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Abstract: The objective of this paper is to propose a systematic approach to decentralized
stabilization with sampled-data delayed feedback for basic models of networked continuous-time
complex systems. Single-packet transmissions and multiple-packet transmissions are considered
for the I/O-oriented systems as well as the interconnected systems with disjoint structure of
subsystems and their interconnections. The Liapunov-Razumikhin based method is used. An
attention is focused on the effect of data-packet dropout and communication delays between
the plant and the controller to design stabilizing decentralized controllers. It is shown how this
methodology can lead to a decentralized control design with time-varying delays in the input.
For such a purpose, a delay-dependent approach is considered in order to obtain decentralized
controllers asymptotically stabilizing closed-loop networked control systems.
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INTRODUCTION

Networked control systems (NCS) are spatially distributed
dynamic systems in which communication between plants,
sensors, actuators, and controllers is performed through a
shared band-limited digital network. Networks are used
as a medium to connect elements of the systems. Such a
medium brings new functionalities that were not available
in the past such as essential reduction of wiring costs and
maintenance. The traditional point-to-point architectures
are being replaced by those based on serial communication
channels and a low price microprocessors which are used as
controllers. Due to permanently increasing complexity of
recent large scale systems, there has been recognized grow-
ing importance of the interconnections and a renewed em-
phasis on distributed/decentralized control architectures
considered within the communication issues. A variety
of models, structures, and feedback control architectures
have been analyzed and synthesized in this framework.
The most important issues in NCS such as delay and
packet dropouts have been incorporated in the centralized
NCS design by several approaches.
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Decentralized design schemes result from a division of
the overall design problem into subproblems that can be
solved independently so that the solution of subsystem
problems satisfactorily solves the overall system problem.
Decentralized NCS (DNCS) are the control systems with
multiple control stations while transmitting control signals
through a network, i.e. date signals are transmitted to
multiple local controllers in the feedback loop. DNCS
combine the advantages of the centralized NCS and the
decentralized control systems. Such a combination enables
to cut unnecessary wiring, reduce the complexity and
the overall system cost when designing and implementing
control systems. The most important issues in DNCS are
closely related to stability criteria for delayed differential
or difference equations with multiple time-varying delays
and multiple-packet transmissions.

However, it has been recognized that a deep gap still
remains between the areas of decentralized control and
control over networks.

Prior Work

There is not available a unified theory of the NCSs up to
now. Recent surveys on this topic can be found in Hristu-
Varsakelis and Levine [2005], Antsaklis and Tabuada
[2006], and Matveev and Savkin [2009]. Decentralized con-
trol is recently surveyed in the reference Bakule [2008].



Reference Yan et al. [2008] deals with the robust sta-
bility for a class of MIMO continuous-time NCSs with
uncertainties and multiple time-varying delays. Reference
Gupta and Martins [2008] is focused on the determina-
tion of necessary and sufficient conditions for the stabi-
lizability of an unstable time-invariant NCSs in discrete-
time setting without availability of acknowledgements.
References Li [2005] and Li et al. [2008] deal with delay-
dependent asymptotic LMI-based criteria for nominally
linear continuous-time systems with nonlinear and norm-
bounded perturbations and multiple time-varying delays.

Stabilization of NCS with multiple-packet transmission is
considered in Yu et al. [2004]. Both continuous-time and
discrete-time cases are included for the centralized state
feedback controller design by using LMIs. References Wen
and Yang [2009] and Zhu and Yang [2008] are focused
on the state feedback controller design for continuous-
time NCS with multiple-packet transmission. A numerical
procedure to design output feedback NCS is proposed in
Naghshtabrizi and Hespanha [2005], while the reference
Lian et al. [2001] considers the controller design for the
NCS MIMO systems with multiple-time delays. Reference
Wu and Chen [2007] deals with both single- and multiple-
packet transmissions within the notion of stochastic stabil-
ity, while the reference Chen et al. [2009] presents the LMI
type sufficient condition for the mean square asymptotic
stability within multi-packet transmissions.

Recently, the results dealing with the DNCS design meth-
ods are rare. Relevant problems are introduced in Bakule
[2008], Xu and Hespanha [2004]. Decentralized stabiliza-
tion of NCS using periodically time-varying local controller
is presented in Jiang et al. [2008]. References Matveev and
Savkin [2009], Nair et al. [2004],Yüksel and Başar [2007]
consider the DNCS under date rate constraints. Reference
Wei [2008] presents necessary and sufficient conditions
for stability of the two control stations considered within
the DNCS architecture. Reference Bakule and de la Sen
[2009] deals with continuous-time DNCS for a class of
complex composite systems, while the reference Bakule
and de la Sen [2010] extends these results to the resilient
setting. Reference Alessio and Bemporad [2008] presents a
sufficient condition for the closed-loop system asymptotic
stability with decentralized model predictive controller
under packet dropout.

