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Abstract—This paper addresses early on-line detection of
inter-area electro-mechanical oscillations in power systems using
dynamic data such as currents, voltages and angle differences
measured across transmission lines in real time. The main
objective is to give the transmission operator qualitative in-
formation regarding stability margins. In our approach, the
observed signal is modeled with the non-stationary second order
autoregressive model. Bayesian estimation of the system is based
on the forgetting approach. The stability margins are obtained
as posterior probabilities that the poles of the estimated system
are unstable. The approach is demonstrated on real retrospective
data recorded in a 500 kV power grid and voltage data obtained
by numerical simulations.

Index Terms—Autoregressive processes; Kalman filtering;
Power system stability; Probability.

I. INTRODUCTION

POWER systems are characterized by many modes of
electro-mechanical oscillations caused by interactions

among its components. During such oscillations, mechanical
kinetic energy is exchanged between synchronous generators
as electric power flows through the network. For example,
one generator rotor could swing relative to another. The inter-
area modes are usually associated with groups of machines
swinging relative to other groups across a relatively weak
transmission line. These impacts cause oscillations in state
variables of the electric system such as voltage, current, power
and frequency, which are conventionally measured by PMU
devices (Phasor Measurement Units).

The amplitudes of the swinging state variables are mainly
determined by the following factors:
• The position of the subsystem in the whole power system.
• The distribution of the natural damping elements such as

series resistance of the lines, and shunt resistance of the
loads.

• The number and position of special damping controllers,
e.g. Power System Stabilizer (PSS) and controllers of
different FACTS devices (SVC, TCSC, etc).
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PSS controllers are among the most effective and robust
solutions [9], SVCs are also widely used for stabilization by
modulating voltage at strategic locations of the power system
(see e.g. the example of Mexico System [9], [7]).

There are two distinct types of problematic oscillations
in power systems: local mode oscillations and inter-area os-
cillations. Local mode oscillations occur when a generator
(or group of generators) under voltage regulator control at
a station is oscillating against the rest of the system. Inter-
area oscillations involve combinations of many machines on
one part of a system swinging against machines on another
part of the system. It is to be noted that the local mode of
oscillations are well damped by the traditional PSS controllers,
but normally fails the inter-area ones [10].

In this paper, we address the problem of robust detection of
inter-area oscillations. This problem needs more sophisticated
approaches in order to ensure accurate monitoring of system
dynamics and reliable detection of dangerous oscillations
with noise-polluted PMU measurements. Note that oscillations
themselves are not necessarily dangerous as long as they do
not become unstable [1]. The key objective of this paper is to
design an algorithm evaluating stability margins.

The paper is organized as follows. In Section 1, we provide
the motivation of our studies, next we briefly discuss the
related techniques employed for on-line oscillations prediction.
In Section 2, we present oscillations detection algorithm
based on regularized exponential forgetting suitable for non-
stationary data analysis of power systems. In Section 3, we
apply the designed technique for real retrospective data cor-
responding to inter-area oscillations event recorded in 500kV
power grid and for the data obtained by numerical simulations.
The concluding remarks and possible ways for improvements
of the proposed techniques are briefly listed in Section 4.

II. PROBLEM STATEMENT

A. State-of-the-art Techniques

The deregularization of the power market has caused
substantial demand for the development of new tools for
electro-mechanical oscillations prediction. Many classical non-
adaptive algorithms such as Yule-Walker, Burgs, lattice and
Prony’s methods (see e.g. [5], [6] and [3]) have been applied
in the field. Also recursive least squares (RLS) and least
mean squares (LMS) methods are typical solutions. Recently,
Kalman filtering techniques has been employed by Korba et
al [2] for on-line oscillations prediction.
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B. Techniques Comparison

These methods are typically based on treatment of the
underlying process as a linear system. Detection of the oscil-
lations is based on two basic results of linear systems theory:

1) poles of oscillating linear systems have non-zero imag-
inary components,

2) poles of unstable linear systems have absolute values
greater than 1.

We use these facts to detect oscillations as follows: (i) the
observed process is locally approximated by a linear system,
(ii) parameters of the linear system are estimated, (iii) poles of
the system are computed from the estimates, and (iv) stability
and oscillatory behavior is analyzed.

The methods mentioned above differ typically in (i) and
(ii). For example, detection methods based on fixed windows
assume that all data in the window were generated by the
estimated linear system with identical weight. An alternative
is represented by RLS with discounting which assumes ex-
ponential decrease of importance of older data records. The
difference in (ii) is typically in the assumption whether the
variance of the measurement noise is known (Kalman filter)
or unknown (RLS-type methods). However, the methods rarely
differ in (iii) and (iv) where a point estimate of the poles is
being analyzed. We aim to address this issue.

The traditional point estimate approach provides a single
option for all poles for given time without any uncertainty
bounds on the result. Thus, it is hard to assess the reliability
of this value. In this paper, we continue our studies [13]
concerned with the Bayesian approach, i.e. we develop full
posterior density of the parameters of the linear system and
transform this density to density on poles.

III. OSCILLATIONS DETECTION ALGORITHM

We represent the signal as a second-order linear system with
unknown time-variant parameters:

yt = atyt−1 + btyt−2 + ct + σtet (1)

where yt is the observed signal, at, bt, ct, σt are its unknown
parameters, and et is Gaussian noise with zero mean and unit
variance, et = N (0, 1).

In the probabilistic formulation, (1) defines probability
density function (pdf) of the observed random variable yt:

p(yt|yt−1, yt−2, at, bt, σt) = N (atyt−1 + btyt−2 + ct, σ
2).

