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Abstract— Any systematic decision-making design selects a
decision strategy that makes the resulting closed-loop behaviour
close to the desired one. Fully Probabilistic Design (FPD)
describes modelled and desired closed-loop behaviours via
their distributions. The designed strategy is a minimiser of
Kullback-Leibler divergence of these distributions. FPD: i)
unifies modelling and aim-expressing languages; ii) directly
describes multiple aims and constraints; iii) simplifies an
(inevitable) approximate design as it has an explicit minimiser.

The paper enriches the theory of FPD, in particular, it: i)
improves its axiomatic basis; ii) quantitatively relates FPD to
standard Bayesian decision making showing that the set of FPD
tasks is a dense extension of Bayesian problem formulations; iii)
opens a way to a systematic data-based preference elicitation,
i.e., quantitative expression of decision-making aims.

I. INTRODUCTION

A systematic choice of the optimal decision strategies,
mapping available knowledge on optional actions influencing
a World’s part, is the common topic of decision-making [1],
[2] and control communities [3]. CDC is one of still rare
events where these communities meet and are aware that
they address essentially the same problem. The paper uses
a terminology closer to dynamic statistical Decision Making
(DM) but stresses closed loop as the central notion of control
theory. The paper further develops Fully Probabilistic Design
(FPD) of DM strategies, in particular, it
• makes the axiomatic basis of FPD more firm comparing

to the preliminary version published in [4];
• enhances the application potential of FPD by explicitly

relating it to the standard Bayesian DM;
• provides a variant of FPD that opens a way to quantitative,

data-based, elicitation of DM preferences.
The decision strategy influences the joint distribution of

variables in the optimised closed loop. The standard Bayesian
design selects the strategy minimising expectation of the
performance index expressing DM preferences, e.g., [2]. The
discussed FPD, [5], [6], [7], chooses the strategy that makes
the joint distribution of the closed-loop variables as close as
possible the ideal distribution expressing DM preferences.
FPD features motivating its development are:
• The ideal distribution well respects constraints and multiple

aims [8], [9].
• FPD possesses an explicit minimiser in (minimisation,

expectation)-pairs forming the DM design [3], which sim-
plifies an (almost always) inevitable approximate design.
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• Probabilities describe both models and decision aims.
Consequently, knowledge elicitation methods [10] can be
applied to the important and underdeveloped domain of
the preference elicitation, i.e., quantitative expression of
DM aims. Moreover, this expression reflects deterministic
and non-deterministic properties of the closed DM loop.
Section II reviews DM theory exemplifying conditions

leading to FPD. Section III: i) maps the standard Bayesian
design on FPD; ii) opens a way to data-based learning of
the ideal distribution; iii) indicates how this learning is to be
prepared. Section IV provides concluding remarks.

Throughout, ≡ is defining equality. X? denotes a set of
Xs with X being parameter, strategy, uncertainty, etc. X?

denotes a subset of X?. Sans serif fonts denote mappings.
Subscripts i, j , k distinguish different elements of an

inspected set. The symbol ≺ denotes a strict ordering of set.
The distinction between various orderings is obvious from
the nature of compared elements.

II. DECISION MAKING UNDER UNCERTAINTY

Decision making works with sequences X ≡ (Xt)t∈t?
labelled by discrete-time moments, t ∈ t? ≡ {1, . . . , h}, at
which actions are taken. h <∞ is a given decision horizon.

DM consists of the selection and application of DM
strategy, i.e., a sequence of mappings S ≡ (St)t∈t? . It is
formed by decision rules St, t ∈ t?. A strategy maps a
knowledge sequence K ≡ (Kt)h+1

t=0 on an action sequence
A ≡ (At)t∈t? ∈ A? 6= ∅. Actions describe or influence
environment, the World’s part of interest.

The coupling of the strategy and the environment forms a
closed loop. Its behaviour B ∈ B? 6= ∅ is identified with all
variables observed, opted or considered in the closed loop.
The set of admissible strategies S? is formed by a sequence
of decision rules that are causal from information view point,
i.e., St(K) = St(Kt). The strategy S is selected from a set
of compared strategies S? 6= ∅, which is usually a proper
subset of admissible strategies S? ( S?.