To the authors best knowledge, the problem of decen-
tralized sampled-data feedback for continuous-time lin-
ear complex networked control systems including packet
dropouts and communication delays in the feedback loops
has not been solved up to now.

Outline of the Paper

Sufficient conditions for the DNCS design with a state
stabilizing controller are presented for basic structures
of large scale complex systems. The plant and the con-
troller are connected through a network channel. A net-
work channel is modelled using bounded packet dropouts
and communication delays in the decentralized setting.
Therefore, each local loop is modelled by a local feedback
gain and a local communication channel with a particular
time-varying delay. Information structure constraints is
modelled for continuous-time systems with sampled-data

feedback for the I/O-oriented models and the interaction-
oriented models when considering the disjoint structure
of subsystems and interconnections. It is shown how the
results for centralized multiple-packet transmission and
centralized multiple time-varying delays appearing in the
NCSs can be extended for the DNCSs design.

The paper extends the results from Yu et al. [2004], Yu
et al. [2005], and Zhu and Yang [2008] into the DNCS
setting when considering the delay-dependent LMI based
approach.

1. PROBLEM FORMULATION

2.1 System Description

Consider a continuous-time LTI system described as fol-
lows

ẋ(t) = Ax(t) + Bu(t) x(0) = xo (1)

where x(t) and u(t) are n-, m-dimensional vectors of the
system states and control inputs, respectively.

Assumption 1. The pair (A,B) is stabilizable. A and B are
constant matrices of appropriate dimensions.

Assumption 2. The matrix B has a full column rank.

The goal is to find a stabilizing piecewise constant con-
troller for the system (1) in the form

u(t) = Kx(tk) t ∈ [tk, tk+1) k = 1, 2, ...
(2)

where K is a constant gain matrix to be selected, while
tk is a sampling instant. Suppose that tk = k∆ with k
being any positive integer, a sampler with the uniform
sampling period ∆, and a standard zero order hold in
the feedback loop. The basic structure of the closed-
loop system considers the continuous-time system with a
sampled feedback. Such a structure enables to interpret
the connection of the controller with the system via
a communication channel. The sampled value x(tk) is
transmitted through a network channel and, if transmitted
correctly, it is registered in a buffer. x(tk) denotes the
output from the buffer. This value is the input to the
controller. It generates the proper control action.

Since a NCS operates over a network, data transfer be-
tween the controller and the remote plant induce network
delays as well as the controller processing delay. There-
fore, the basic properties of a network channel must be
respected when transmitting the signal. In this paper, two
essential phenomena appearing in network communication
channels are modelled: Data packet dropout and time-
varying input delays.

Data packet dropout is a well-known essential feature of
network in the feedback loop. The quantity of dropped
packets is cumulated from the last update at the time
tk. Denoting some sampling interval-dependent integer
dk ≥ 1 at time tk, then the output from the buffer yields
x(tk) = x(tk − dk∆).

Suppose that the resulting input time-varying delay con-
sists of the constant communication delay denoted as dc

and the delay caused by data packet dropout dk∆. The



input of the controller is x(tk) = x(tk − dk∆ − dc). K is
the controller matrix to be determined.

Denote the time-varying delay d(t) = t − tk − dk∆ − dc,
where 1 ≤ dk ≤ (tk−1 − dc)/∆.

Assumption 3. The number of packet dropouts is bounded
so that it satisfies the constraint

0 < d(t) ≤ d (3)

where d is a given positive constant.

Assumption 4. Acknowledgment ACK about data losses is
always available to the sender of the system.

Consider now the closed-loop overall system (1)–(2) satis-
fying Assumptions 1-4 as follows

ẋ(t) = Ax(t) + BKx(t− d(t))

x(to) = Φk(to) to ∈ [−d, 0]
(4)

where Φk(to) denotes the function of initial condition for
the corresponding time instant.

2.2 The Problem

Consider the system (1) and the controller (2) satisfying
Assumptions 1-4. The goal is to design the gain matrix
K of the state controller (2) being globally asymptotically
stabilizing the closed-loop system (4) when considering a
decentralized setting of the DNCS design. Consider the
following particular cases:

- DNCS design within a single-packet transmission

- DNCS design for the I/O-oriented systems within a
multiple-packet transmission

- DNCS design for the interconnected systems within a
multiple-packet transmission

Solve the problem by using the linear matrix inequalities
(LMI) approach.

