
Parallel Estimation Respecting Constraints

of Parametric Models of Cold Rolling

Pavel Ettler ∗ Miroslav Kárný ∗∗
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Abstract:
Model-based predictors and controllers frequently depend on efficient recursive estimation of
model parameters. Similarly often, there are known hard bounds on parameter values. Adaptive
control applied for rolling mills represents a typical example of such case. While common
estimation algorithms are elaborated enough to be utilized in industrial practice, it is difficult to
find implementation of bounded estimation, which is both formally consistent and suitable for
reliable applications. Solution offered in this paper is based on simultaneous run of two or more
proven estimators different in applied process models. Both simulated and real data examples
are provided.
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1. INTRODUCTION

Model-based prediction and control have their firm posi-
tion among advanced control techniques and have been
utilized for demanding industrial adaptive controllers for
decades - see e.g. Ettler (1986) for early application of
an adaptive AGC (Automatic Gauge Control). It can be
based on recursive Bayesian parameter estimation repre-
senting theoretically consistent treatment of uncertainty
– see e.g. Berger (1985). In special case – under the
assumption of normal probability distribution of all pro-
cessed quantities and when restricted to the linear normal
autoregressive model with external variables (ARX) – it
leads to the very efficient and numerically robust algorithm
(see e.g. Bierman (1977)).

Industrial applications often work with a mathematical
model, the structure of which is based, at least to some
extent, on a physical model of the process (so called gray
box modelling, e.g. Bohlin (1991)). Recursive estimation
can track changes of parameter caused either by a real
change of some physical parameter of the process or
compensating imperfect matching of the process and its
model. For unrestricted estimation, parameter estimates
may occur in regions, which are formally correct but
physically unreasonable. Then, especially in the case of an
abrupt change of some physical parameter of the process,
behavior of a corresponding predictor or controller can
become undesirable. Application of constraints to the
parameter estimates could be beneficial in such cases.
Another motivation for avoiding undesirable parameter
estimates has arisen in correspondence with an idea of
model mixing (Ettler and Andrýsek (2007)).

Existence of bounded intervals for acceptable model pa-
rameters can be well respected within Bayesian framework

(Berger (1985)). It suffices to restrict support of their prior
distribution to this range. For recursive use, this possi-
bility has been elaborated in Kárný (1982) for Gaussian
parametric model and in Kárný and Pavelková (2007) for
uniform parametric model. Neither of those solutions has
been established as a practical tool. Thus, it makes sense to
search for a suboptimal solution that preserve key features
of these “clean” solutions. This paper provides such a
solution.

Section 2 summarizes used modelling and estimation ba-
sics, Section 3 outlines the basic idea and a conceptually
simple solution including a simulated example. Solution is
further elaborated in Section 4 to provide more efficient
algorithm. Section 5 compares the solution with a single
bounded estimation. Results for experiments on rolling
mill data are shown in Section 6, preceding concluding
remarks in Section 7.

2. PROCESS MODEL AND PARAMETER
ESTIMATION

At discrete time moment t = 1, 2, . . . ,, the considered
process model relates scalar output y(t) to a finite “in-
fluential” past collected into the regression vector

d(t) = [y(t − 1), . . . , y(t − ty),

u1(t), . . . , u1(t − tu),

v(t), . . . , v(t − tv)]′.

It contains ty samples of past outputs y, tu + 1 sam-
ples of the optional input u and tv + 1 samples of mea-
sured disturbance v. Both inputs and disturbance can
be multidimensional. The stochastic relation is param-
eterized by unknown finite-dimensional parameters Θ(t)



and fully described by probability density function (pdf)
f(y(t)|past,Θ(t)).

2.1 Linear Gaussian ARX parametric model

We assume specifically that the modelled process can be at
least approximately described by a linear auto-regressive
model with external variables (ARX)

y(t) = P ′(t) d(t) + e(t), (1)

where ′ denotes transposition, P (t) is vector of m unknown
parameters

P (t) = [p1(t), p2(t), . . . , pm(t)]′ (2)

and e(t) denotes zero-mean normally distributed noise
with unknown variance r(t). This defines normal ARX
model with unknown parameter Θ(t) = (P (t), r(r)),
i.e., f(y(t)|past,Θ(t)) = normal pdf with expectation
P ′(t) d(t) and variance r(t).

2.2 Bayesian parameter estimation

Parameter estimation is a classical problem addressed
in two main streams: frequentist approach and Bayesian
one. There exists long-lasted controversy between them,
which can hardly be resolved generally. In decision making
tasks, among which prediction and control belong, the
Bayesian direction is to be definitely preferred (DeGroot
(1970); Kárný et al. (2005)) as it guides how to cope with
uncertianties within the finite time. The need to choose a
prior distribution is often taken as the main disadvantage
of the Bayesian approach. At the practical level, however,
its explicit consideration is quite helpful because there is
always a prior knowledge about the inspected technical
problem. Lack of tools of translating prior knowledge into
the prior distribution is the true problem behind. However,
it has been overcome at least for the considered class of
problems (Kárný et al. (2003); O’Hagan et al. (2006)).