The processed knowledge sequence K ∈ K? is assumed
to be non-shrinking, i.e., the knowledge Kt is extended
by observations ∆t ∈ ∆?

t ≡ K?
t+1 \ K?

t , t ∈ t?. By its
definition, the behaviour contains, among others, opted and
observed data Dt ≡ (At,∆t), t ∈ t?. The knowledge Kt,
available at time t for choosing the action At, coincides with
(D1, . . . , Dt−1) enriched by K0 containing prior knowledge.

A. Numerical Representation of Orderings in DM

The addressed DM theory converts DM design, i.e., the
selection of the used DM strategy, into an optimisation prob-



lem that respects the encountered uncertainty and incomplete
knowledge. The design aims to select a strategy that induces
the best possible behaviour with respect to (wrt) a user-
specified preference ordering ≺

Bi ≺ Bj ⇔ behaviour Bi is strictly preferred against Bj .

This ordering, relating pairs Bi, Bj ∈ B?, can be made strict
by identifying behaviours felt as equally preferred. Then, the
relation ≺ is irreflexive, ¬(Bi ≺ Bi) and asymmetric, Bi ≺
Bj ⇒ ¬ (Bj ≺ Bi). Nontrivial DM arises for non-empty
≺. The ordering ≺ is assumed to be internally consistent
(transitive) (Bi ≺ Bj ∧Bj ≺ Bk)⇒ (Bi ≺ Bk).

Generally, the user supplying ≺ is unable to compare all
behaviours, ≺ is a partial ordering. There is, however, a
multitude of complete orderings extending the given partial
ordering ≺. Further on, such complete ordering, denoted
also ≺, is considered. The preference elicitation discussed
in Section III essentially counteracts its non-uniqueness.

For the optimisation-based design, the preference order-
ings have to be represented numerically. Proposition 1 (see
below) delimits a widely acceptable condition under which
such a representation exists. It can be found, for instance, in
[11] and needs the notion of topology basis.

Let a strict complete ordering ≺ be specified on B? 6=
∅. Pairs Bi, Bj ∈ B? define open intervals (Bi, Bj) ≡
{B ∈ B? : Bi ≺ B ≺ Bj}. The open-interval topology B on
B? is formed by sets ∅ and B? complemented by unions of
an arbitrary number of open intervals and by intersections of
a finite number of open intervals. A basis of the topology B
is its subset fulfilling: i) any B ∈ B? belongs to a member
of the topology B; ii) if B ∈ B? belongs to an intersection
of a pair of B-members then there is a topology member
contained in the intersection of this pair and containing B.

Proposition 1 (Numerical representation of ordering):
If the set B? 6= ∅ is equipped with a strict complete
ordering ≺ and there is a countable basis of the topology B
generated by open intervals, then, a loss L : B? → (−∞,∞)
representing this ordering ≺ exists, i.e.,

Bi ≺ Bj ⇒ L (Bi) < L (Bj) . (1)
Proof: See [11]

Loosely, a loss exists if the behaviour set is not topologi-
cally richer than the real line. This is supposed further on.

The loss L is non-unique at least due to non-uniqueness
of the extension of the user’s partial preference ordering.

In the considered DM, the used strategy S determines
the behaviour B only partially. To inspect consequences
of a specific choice of S, this non-determinism has to be
modelled. To determine B uniquely, a mapping W acting on
the strategy and an inaccessible uncertainty N ∈ N? 6= ∅

W : (S, N)? → B? (2)

has to be introduced. Pairs (Wi, Ni), (Wj , Nj) providing
the same behaviour are equivalent. Thus, without a loss of
generality, {W(S, ·)}S∈S? can be assumed to be bijective
mappings of N? on B?. The adopted notion of uncertainty
respects also non-uniqueness of the extension of the partial

preference ordering to the complete one: it simply includes
labels of possible extensions into the considered behaviour.

The composition of the mapping W (2) and the loss L (1)
generates the set Z? (3) of functions mapping uncertainty N?

on the real line. They are “indexed” by strategies S ∈ S?.