Remark 1. The control design for the system (1) with the
controller (2) leads to the system (4) with a time-varying
delay. Such a controller design requires delay-dependent
approach. In principle, the Liapunov-Krasovski and the
Liapunov-Razumikhin methods can be used. We select the
Liapunov-Razumikhin approach which does not require
any restriction on the time derivative. The paper is focused
on a systematic presentation of the DNCS design for large
scale systems.

2. MAIN RESULTS

Consider the information structure constraints on only two
local controllers. An extension to more local controllers is
straightforward for all included cases.

3.1 Stabilization of DNCSs with Single-Packet Transmis-
sion

There are available various scenarios when dealing with
DNCSs. The most simple case is to consider only block
diagonal controller in the closed-loop control system with a

single packet transmission. It means that every control sta-
tion receives only one packet through the network in each
transmission. An equivalent understanding is to consider
such transmission as multiple data packets transmission
from sensors to control stations through parallel network
channels simultaneously, where each channel corresponds
with a local feedback loop in the DNCS. In general, it leads
to individual time-varying delays in each channel caused
by individual data packet dropouts. In this paper, the
availability of Acknowledgement (ACK) about data losses
to the sender is supposed at each local channel as well as
the communication of ACK among all local channel Kurose
and Rose [2005]. Suppose also implemented communica-
tion logics realizing packet dropouts to all local channels
simultaneously when a data packet dropout appears in any
local channel. Then, only a single identical time-varying
delay can be applied for any channel. It can be consid-
ered as a single communication channel with data packet
dropouts and communication delays connected within a
block diagonal structure of the gain matrix, i.e. the sensor-
actuator pair structure in the NCS.
Theorem 1. Given the system (1) satisfying Assumptions
1-4 and an integer d. Suppose that there exist symmetric
positive definite diagonal matrices M, R1, R2 with (ni ×
ni)−dimensional diagonal blocks, a symmetric positive
definite diagonal matrix Q with (mi × mi)−dimensional
diagonal blocks, and a diagonal matrix N with (mi ×
ni)−diagonal blocks, i = 1, 2 satisfying the following
relations

S1(A) < 0
S2(A) ≤ 0
S3(A) ≤ 0
S4(A) ≤ 0
S5(A) ≤ 0

(5)

where

S1(A) =

(1
d
(MAT + AM + NT BT + BN) BQ

• −Q

)

S2(A) =
(
−M NT BT

• −R2

)

S3(A) =
(
−M NT AT

• −R1

)

S4(A) =
(−Q N
• −M

)

S5(A) = R1 + R2−M

(6)

Then, the system (1) is asymptotically stabilized by the
controller (2), where the gain matrix is given as

K = NM−1 (7)

for the packet dropout d(k) satisfying the interval bounds
0 ≤ d(k) ≤ d

∆ − 1.

3.2 Stabilization of DNCSs with I/O-oriented System

A single channel transmission of data in the feedback loop
of DNCSs is evidently restrictive. Decentralized controller



operates locally, i.e. individual local controllers have local
inputs and they enter to the systems also locally. It means
that when considering communication in the feedback loop
within decentralized structure of controllers, it is desirable
to communicate also locally. It corresponds with a set
of local communications channels operating in parallel.
Supposing that the control in feedback loop at each local
channel is realized by a sampled data approach, then
there exist local dropouts and transmission delays at each
channel. It finally results in the closed-loop system with
multiple delays. The DNCS controller design is considered
by using this approach for unstructured systems in this
subsection.

Instead of the system (1), the I/O-oriented model with two
channels is used in the form

ẋs(t) = Axs(t) +
2∑

i=1

Bsiusi(t) x(0) = xo (8)

where B = (Bs1 Bs2). Note that the notions of the I/O-
oriented model or the multi-channel system are equivalent.
The controller (2) is considered in a decentralized setting
with two local controllers, i.e. for i = 1, 2, as follows
usi(t) = Ksixsi(tk) t ∈ [tk, tk+1) k = 1, 2, ...

(9)

where xs(t) = (xT
s1(t) xT

s2(t))
T and u(t) = (uT

s1(t) uT
s2(t))

T

consist of ni− and mi−dimensional vectors xsi(tk) and
usi(t), respectively. The gain matrix has the form Ks =
diag(Ks1 Ks2).

xs1(tk) and xs2(tk) are transmitted over different channels.
Each channel produces its own data packet dropouts and
delays. Thus, the multiple-channel network is modelled as
a switch. Analogously to the single-packet transmission,
the resulting input time-varying delays consist of the
constant communication delays denoted as dci and the
delays caused by data packet dropout dki∆. The input
of the controllers is xsi(tk) = xsi(tk − dki∆− dci).

