−35−30−25−20
0

10

20

30

40

50

M
ea

n 
Er

ro
r [

D
eg

]

SNR

Improved
Basic

a

Fig. 3. Influence of noise and axis error on rotation estimation. The BrainWeb image is ro
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tions needed to converge the algorithm. We use CPCM to register
a randomly rotated and shifted real MRI brain image (Fig. 4) with
the original. The degree of misregistration as well as the registra-
tion error is measured by a fixed set of eight points that uniformly
sample the reference image’s volume. The error (or misregistra-
tion) is then measured as a mean Euclidean distance of these
points in moving image to their original counterparts in reference
image. This could be understood as a mean distance of every point
of a volume to its transformed counterpart.

We continuously generated random transforms, so that there
was at least one hundred different transforms for each 1 mm level
of initial misregistration. For each misregistration level, the results
are the mean values over all transforms that introduced misregis-
tration of that level. The graph in Fig. 5a shows two alternative
views of the results. First, we filtered only those results that suc-
cessfully converged under some reasonable error (here 10 mm – ex-
plained below). Then the graph also plots values that include all
results. Fig. 5b shows the statistics of three kinds of failures:

1. The method converged (e.g. stopped automatically) but the
final error was larger than the initial misregistration (the align-
ment was downgraded).

2. The method reached the iteration limit (120 iterations) before it
was able to reduce the misregistration below 10 mm.

3. None of the two cases but the final misregistration error was
still larger than 10 mm (the method got trapped in the local
solution).

The results can be interpreted in the following fashion: until
misregistration is about 100 mm, the method converges to the pix-
el-level precision with at least 90% reliability and the number of
iterations (i.e. time) behaves approximately logarithmic to the mis-
registration. As misregistration grows over 100 mm (which is
approximately the radius of the volume), the failure rate increases
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Table 3
Success rate of the methods. All methods were executed on the same inputs. First
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and the method’s performance decreases mainly due to cases in
which the method converged to some false position. We should
point out that these results and trends do not depend on the spe-
cific value of reasonable error mentioned above. We use the value of
10 mm that is one order higher than the pixel size and is still rea-
sonably small, but we could use values 5–45 mm without any sig-
nificant effect on the graphs.

4.3. Axes selection influence

As stated in Section 3.3, we make no presumption about the
data content and position so that the choice of the axis set is arbi-
trary. In this experiment we will show if the results of the method
change with the selection of a different axes set.

First we took the real MRI brain image (Fig. 4), rotated it around
the axis crossing points [0,0,0] and [1,1,1] by an angle a and
shifted it in direction of x-axis by d millimetres. Then the original
image and the transformed copy were rotated by a random rota-
tion around a centre of the original image to reorient the pair with
respect to x, y and z axes.
Table 1
Mean registration error with respect to various axes sets. One thousand random axes
setups were generated for each configuration of original and transformed image.

a-d Total mean error before/after registration

10� – 30 mm 32.0 mm/2.0 mm
25� – 20 mm 36.4 mm/5.0 mm

Table 2
Reference methods. The implementations are taken from ITK toolkit, the meanings of the

Abbreviation Description

General parameters Dimensions of parametric space of rigid body trans
rotation parameters must be scaled relatively to tr
(step of 1 radian has different effects than step of 1

POW Powell’s direction set optimization of correlation o
Represents similar type of optimization (alternatin
same metric

MSE Regular step gradient descent minimization of mea
known and widely used type of optimization of a m
modality registration

MI Regular step gradient ascent maximization of Matt
Usual state-of-the-art method for multi-modality r
Table 1 contains the results of the experiment. By changing the
axes set the optimization procedure takes a different route through
the parameter space and is therefore exposed to different local ex-
tremes. By choosing a different axes set the method may reach dif-
ferent results in the individual case and may even fail. But the
overall performance over many cases complies with the results
presented in other experiments.

4.4. Comparison to reference methods

The fourth experiment is intended to compare the new method
with some classical as well as similar methods. We would like to
compare the performance and robustness of the methods under
various input conditions. Implementations of all reference meth-
ods are taken from Insight toolkit and any details on the methods
and parameters can be found in Ibanez et al. (2005) and in public
source codes of the toolkit.
parameters can be found in ITK Software Guide (Ibanez et al., 2005).

Parameters

form corresponding to
anslation parameters

mm)

Rotation step = 1/200 rad
Translation scale = 1 mm maximum
Iterations = 600

f whitened images.
g optimization) of the

Step length = 0.02
Step tolerance = 0.001

n squared error. A well-
etric usual for single-

Maximum step = 0.2
Minimum step = 0.01
Relaxation factor = 0.6

es mutual information.
egistration

Maximum step = 0.2
Minimum step = 0.01
Relaxation factor = 0.5
# Of histogram bins = 50
# Of spatial samples = 105

column displays the misregistration level: X–Y denotes rotation by X degrees around
random axis and shift by Y millimetres in random direction.

CPCM (%) POW (%) MSE (%) MI (%)

5� – 5 mm 100.0 85.7 100.0 100.0
15� – 35 mm 97.7 3.3 100.0 100.0
60� – 80 mm 97.3 0.0 76.0 33.7
120� – 100 mm 89.7 0.0 35.7 1.3
5� – 80 mm 100.0 0.0 94.3 62.3
60� – 5 mm 90.3 0.3 100.0 87.9
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Table 2 lists reference methods along with the parameters. Tun-
ing parameters of these methods to ensure fast, robust and accu-
rate convergence is a very delicate task. A rather loose setting
was selected to cover wider range of inputs and conditions. CPCM
is not included in the table as it is described in the text and re-
quires no parameters.