A deeper discussion is out of scope of this paper so
that we just state: we adopt the Bayesian paradigm (see
Berger (1985)) that treats unknown parameters as ran-
dom variables. Full information about them is contained
in posterior pdf f(Θ(t)|observed past). It can be shown
(Kárný et al. (2005)) that, for time invariant parameters,
the posterior pdf has a fixed functional (Gauss-inverse-
Wishart) form determined by a symmetric positive definite
(extended) information matrix V (t). By using forgetting
(e.g. Kulhavý and Zarrop (1993)), this form can be pre-
served even for varying parameters.

Propagation of the information matrix V (t) can be for-
mally expressed as

V (t) = λV (t − 1) + [y(t), d(t)]′ [y(t), d(t)], (3)

where λ < 1 is a forgetting factor. This propagation is
formally equivalent with recursive least squares (LS). For

instance, with splitting V =

[

V0,0 v′

v V

]

P̂ (t) = V−1v = LS estimate of P (t).

Note that to ensure numerical stability of the identification
algorithm under all circumstances, propagation of the

information matrix is realized in the form of matrix
factorization of some kind, e.g. V −1 = LDL′ where L,D
are lower triangular and diagonal matrices respectively.

3. BASIC IDEA

For the sake of simplicity, let us omit time indexing in
most of the following notation, so that e.g. P (t)

.
= P and

d(t)
.
= d. We distinguish parameter estimates P̂ , p̂i from

their true but unknown values P, pi.

Let us introduce extreme values p̃i for each estimate p̂i

except for the absolute term p̂m, i.e., i ∈ I ≡ {1, . . . ,m−1}
such that

p̃i =

{

pmin i if p̂i ≤ pmin i

pmax i if p̂i ≥ pmax i
, (4)

where pmin i, pmax i are given parameter minima and max-
ima respectively. Then, having parameter constraints in
mind, omitting the additive noise and using parameter
estimates instead of their unknown values we can rewrite
equation 1 into the form

y −
∑

ir

p̃ir
dir

=
∑

iu

p̂iu
diu

+ p̂m , (5)

where indices ir ∈ Ir ⊆ I correspond to parameters for
which restriction was applied, iu ∈ Iu ⊆ I belong to
unrestricted parameters and it holds ir 6= iu for each ir, iu.

Let us further create so many models as is the number of
J possible combinations of vectors Ir, Iu meeting above-
mentioned conditions. To avoid confusion let us introduce
model numbering and additional indices j = 0, . . . , J for
parameters j p̂iu

while j = 0 stands for the original (full)
model. Thus for the j-th model we get

y −

j
∑

ir

p̃ir
dir

=
∑

iu

j p̂iu

diu
+ j p̂m , (6)

Note that p̃ir
are constants and therefore for a limitary

case when Ir ≡ I and Iu is an empty vector, parameter
p̂m remains the only variable allowing to preserve equality
of (6).

Basic identification algorithm can be described as follows:

- Initialize J recursive estimators and let them run in
parallel;

- For each estimation step
(1) Compute parameter estimates for each estimator;
(2) Set j = 0 and pre-select estimates of the full

model as the estimation output, i.e. P̂ = 0P̂ ;
(3) If the estimates P̂ lie inside bounds provide them

as the estimation output and wait for the next
step;

(4) Otherwise set j to the estimator for which the
restricted parameters occur on the left hand side
of (6), compose the estimation output P̂ from j p̃ir

and j p̂iu

and go to the estimation step (3).

3.1 Illustrative Example

To illustrate the idea let us consider a simple model with
three parameters



y(t) = [−0.9,−0.8, 1]

[

y(t − 1) + c
u(t − 1)
1

]

+ e(t), (7)

for which t ∈ {1, . . . , tn}, tn = 5000, e(t) is a zero-mean
normally distributed noise with variance r = 0.1 and c is
a term representing an abrupt change of process behavior
for time t > tn/3

c =

{

0 if t ≤ tn/3
5 otherwise

(8)

u(t) is randomly generated, normally distributed sequence
of process input. Output of the simulated system can be
seen in Fig. 1.
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Simulated system: output

Fig. 1. Illustrative example: system output y. Abrupt
change in the process behavior can be observed.