Z? ≡ {ZS : N? → (−∞,∞) ∃S ∈ S? such that
ZS(N) = L(W(S, N)), ∀N ∈ N?}. (3)

DM has to select and apply a strategy. Thus, it introduces,
possibly implicitly, a complete ordering ≺ on the set of
compared strategies S? 6= ∅. The complete ordering of
strategies introduces the complete ordering of Z ∈ Z? (3)

ZSi
≺ ZSj

⇔ Si ≺ Sj . (4)

Assuming that conditions of Proposition 1 are met if ZS

replaces B, the equivalence (4) implies the existence of the
functional T : Z? → (−∞,∞) such that

Si ≺ Sj ⇒ T(ZSi) < T(ZSj ). (5)

Assuming additivity of T on functions ZS ∈ Z? with non-
overlapping supports and a range of technical, practically
non-restrictive, assumptions (see [12], p. 479, Theorem 5),
the following representation of the functional T exists

T(ZS) =
∫

U(ZS(N), N)µ(dN), (6)

where an appropriately measurable utility U is zero when the
first argument is zero and µ is a probabilistic Borel measure.

The numerical representation of ordering treats the uncer-
tainty, and due to (2), the behaviour as random, which is
the core of the Bayesian DM. Further on, the same identifier
points to a random variable, its value and realisation. A ver-
bal description is used if needed. Also, the rnds having time-
dependent arguments are generally time-dependent functions.

On Z? (3) a partial ordering exists that induces the strict
partial dominance ordering ≺d of strategies S ∈ S?

Si ≺d Sj ⇔ ZSi(N) ≤ ZSj (N), ∀N ∈ N? (7)
∧ ZSi(N) < ZSj (N) on N? ⊂ N?,

where N? has positive measure µ, cf. (6).
Any meaningful ordering of strategies ≺ (4) has to be an

extension of the dominance ordering ≺d in (7). Otherwise,
the strategy Sj in (7) could be selected as the optimal one,
which is obviously the bad choice as the strategy Si leads to
a smaller loss irrespectively of the uncertainty N .

Obviously, the dominance is avoided iff utility U is in-
creasing in its first argument. This is considered further on.

Fundamental theorem of probability ([12], p. 155, Corol-
lary 7) used for a backward substitution corresponding to
(2), (3), expresses the strategy-dependent functional (6) as
the functional on strategy-dependent functions of behaviour

TS(L) ≡ T(ZS) =
∫
B?

U
(
L(B),W−1(S, B)

)
µS(dB). (8)

The resulting measure µS(dB) on σ-algebra of Borel sets in
B? describes the closed loop with the strategy S.



By construction, the most preferred strategy minimises the
functional (8) within the set of compared strategies S?.

The presence of the second argument of the utility U in
(8) generalises the standard Bayesian DM [13]. It allows
scaling of the loss value by the utility in dependence on the
uncertainty. Moreover, it leads to FPD, see Section III-A.

Below, the utility U and the loss L are mostly discussed
together. This allows a simplified notation by introducing and
using the performance index I

I
(
B,W−1(S, B)

)
≡ U

(
L(B),W−1(S, B)

)
. (9)

The optimal (the most preferred) strategy IS?S, for a perfor-
mance index I (9) and compared strategies in S?, is defined

IS?S ∈ Arg min
S∈S?

TS(L) (10)

= Arg min
S∈S?

∫
B?

I
(
B,W−1(S, B)

)
µS(dB).

B. Structuring of DM

The measures {µS}S∈S?
in (10) are assumed to be ab-

solutely continuous wrt a probabilistic measure ν, i.e., for
any measurable subset B? ⊂ B? with ν(B?) = 0 also
µS(B?) = 0, ∀S ∈ S?. Then, there exist Radon-Nikodým
derivatives (rnd) fS(B) [12] such that

µS(dB) = fS(B)ν(dB) with ν-probability 1

fS(B) ≥ 0,
∫
B?

fS(B) ν(dB) = 1. (11)

The rnd fS(B) can be interpreted as the closed-loop model.
Definitions from the beginning of Section II imply that any

admissible strategy S ∈ S? is formed by the decision rules St,
mapping knowledge Kt, gradually enriched by observations
∆t, on actions At. Formally,

S ∈ S? ≡
{

(St : K?
t → A?t )t∈t?