Denote the time-varying delays di(t) = t− tk−dki∆−dci,
where 1 ≤ dki ≤ (tk−1 − dci)/∆.

Assumption 5. The number of packet dropouts is bounded
so that it satisfies the constraints

0 < di(t) ≤ d (10)

for i = 1, 2, where d is a given positive constant.

Remark 2. The relation (10) supposes that both channels
have the same upper bound d. Such a simplification does
not restrict the control design.

Therefore, the input to the controller includes two different
delays has the form

xs(tk) =
(

xs1(tk)
xs2(tk)

)
=

(
xs1(t− d1(t))
xs2(t− d2(t))

)

t ∈ [tk, tk+1) k = 1, 2, ...
(11)

Consider now the closed-loop overall system (8)–(11) as
follows

ẋs(t) = Axs(t) + BKsxs(tk)
= Axs(t) + BKsC1xs(t− d1(t))
+ BKsC2xs(t− d2(t))

xs(to) = Φk(to) to ∈ [−d, 0]
(12)

where

C1 =
(

In1 0
0 0

)
C2 =

(
0 0
0 In2

)
(13)

with the block diagonal gain matrix Ks. Φk(to) denotes
the function of initial condition of the corresponding time
instant to.

Assumption 6. Acknowledgment ACK about data losses is
always available to the sender at each local channel of the
system (12).
Theorem 2. Given the system (8) satisfying Assumptions
1, 2, 5, 6, and an integer d. Suppose that there exist sym-
metric positive definite diagonal matrices Ps, T1, T2, T3, T4,
T5, T6 with (ni × ni)−dimensional diagonal blocks, a
symmetric positive definite diagonal matrix X with (mi×
mi)−dimensional diagonal blocks, and a diagonal matrix
Y with (mi × ni)−diagonal blocks, i = 1, 2, satisfying the
following relations

M1(A) = 0
M2(A) ≤ 0
M3(A) ≤ 0
M4(A) ≤ 0
M5(A) ≤ 0
M6(A) ≤ 0
M7(A) ≤ 0
M8(A) ≥ 0
M9(A) ≥ 0

M10(A) ≤ 0

(14)

where

M1(A) = PsB −BX

M2(A) = AT T1A− Ps M3(A) = AT T4A− Ps

M4(A) = T2 − Ps M5(A) = T3 − Ps

M6(A) = T5 − Ps M7(A) = T6 − Ps

M8(A) =
(

Ps CT
1 Y T BT

• Ps

)
M9(A) =

(
Ps CT

2 Y T BT

• Ps

)

M10(A) =




W W1 W1 W1 W2 W2 W2
• −D1 0 0 0 0 0
• • −D2 0 0 0 0
• • • −D3 0 0 0
• • • • −D4 0 0
• • • • • −D5 0
• • • • • • −D6




(15)

and W = PsA + AT Ps + BY C1 + BY C2 + CT
1 Y T BT +

C2Y
T BT + 6d)Ps,W1 = dBY C1, W2 = dBY C2, D1 =

dT1, D2 = dT2, D3 = dT3, D4 = dT4, D5 = dT5, D6 =
dT6. Then, the system (8) is asymptotically stabilized by
the controller (9), where the gain matrix has the form



Ks = Y X−1 (16)

for the packet dropouts satisfying the interval bounds
0 ≤ d1(k) ≤ d

∆ − 1 and 0 ≤ d2(k) ≤ d
∆ − 1.

3.2 Stabilization of DNCSs with Disjoint Subsystems

The I/O-oriented model (8) considers the systems as one
whole. It can be further structured into the subsystems
and the interconnections. Therefore, the interconnection-
oriented model has the form

ẋci(t) = Aixci(t) + Biuci(t) + Aijxcj(t) xi(0) = xoi

i, j = 1, 2
(17)

The relation between the compacted description by (1)
and the system (17) is given as

A =
(

A1 A12

A21 A2

)
= AD + AC (18)

where AD = diag(A1 A2) and B = diag(B1 B2).