For the model with three parameters m = 3 we get a set
of J = 4 model equations

model 0 : y = 0p̂1 d1 + 0p̂2 d2 + 0p̂3 d3

model 1 : y − p̃1 d1 = 1p̂2 d2 + 1p̂3 d3

model 2 : y − p̃2 d2 = 2p̂1 d1 + 2p̂3 d3

model 3 : y − p̃1 d1 − p̃2 d2 = 3p̂3 d3

Let us define parameter boundaries

pmin 1 = −1.00 pmax 1 = −0.888
pmin 2 = −0.82 pmax 2 = −0.797

(9)

Fig. 2 shows time progress of restricted and unrestricted
parameter estimates (thick and thin lines respectively).
Constraints for parameters p̂1, p̂2 were set close to their
true values, which forced the algorithm to project the
whole change of the process behavior into the change of
the absolute term - parameter p̂3. Such smooth transient
to a new equilibrium could be hardly achieved by plain
tuning of a single estimator.

For this special simulated case the process and its model
match exactly and the constraints could be set closely to
their true values. This resulted in improvement of the out-
put prediction ŷ against 0ŷ as can bee seen on comparison
of prediction errors in Fig. 3. Decrease of the prediction
error is generally not expected for real processes, reason-
able behavior of parameter estimates remains as the main
criterion instead.

4. ELABORATING THE SOLUTION

Utilization of J parallel estimators is technically simple
but it is connected with two drawbacks:

- Number of estimators can be too high for systems
with more parameters. This is not the main obstacle
for applications in industry as the models have rarely
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Fig. 2. Illustrative example: estimated parameters. Thick
line corresponds to restricted parameter estimates p̂i

while the thin line stands for unrestricted estimates
0p̂i of the full estimator.
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Fig. 3. Illustrative example: application of parameter con-
straints helped to minimize prediction error for this
special simulated case. Situations for unrestricted and
bounded estimations are shown respectively.

more than five parameters and nowadays industrial
computers are powerful enough.

- Trajectories of relevant parameter estimates of par-
ticular estimators can differ significantly for real situ-
ations. Then, switching among models due to applica-
tion of constraints could result in excessive changes in
parameters in some cases. This might cause problems
for time-delayed systems.

The latter drawback motivates us for further considera-
tions. Evaluation of the full model estimation is obviously
needful. However, the estimators, which are currently not
selected to provide active estimates, are running uselessly
for the given estimation step. Modification of the basic
idea now consists in reduction of number of concurrently
running estimators to two: the full one and the estimator
the model of which reflects actual need for parameter re-
striction(s). Then the problem can be narrowed to proper
initialization of the estimator, which was selected to be
started.



Initialization of an estimator consists in proper initial
setting of its information matrix V . To do that we can
extract relevant elements from 0V of the full estimator to
initialize smaller matrix jV of the estimator, which was
selected to be started in current step. Note that we speak
here about the matrix V for the sake of simplicity while
its factorized form is used in a real application instead.

As an example let us consider the system with three
parameters again. Let us assume that for the current step
two estimators should be active:

model 0 : y = 0p̂1 d1+
0p̂2 d2+

0p̂3 d3

model 1 : y − p̃1 d1 = 1p̂2 d2+
1p̂3 d3

(10)

Estimator 0 has been already running while estimator 1
was newly selected and has to be initialized. We choose
appropriate elements of the matrix 0V to initialize 1V :

0V 0,0
0V 0,1

0V 1,1
0V 0,2

0V 1,2
0V 2,2

0V 0,3
0V 1,3

0V 2,3
0V 3,3

⇓

0V 0,0

− − 1V 0,0
0V 0,2 − 0V 2,2 ⇒ 1V 0,1

1V 1,1
0V 0,3 − 0V 2,3

0V 3,3
1V 0,2

1V 1,2
1V 2,2

(11)

Modified algorithm can be summarized as follows:

- Initialize basic recursive full estimator and start its
run;

- For each estimation step:
(1) Compute parameter estimates for full estimator

and for a second estimator j if it is activated;
(2) Pre-select estimates of selected model for estima-

tion output, i.e. P̂ = 0P̂ or P̂ = jP̂ ;
(3) If the estimates P̂ lie inside bounds provide them

as estimation output and wait for the next step;
(4) Otherwise set j for (possibly another) estimator

according to applied parameter constraints. If

the selected estimator was inactive in preceding
step initialize its jV based on the information
matrix of the estimator whose estimates were
used last time;

(5) Execute the j-th estimator and set P̂ = jP̂ and
go to estimation step (3).

Results of the modified algorithm are very similar to
the basic algorithm when tested on the above-introduced
simulated system – see Fig. 2.

5. COMPARISON WITH SINGLE ESTIMATION
WITH APPLIED CONSTRAINTS

The proposed algorithm allows to cope with constraints
applied to relatively abruptly changing parameters. In real
systems it may also happen that parameters vary very
slowly and estimates reach the bounds due to random
drifts of the mode of the posterior situation. This case
was inspected in Kárný (1982), showing that time evo-
lution of the extended information is to be completely

uninfluenced by presence of bounds. The point estimate
of regression coefficients is just found as the maximizer of
the posterior pdf over the set given by constraints. The
resulting estimate is used in prediction but it is not fed
into subsequent data updating. Algorithmically, a simple
quadratic programming is solved.