}
(12)

Kt = (K0, D1, . . . , Dt−1), Dt = (At,∆t), K = Kh+1.

Generally, the behaviour B embraces also internals, i.e.,
variables thought of but never observed. In this text, the
considered internals Θ ∈ Θ? have character of parameters,
i.e., internals uninfluenced by the applied actions. Thus,

B = (K,Θ) = (knowledge, internals). (13)

Assuming that the dominating measure ν is of product form
on B constituents, the chain rule for the rnd fS(B) provides
the following factorisation of this closed-loop model

fS(B) = fS(Θ)
∏
t∈t?

fS(∆t|At,Kt,Θ)×
∏
t∈t?

fS(At|Kt)

≡ M(B)× S(B). (14)

The last product expresses the adopted assumption that the
environment model M(B) ≡ f(Θ)

∏
t∈t? f(∆t|At,Kt,Θ) is

common to all compared strategies S ∈ S?. This allows the
dropping of the strategy-identifying subscript S at its factors.

The omission of the internals Θ in the strategy model∏
t∈t? fS(At|Kt) formalises the notion “unknown”: the val-

ues of the internals Θ ∈ Θ? cannot be used by an admissible

strategy. This assumption is known as natural conditions of
control [14].

With the environment model M fixed, the strategies
Si,Sj ∈ S? with identical models of their DM rules
fSi

(At|Kt) = fSj
(At|Kt), t ∈ t?, provide the same closed-

loop model fS(B). Consequently, the DM strategy S can be
identified with its model S(B) ≡

∏
t∈t? f(At|Kt). Similar

identification applies to decision rules, St ≡ f(At|Kt).
In the environment model M, the rnd f(Θ) describes prior

knowledge on internals Θ. The unknown Θ may origin from
any part of the modelled closed decision loop. Mostly, only a
part MΘ, called parameters, explicitly enters the parametric
environment model

f(∆t|At,Kt,Θ) = f
(
∆t|At,Kt,

MΘ
)
. (15)

The “correlated” rest IΘ of Θ then characterises the complete
behaviour ordering quantified by the performance index I

Θ=
(

MΘ, IΘ
)

= (model,performance index) parameters. (16)

III. FPD AND PREFERENCE ELICITATION

Section III-A gives conditions under which the design
becomes fully probabilistic. Section III-B relates FPD to the
standard Bayesian design. Section III-C solves a novel vari-
ant of FPD supporting data-dependent preference elicitation.

A. Fully Probabilistic Design

If realisations Bi, Bj ∈ B? lead to the same loss L(Bi) =
L(Bj) and have the same probability fS(Bi)ν(dBi) =
fS(Bj)ν(dBj) then they are equivalent for the DM task. This
motivates the assumption, see (9),

I(B,W−1(S, B)) = I(B, fS(B)), (17)

which says that the behaviour enters the second argument of
the performance index only via the closed-loop model fS(B).
Under (17) and (14), the optimal strategy IS?S (10) is defined

IS?S ∈ Arg min
S∈S?

∫
B?

I (B,M(B)S(B)) M(B)S(B) ν(dB). (18)

The closed-loop model fS (14) with the optimal strategy IS?S
(18) gives an ideal closed-loop model

IS?f ≡ M IS?S, (19)

which is an image of the user-specified performance index I
and of the set of compared strategies S?. The FPD consider
the DM design in which the user specifies an ideal (desired)
closed-loop model IS?f instead of an performance index.

There is whole set {I} of performance indices leading via
(18), (19) to the given ideal closed-loop model IS?f. They
are equivalent for the DM design. The following exposition
founds a performance index RI representing them.

By its definition, the performance index RI, when used
in (18) in the role of I, provides the optimal strategy with
which the closed-loop model (19) coincides with the given
ideal closed-loop model. Moreover, RI is required to fulfill

RI
(
B, IS?f(B)

)
= S?constant, ∀B ∈ B?, (20)



i.e., the value of this performance index with the optimally
tuned closed loop is required to be independent of the be-
haviour realisation. This requirement stresses that the choice
of the optimal strategy is made a priori without knowing a
specific behaviour realisation.