Consider the controller (2) in a decentralized setting as

uci(t) = Kcixci(tk) t ∈ [tk, tk+1) k = 1, 2, ...
(19)

where

xc(tk) =
(

xc1(tk)
xc2(tk)

)
=

(
xc1(t− d1(t))
xc2(t− d2(t))

)

t ∈ [tk, tk+1) k = 1, 2, ...
(20)

Then, the closed-loop overall system (17)–(20) has the
form

ẋc(t) = Axc(t) + BKcxc(tk)
= Axc(t) + BKcC1xc(t− d1(t))
+ BKcC2xc(t− d2(t))

xc(to) = Φk(to) to ∈ [−d, 0]
(21)

where

C1 =
(

In1 0
0 0

)
C2 =

(
0 0
0 In2

)
(22)

with the block diagonal gain matrix Kc. Φk(to) denotes
the function of initial condition of the corresponding time
instant to.

The structure of a sampled-data feedback of the system
(17)–(19) remains identical with the structure of feedback
of the I/O-oriented system (8), (9). Therefore, we can
apply directly Assumptions 5 and 6 on the system (21).
It leads to the following theorem.
Theorem 3. Given the system (17) satisfying Assumptions
1, 2, 5, 6, and an integer d. Suppose that there exist sym-
metric positive definite diagonal matrices Pc, Z1, Z2, Z3, Z4,
Z5, Z6 with (ni × ni)−dimensional diagonal blocks, a
symmetric positive definite diagonal matrix U with mi ×
mi−dimensional diagonal blocks, and a diagonal matrix
V with (mi × ni)−diagonal blocks, i = 1, 2, satisfying the
following relations

O1(A) = 0
O2(A) ≤ 0
O3(A) ≤ 0
O4(A) ≤ 0
O5(A) ≤ 0
O6(A) ≤ 0
O7(A) ≤ 0
O8(A) ≥ 0
O9(A) ≥ 0

O10(A) ≤ 0

(23)

where
O1(A) = PcB −BU

O2(A) = AT
DT1AD − Ps O3(A) = AT

DT4AD − Ps

O4(A) = T2 − Ps O5(A) = T3 − Ps

O6(A) = T5 − Ps O7(A) = T6 − Ps

O8(A) =
(

Ps CT
1 Y T BT

• Ps

)
M9(A) =

(
Ps CT

2 Y T BT

• Ps

)

O10(A) =




F F1 F1 F1 F2 F2 F2 F3
• −E1 0 0 0 0 0 0
• • −E2 0 0 0 0 0
• • • −E3 0 0 0 0
• • • • −E4 0 0 0
• • • • • −E5 0 0
• • • • • • −E6 0
• • • • • • • −In




(24)

and F = PcAD + AT
DPs + BV C1 + BV C2 + CT

1 V T BT +
C2V

T BT + 6d)Ps, F1 = dBV C1, F2 = dBV C2, F3 =
PcAC , E1 = dZ1, E2 = dZ2, E3 = dZ3, E4 = dZ4, E5 =
dZ5, E6 = dZ6. Then, the system (17) is asymptotically
stabilized by the controller (19), where the gain matrix has
the form

Kc = V U−1 (25)

for the packet dropouts satisfying the interval bounds
0 ≤ d1(k) ≤ d

∆ − 1 and 0 ≤ d2(k) ≤ d
∆ − 1. It means

that the maximum allowed delay is not larger than the
sampling period.

Remark 3. Theorems 1-3 show how to adapt the results
for single- and multiple-packet transmissions in the de-
centralized control design setting. Proofs of Theorems 1-3
are omitted. The results for the centralized continuous-
time NCS design with sampled-data feedback using the
Liapunov-Razumikhin method are available in Yu et al.
[2005]. The presented Theorems 1-3 can be proved by using
Theorems 1 and 2 in Yu et al. [2005].

Remark 4. Theorems 1-3 are sufficient conditions for the
design of a decentralized state feedback DNCS controller.
A simple extension can be performed for a static output
feedback DNCS controller design when considering any left
upper block of the matrix C1 and any right lower block of
the matrix C2 in (13) or (22).

3. CONCLUSION

In the paper, we have proposed a systematic approach
to decentralized stabilization with a sampled-data delayed
feedback for basic models of networked continuous-time



large scale linear dynamic systems. Three different ar-
chitectures of the DNCS design are presented. A single-
packet channel with a block diagonal controller as well
as multi-packet transmission approaches are applied on
the I/O-oriented systems and the interconnected systems
with disjoint structure of subsystems and interconnections.
The Liapunov-Razumikhin method is used as a method
which requires no restriction on delay derivatives. The
effect of data-packet dropout and communication delays
between the plant and the controller within multiple-
packet transmission methods are considered and directly
included into the controller design. Sufficient conditions
for the asymptotic stabilization of the closed-loop systems
by the proposed decentralized networked controllers are
given. For such a purpose, delay-dependent procedures
have been selected for the design of gain matrices by using
the linear matrix inequalities.
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