This variant is considered here for comparison with the
proposed algorithm as it is a priori unclear, which of
the reasons of crossing the constraints is decisive. Fig. 4
compares both approaches on our testing example. Pa-
rameter estimates for the single bounded estimation are
depicted as S p̂i. While S p̂1 and 0p̂1 are almost equal and
are not plotted here, S p̂2 and S p̂3 are less favourable than
corresponding estimates from the proposed estimation al-
gorithm.
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Fig. 4. Comparison of the second and third parameter
estimates for single and parallel bounded estimations
(thin and thick lines respectively).

6. EXPERIMENTS ON ROLLING MILL DATA

The modified algorithm was tested on real data from a re-
versing cold rolling mill. We selected two simplified models
from the variety of models, which are being employed in
the field of automatic gauge control. For both examples
the system output was represented by deviation of the
output strip thickness h2. Process time is now derived from
movement of the processed strip with distance between
adjacent samples 0.08 m.

6.1 Real example I

Let us explore how the parameter estimation copes with
the situation when the thickness measurement is tem-
porarily deteriorated by the strip jittering – see Fig. 5.
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Fig. 5. Real system output – deviation of the output
strip thickness h2 measured on a cold rolling mill.
Increased deviation was caused by inaccurate contact
measurement of a jittering strip.



Let us consider a simplified model coming from the well
known gaugemeter principle (see e.g. Ettler and Andrýsek
(2007) for details) the regression vector of which has the
form

d(t) = [z, f(F ), 1]′ , (12)

where z stands for the uncompensated rolling gap and
f(F ) denotes a function of the rolling force.

Parameter boundaries were set to
pmin 1 = −1.00 pmax 1 = −0.02
pmin 2 = −100.00 pmax 2 = 0.00

(13)

Estimation results can be seen in Fig. 6. Problems with
measurement of the output caused the first unrestricted
parameter (thin line) to change its sign, which is phys-
ically inadmissible. Constraint applied by the restricted
estimation (thick line) kept the negative sign of the first
parameter influencing harmlessly time progress of the sec-
ond parameter.
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Real system: estimated parameters
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Fig. 6. Estimated parameters for the real system. Thick
line corresponds to restricted parameter estimates p̂i

while the thin line stands for unrestricted estimates
0p̂i of the full estimator.

6.2 Real example II

Another example depicts the situation when three metal
strips were welded together to make processing on a rolling
mill more effective. Particular strip parts can have slightly
different physical properties, which should be reflected by
changes of parameter estimates. However, measurement
peaks caused by the welds – see Fig. 7 – can induce
undesirable behavior of parameter estimates.

Let us consider another simplified model based for this
one on the so called mass-flow principle (see e.g. Ettler
and Andrýsek (2007) again) the regression vector of which
has the form

d(t) = [vr h1, vr, 1]′ , (14)

where h1 stands for deviation of the input strip thickness
and vr denotes ratio of input and output strip speeds
vr = v1/v2 < 1.
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Fig. 7. Real system output – deviation of the output strip
thickness h2 measured on a cold rolling mill. Distinct
peaks are caused by welds between adjacent metal
strips.

Parameter boundaries were set to

pmin 1 = 0.01 pmax 1 = 0.5
pmin 2 = 0.00 pmax 2 = 1500.0

(15)

Estimation results can be seen in Fig. 8. For the first
part of the strip the first unrestricted parameter (thin
line) tends to change its sign, which should be avoided.
To the contrary, measurement peaks caused 0p̂

1
to exceed

the upper boundary. Thanks to the restricted estimation
(thick line) undesirable effects were acceptably transferred
to the second and third parameters.
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Real system: estimated parameters
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Fig. 8. Estimated parameters for the real system. Thick
line corresponds to restricted parameter estimates p̂i

while the thin line stands for unrestricted estimates
0p̂i of the full estimator.

7. CONCLUSION

The paper introduced two algorithms for bounded param-
eter estimation the latter of which is considered to be
more suitable for industrial applications such as thickness
control for cold rolling mills. Simulated and real data
examples outlined potential benefits of algorithms.

There still remains a potential drawback of the latter
algorithms the main idea of which lies in discontinuous
execution of an alternative estimator. While the initializa-
tion of its information matrix is straightforward, switching
back to the full estimator might cause abrupt change of
parameters in some special case. Formal solution implies



modification of the 0V matrix of the full estimator when
the alternative estimator is being switched off. This re-
mains as a motivation for future research.
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Kárný, M., Nedoma, P., Khailova, N., and Pavelková, L.
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