The assumption (20) inserted (18) with I = RI implies

RI
(
B, IS?f(B)

)
≥ RI

(
B, IS?

f(B)
)

on B?.

This guarantees that the realisation of the performance index
does not increase due to an extension of the set of the
compared strategies. It means that the intuitively favourable
extension of the set of compared strategies has a positive
influence on realisations of the performance index.

Onwards, the explicit reference to S? can be dropped.
Proposition 2 (DM as FPD): Let the performance index

RI(B,M(B)S(B)) represent all performance indices that
lead, via (18), (19), to a given ideal closed-loop model
If = IS?f. If the performance index RI has a finite first
derivative wrt to the second argument and meets (20), then,

RI (B, fS(B)) = ln
(

fS(B)
If(B)

)
. (21)

With I = RI, the optimised functional (18) becomes
Kullback-Leibler Divergence (KLD) D

(
fS|| If

)
of the closed-

loop model fS = MS on the ideal closed-loop model If∫
B?

M(B)S(B)
(

M(B)S(B)
If(B)

)
ν(dB) ≡ D

(
fS|| If

)
.

KLD of a pair of rnds g, f on B?, fulfils, [15],

D (g||f) ≥ 0, D (g||f) = 0 iff g = f with ν-probability 1
D (g||f) =∞ iff f is not absolutely continuous wrt g. (22)

Proof: The functional (18) with I = RI has to reach
minimum for the given ideal closed-loop model If. A weak
zero variation of (18) with I = RI at If provides the necessary
conditions that have to hold with ν-probability 1 on B?

x
∂ RI (B, x)

∂x
+ RI (B, x) = constant for x = If(B).

Under (20), they are fulfilled by (21), which meets all
requirements on RI.

The DM design that uses the performance index RI
characterised by Proposition 2 is called fully probabilistic
design. FPD selects the optimal DM strategy OS ≡ RIS as
the minimiser of KLD of the closed-loop model fS = MS on
a given ideal closed-loop model If.

B. Relation of Standard Bayesian DM to FPD

If the performance index I(B, fS(B)) (17) is independent
of the second argument, the functional (18) becomes linear
in the optimised strategy S. This section inspects relation of
this standard (textbook) Bayesian design to FPD.

FPD specifies the design aims via the ideal closed loop
model. At the same time, it is known [2] that the standard
Bayesian design, optimising expectation of a performance

index I(B), provides the optimal strategy formed by deter-
ministic DM rules. They are formally described by

f(At|Kt) = δ
(
A− OAt(Kt)

)
, t ∈ t?, (23)

where δ concentrates the full probability mass on the optimal
actions OAt(Kt). Thus, the corresponding ideal closed-loop
model (19) is singular and fully concentrated on actions
(OAt(Kt))t∈t? , which are unknown when the DM problem
is formulated.

The above discrepancy can be resolved by taking into
account that such singular ideal closed-loop model can be
arbitrarily closely approximated by employing DM rules that
are positive on (At,Kt)?.

Indeed, for a continuous-valued action the approximating
rnds can be taken as the normal rnd NAt

(OAt(Kt),R) with
an expected value OAt(Kt) and covariance R approaching
to zero. For a discrete-valued action, a mixture εUAt(A

?
t ) +

(1−ε)δ(A− OAt(Kt)), with UAt(A
?
t ) being uniform rnd of

At on A?t and a positive ε approaching zero, serves to this
purpose. These cases and their combinations can be covered
by requiring∫

B?

M(B)S(B) ln(S(B))ν(dB) = finite value

< supS∈S?

∫
B?

M(B)S(B) ln(S(B))ν(dB). (24)

Let us consider a set of DM tasks in which the value on the
right-hand side of (24) is an optional part of the DM design.
Obviously, the larger this value is the less restrictive is this
constraint.