All methods are executed on the same inputs. MRI brain image
(Fig. 4) is rotated by a fixed angle around random axis (crossing cen-
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Fig. 6. Averaged successful runs. Graphs show how the misregistration is decreased in ti
Values are averaged over 300 instances with random rotation axis and shift direction. Pe
precision as expected.

Fig. 7. SPECT brain image set (medial transversal slices). Volume size

Fig. 8. Real registration result (medial transversal slice of first SPECT image overlaid by
position before registration and second row shows the registration result. The contours
tre of the volume) and then shifted in a random direction by fixed
distance. We selected a set of six combinations of fixed rotation an-
gle and shift distance. The first four combinations represent increas-
ing misregistration in both rotation and translation. The fifth
combination is a large shift with a small rotation and the last is a
small shift with a large rotation. Many (300) instances for each fixed
combination are evaluated in the same way as in the previous exper-
iment, each time with new random axis and shift direction.
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are generated as isocountors.



Table 4
Execution times in SPECT registration task. First column corresponds to registration of
second image to first image, and so on.

1–2 1–3 1–4

CPCM (s) 14.0 14.0 13.0
MI (s) 20.7 9.9 15.7
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Table 3 shows success rates of all methods. The successful run
of a method is defined in the same way as in the previous exper-
iment: the misregistration is decreased below 10 mm. We can
see that the success rate of all methods decreases with increasing
misregistration but CPCM is affected at least. The low success
rate of POW method is caused mainly by low spatial correlation
of whitened images. The lower success rate of MI than that of
MSE is caused by a limited number of samples from which the
mutual information is computed. On the other hand, further re-
sults show that the implementation and setting of MI method
ensures much faster convergence in successful runs than that
of MSE.

Fig. 6 contains graphs of averaged successful runs of all methods
on (a) small and (b) large initial misregistrations. CPCM rapidly de-
creases misregistration at the early phase of the optimization and
then reaches result with lower speed and pixel-level resolution
(note that the presented method is not supposed to work with
sub-pixel precision). Gradient methods reduce most of the misreg-
istration at the final phase of the optimization and reach subpixel
accuracy, but with significantly smaller success rate. Selected
implementation of MI runs faster than that of MSE but has smaller
success rate. POW method was included just to illustrate a similar
type of optimization and has a very low performance to be used in
practice.

4.5. Real experiment

Finally, we employed CPCM in a real registration task. Fig. 7
shows a series of four SPECT brain images of a single patient which
differ from each other by the acquisition time and state of the sub-
ject. The set consists of pre- and post-treatment images of a single
patient who suffered a stroke, acquired in normal state and under
pharmacological load. Our goal was to co-register all volumes. For
the purposes of this experiment, we decided to register the last
three volumes to the first one. We also compared the results and
execution times with the MI method.

Fig. 8 shows the position of reference and moving volumes be-
fore and after registration. The result conforms to the previous
experiments: after registration, volumes are still slightly misregis-
tered, as CPCM is able to reach only pixel-level precision. MI meth-
od was able to reach higher (subpixel) precision but in mostly
higher time (Table 4).
5. Conclusion

We presented a new image registration algorithm that is able to
align geometrically mutually translated and rotated pairs of 3D
images. The method iteratively recovers the translational compo-
nent of misalignment by PCM and rotational component of mis-
alignment by applying PCM on cylindrically mapped images.

The method’s performance was examined in several experi-
ments and compared to several reference methods. CPCM shows
very low sensitivity to noise and is able to rapidly reduce even a
large initial misalignment, which is a common limitation, for
example, for methods based on Mutual information. On the other
hand, the current method is able to register images only with pix-
el-level precision. Employment of CPCM in various applications is
eased by absence of any parameters which often decrease applica-
bility and universality of other methods. CPCM can also be easily
parallelized for multi-core and multi-processor machines and
accelerated by hardware implementation of FFT.

We also considered a direct extension of the method for the
subpixel precision by applying one of the subpixel solutions pub-
lished by other authors. There are several problems and complica-
tions with such solution so we decided to keep this presentation of
the main method and the principle as clear as possible and we left
the detailed study of the subpixel possibilities for the future. The
main complications are the stability of most of the methods (low
stability leads to bad termination criteria) or their computational
complexity, also the subpixel resolution is not required in all appli-
cations. A good and powerful solution would be to use CPCM in
combination with some gradient method to fine-tune the result
of CPCM to subpixel precision or to use one of the subpixel modi-
fications of phase correlation for the last iteration. Another
improvement might be an intelligent selection of the axes set at
the beginning or even during the optimization, for example by
detecting the main rotation axis from the data and/or the actual
intermediate transform.

These properties nominate CPCM mainly for single-modality,
intra-subject 3D registration tasks. It can also be used in ap-
proaches that approximate the non-rigid motion by piece-wise ri-
gid motions (e.g. Walimbe and Shekhar, 2006). Although the
experiments were run only on a small set of data, the
method’s behaviour was very stable, which is promising for its
usage for large variety of data even outside medical image analysis
area.
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