The optimal strategy IS (18) on a subset S? ⊂ S? of
strategies meeting (24) results from minimisation of the
functional, given by a multiplier λ > 0,

IS ∈ Arg min
S∈S?

∫
B?

M(B)S(B) [I(B) + λ ln(S(B))] ν(dB)

= Arg min
S∈S?

∫
B?

M(B)S(B) ln

 M(B)S(B)

M(B) exp
(
− I(B)

λ

)
ν(dB)

= Arg min
S∈S?

D
(
fS|| If

)
with the ideal closed-loop model

If(B) ≡
M(B) exp

(
− I(B)

λ

)
∫
B? M(B) exp

(
− I(B)

λ

)
ν(dB)

. (25)

The explicit formula (25) relates any performance index
I(B), determining the standard Bayesian design, with the
corresponding ideal closed-loop model If. The value of the
multiplier λ is to respect constraint (24). When this constraint
is asymptotically relaxed, i.e., λ → 0, the optimal strategy
with deterministic DM rules is recovered. The construction
is closely related to simulated annealing techniques like
Boltzmann machine [16].

This implies that DM tasks formulated in terms of FPD
are dense in the set of the standard Bayesian DM tasks.



C. Incomplete Knowledge of the Ideal Closed-Loop Model

The discussion of this section needs a modified version of
the general FPD presented in [7]. Its presentation also shows
that the minimisation in FPD can be made explicitly.

For the decision horizon h, the closed-loop model (14)
and behaviours (13) fh(B) ≡ fS(B) = fS(K,Θ) reads

fh(B) = f(Θ)
∏
t∈t?

f(∆t|At,Kt,Θ)︸ ︷︷ ︸
environment model

∏
t∈t?

f(At|Kt)︸ ︷︷ ︸
strategy

. (26)

Similarly, the ideal closed-loop model Ifh(B) ≡ If(B) is

Ifh(B) =

ideal environment model︷ ︸︸ ︷
If(Θ)

∏
t∈t?

If(∆t|At,Kt,Θ)

ideal strategy︷ ︸︸ ︷∏
t∈t?

If(At|Kt,Θ) . (27)

In (27), the DM rules If(At|Kt,Θ) of the ideal strategy
generally depend on the unknown internals Θ = ( MΘ, IΘ) ∈
Θ?, see (16). This dependence is needed, for instance, when
At is an estimate of MΘ.

The FPD solution is summarised below under the adopted
assumption that the measure ν is of a product form.

Proposition 3 (Solution of FPD): The DM strat-
egy meeting the natural conditions of control{

(f(At|Kt,Θ) = f(At|Kt))t∈t?
}

and minimising KLD
D
(
fh|| Ifh

)
(26), (27) is described by the following decision

rules, t ∈ t?,

Of(At|Kt) = If(At|Kt)
exp[−ω(At,Kt)]

γ(Kt)
(28)

γ(Kt) =
∫
A?

t

If(At|Kt) exp[−ω(At,Kt)]ν(dAt)

If(At|Kt) ≡ (29)
exp

[∫
Θ? ln( If(At|Kt,Θ))f(Θ|Kt)ν(dΘ)

]∫
A?

t
exp

[∫
Θ? ln( If(At|Kt,Θ))f(Θ|Kt)ν(dΘ)

]
ν(dAt)︸ ︷︷ ︸

φ(Kt)

.

Starting with γ(Kh+1) ≡ 1, the functions ω(At,Kt) are
generated in the backward manner for t = h, h− 1, . . . , 1

ω(At,Kt) ≡ ln(φ(Kt)) +
∫

Θ?

Ω(At,Kt,Θ)f(Θ|Kt)ν(dΘ)

Ω(At,Kt,Θ) ≡ (30)∫
∆?

t

f(∆t|At,Kt,Θ) ln
(

f(∆t|At,Kt,Θ)
γ(Kt+1) If(∆t|At,Kt,Θ)

)
ν(d∆t).

Parameter estimate (the posterior rnd) f(Θ|Kt) evolves re-
cursively, from f(Θ|K0) = f

(
MΘ, IΘ

)
, see (15), (16),

f(Θ|Kt+1) =
f
(
∆t|At,Kt,

MΘ
)

f(Θ|Kt)∫
Θ? f(∆t|At,Kt, MΘ)f(Θ|Kt)ν(dΘ)

. (31)

Proof: The evolution (31) coincides with Bayes rule
with the Θ-independent DM rules cancelled [14]. The deriva-
tion exploits the basic properties of KLD (22), Fubini the-
orem on multiple integration [12], the rnd properties (11),
(14) and the fact that KLD is an expectation of the sum∑
t∈t?

ln
(

f(∆t|At,Kt,Θ)f(At|Kt)
If(∆t|At,Kt,Θ) If(At|Kt,Θ)

)
+ ln

(
f(Θ)

If

)
.

The last fact and the definition γ(Kh+1) = 1 imply

min
{f(At|Kt)}t∈t?

D
(
fh|| Ifh

)
= min
{f(At|Kt)}h−1

t=1

{
D
(
fh−1|| Ifh−1

)
+ min
{f(Ah|Kh)}

∫
(Kh,Θ)?

fh−1(B)ν(d(Kh,Θ))

×

[∫
(∆h,Ah)?

ν(d(∆h, Ah))f(∆h|Ah,Kh,Θ)f(Ah|Kh)

× ln
(

f(∆h|Ah,Kh,Θ)f(Ah|Kh)
γ(Kh+1) If(∆h|Ah,Kh,Θ) If(Ah|Kh,Θ)

)]}
(32)

The second term in (32) is optimised over the last DM rule
f(Ah|Kh) of the admissible strategy and the expression in
its square brackets can be rearranged as follows

z ≡
∫

(∆h,Ah)?

f(∆h|Ah,Kh,Θ)f(Ah|Kh)

× ln
(

f(∆h|Ah,Kh,Θ)f(Ah|Kh)
γ(Kh+1) If(∆h|Ah,Kh,Θ) If(Ah|Kh,Θ)

)
ν(d(∆h, Ah))

=
∫
A?

h

f(Ah|Kh)ν(dAh)
[
ln
(

f(Ah|Kh)
If(Ah|Kh,Θ)

)
+∫

∆?
h

f(∆h|Ah,Kh,Θ)ln
(

f(∆h|Ah,Kh,Θ)
γ(Kh+1) If(∆h|Ah,Kh,Θ)

)
ν(d∆h)

]
︸ ︷︷ ︸

Ω(Ah,Kh,Θ)

.

Using definitions (29) of If(Ah|Kh)) and (30) of
Ω(Ah,Kh,Θ), the inspected second term in (32) becomes

min
{f(Ah|Kh)}

∫
K?

h

fh−1(B)z ν(dKh) (33)

=
∫
K?

h

ν(dKh)f(Kh)

{∫
A?

h

f(Ah|Kh)
[
ln
(

f(Ah|Kh)
If(Ah|Kh)

)

+ ln(φ(Kh))+
∫

Θ?

f(Θ|Kh)Ω(Ah,Kh,Θ)ν(dΘ)
]

︸ ︷︷ ︸
ω(Ah,Kh)

ν(dAh)

}
.

The function ω(Ah,Kh) defined in (33) uses the estimate
f(Θ|Kh) in integral term. Due to the natural conditions
of control, the estimate f(Θ|Kh) does not depend on the
optimised DM rule f(Ah|Kh). The DM rule enters only the
functional in the compound brackets in (33) as follows∫

A?
h

f(Ah|Kh) ln

 f(Ah|Kh)
If(Ah|Kh) exp[−ω(Ah,Kh)]

γ(Kh)

 ν(dAh)

− ln

(∫
A?

h

If(Ah|Kh) exp[−ω(Ah,Kh)]ν(dAh)

)
︸ ︷︷ ︸

− ln(γ(Kh))

. (34)

Addition and subtraction of ln(γ(Kh)) made the first term
in (34) equal to the conditional version of KLD. The basic
properties of KLD (22) imply that minimum − ln(γ(Kh))
is reached for the rnd (28). Insertion of this minimiser into
(32) shows that − ln(γ(Kh)) enters D(fh−1|| Ifh−1) exactly



in the same way as − ln(γ(Kh+1)) enters D(fh|| Ifh), i.e.,
the optimisation can be repeated for h− 1, h− 2, . . . , 1.

Proposition 3, modifying the general FPD [7], suits to
a systematic data-based preference elicitation. Formally, it
suffices to relate all unknown internals Θ =

(
MΘ, IΘ

)
(16)

to MΘ parameterising the environment model M, see (15),
and learn Θ. A closer look on the Bayes rule (31) reveals
that the experience Kt accumulated via the Bayes rule
influences only the marginal rnd f( MΘ|Kt). Thus, the joint
rnd f(Θ|Kt) = f

(
MΘ, IΘ|Kt

)
= f

(
IΘ|MΘ,Kt

)
f
(

MΘ|Kt

)
informs about IΘ only when the rnd f( IΘ|MΘ,Kt) relating
IΘ to MΘ is supplied externally.

D. Regulation Problem with Normal Models

Example presented in this section indicates that the re-
lation between IΘ and MΘ, whose need for preference
elicitation is revealed above, can be constructed.

The paper [5] shown that FPD applied to normal rnds
reduces to the standard linear-quadratic control design. In
this case, the parametric environment model is assumed to
be normal rnd

f
(
∆t|At,Kt,

MΘ
)

= N∆t
(C[A′t,∆

′
t−1]′,R), (35)

where ′ transposes column vectors of actions A and ob-
servations ∆. The environment model is parameterised by
MΘ ≡ (C,R), see (15). The unknown rectangular matrix
C weights the action At and the past observation ∆t−1 and
determines the expected value of ∆t. The positive-definite
covariance matrix R (R > 0) is also unknown.

The considered regulation problem is the DM task that
aims to keep the observed ∆t, t ∈ t?, as close as possible
to zero while the stationary covariance RA of actions At
should be bounded by a given matrix R̄A > 0 that provides
a soft upper bound on the action range.

For the given MΘ, the optimal strategy, minimising an
expected stationary value of the quadratic performance index
given by a weighting matrix IΘ > 0,

I(B) = lim
h→∞

1
h

∑
t∈t?

D′t
IΘDt, D

′
t = [A′t,∆

′
t], (36)

is a linear feedback, see [17] and (16),

At = −L′
(

MΘ, IΘ
)

∆t−1 = −L′(Θ)∆t−1. (37)

The corresponding ideal closed-loop model is normal
rnd If(Dt|Kt−1,Θ) = NDt

(
0, λ−1P

(
MΘ, IΘ

))
=

NDt

(
0, λ−1P(Θ)

)
.

The covariance matrix

P(Θ) =
[

PA(Θ) •
• P∆(Θ)

]
is found by solving the related stationary Riccati equation
[5]. The scalar multiplier λ > 0 is optional, see (25).

The control preferences are followed the most tightly if the
P∆(Θ) has the smallest trace while PA(Θ) is kept smaller
than R̄A. This defines the mapping relating MΘ to IΘ
MΘ→ IΘ ∈ Arg min

Q>0, R̄A−PA( MΘ,Q)≥0
tr
(
P∆

(
MΘ,Q

))
.

This mapping is conjectured to be well defined as the lowest
potentially reachable stationary covariance of ∆t coincides
with the covariance of the parametric environment model R.
Its formal validation as well as numerical construction of this
mapping is out of the scope of the paper. Numerical Monte
Carlo evaluation was already found feasible in a related
context [18].

IV. CONCLUSIONS

The paper deepens axiomatic basis of fully probabilistic
design (FDP). It explicitly relates the performance index
used in the standard Bayesian design to the Radon-Nikodým
derivatives describing the ideal closed-loop model, which
determines the performance index in FPD. The paper proves
that FPD tasks are dense with respect to the set of standard
Bayesian DM tasks. The support built for FPD covers
the standard Bayesian DM, too. Importantly, the presented
results open a new way to data-based preference elicitation.
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[5] M. Kárný, “Towards fully probabilistic control design”, Automatica,
vol. 32, no. 12, pp. 1719–1722, 1996.
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