(2)
Estimation of system (2) with stationary parameters

is a well known task in statistics, with posterior density
of Normal-inverse-Gamma type. Extension of this
approach to a non-stationary system can be achieved
by specification of the parameter evolution model,
p(at, bt, ct, σt|at−1, bt−1, ct−1, σt−1). The specific choice of
such a model yields a Bayesian filtering task, which can be
solved in some cases by the Kalman filter.

However, we consider a simpler alternative, known as
forgetting (or discounting). In this approach, the time-variant

system is treated similarly to the time-invariant system, but
the resulting sufficient statistics is multiplied by a constant
φ, 0 < φ < 1. In effect, the delayed data records, yt−k,
are weighted by φk, which is equivalent to the application
of an exponential weighting. However, this simple approach
has some shortcomings, such as numerical instability when the
data are not informative.

We will apply an improved version of forgetting, [11] where
regularized exponential forgetting is formalized as follows:

p(at, bt, ct, σt|y1, . . . , yt) ∝ p(yt|yt−1, yt−2, at, bt, ct, σt)
× p(at−1, bt−1, ct−1, σt−1|y1, . . . , yt−1)φ

(3)

× p̄(at−1, bt−1, ct−1, σt−1|y1, . . . , yt−1)1−φ.

Here, p̄(·) denotes an alternative probability of the parameters.
This probability expresses an alternative (prior) knowledge
about location of the parameters.

A. Posterior density

One advantage of (3) is that for system (1) it preserves
posterior density of the Normal-inverse-Gamma type,

p(at, bt, σt) = N iG(Vt, νt), (4)

the statistics of which are recursively computed as follows:

Vt = φVt−1 + [yt, yt−1, yt−2, 1]′[yt, yt−1, yt−2, 1]+

+(1− φ)V̄ , (5)

and νt = φνt−1 + 1 + (1 − φ)ν̄. Here, V̄ , ν̄ denote statistics
of the alternative pdf.

Important moments of this posterior density are mean value,[
ât, b̂t, ĉt

]′
= [V2,1, V3,1, V4,1] C, (6)

C =

 V2,2 V2,3 V2,4
V3,2 V3,3 V3,4
V4,2 V4,3 V4,4

−1

which is equivalent to the result of RLS with discounting
(under the choice of V̄ = 0). Covariance of the autoregressive
parameters is:

cov([a, b, c]) =
V1,1
νt − 7

C. (7)

Since the main parameters of interest are parameters [at, bt]
we marginalize (4) to obtain marginal density of Student-t
type. An important property of this density is that it is not
as sharply concentrated as a Gaussian, since it assigns higher
probability to values distant from the mean. The difference
is greatest for νt < 20, which arise for φ < 0.95. Since we
usually choose φ > 0.95 we consider (6) and (7) to be an
adequate approximation. For more details, see [12].
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B. Prior distribution

The prior distribution should reflect information that is not
available in the processed data. Typically, information about
possible ranges of parameters, their expected ratios, etc. The
same is true about the alternative density p(·) in (3). Note
that non-informative data yt = yt−1,∀t can be explained
by infinitely many combinations of parameters at, bt, ct. In
standard RLS, this degeneracy would manifest itself by the
loss of rank of matrix (5) yielding numerically unstable
estimates (6). The stabilized forgetting avoids this danger via
positive definite matrix V t. In case of non-informative data,
the estimates are fully determined by this matrix.

In all our simulations we made the following choice:

V t = diag([1e− 2, 1e− 3, 1e− 3, 1e− 5]).

Under this choice, the expected values of parameters are
[ât, b̂t, ĉt, σ̂t] = [0, 0, 0, 0.0033] ± [3, 3, 36, 0.0067]. This en-
codes the following information:
• the linear coefficients, at and bt, are assumed to be closer

to zero that the estimated constant ct
• the variance of observations σt is small.

The influence of this alternative distribution on the posterior
(5) is negligible when the data are informative.

C. Detection of oscillations

The probability of unstable oscillation is computed as the
probability of unstable oscillating poles of the system. The
poles of the system (1) are:

p1,2 =
at ±

√
a2t + 4bt
2

.

The system is oscillating when the poles are imaginary (i.e.
a2t < −4bt) and the system is unstable when |p1,2| > 1, i.e.

|p1,2| =
∣∣∣∣(at2 )2 − a2t + 4bt

4

∣∣∣∣ = |bt| > 1.

These two inequalities define a space over which we need to
integrate the posterior density (4). This demanding task was
addressed via Monte Carlo sampling in [13].

In this paper, we propose to use an approximation motivated
by the fact that we are most often interested in detecting
oscillations around the stability boundary, bt = −1. Around
this boundary, the first inequality is approximated by |at| < 2.
Moreover, we expect the oscillation to be slower than the
sampling frequency, i.e. at > 0 we can only test probability of
at < 2. Under this approximation and approximation of the
posterior by a Gaussian density, the probability of unstable
oscillation is computed as

Pr(unstab.oscil.) = Pr(at < 2)Pr(bt < −1)

=
1

2

(
1− erf

ât − 2√
2var(at)

)
1

2

(
1− erf

b̂t + 1√
2var(bt)

)
(8)

where erf is the error function. This approximation tends to
underestimate the risk of oscillations since the approximate
area of integration is smaller than the correct one, see Fig. 1.
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Fig. 1. Illustration of integration area for evaluation of oscillation risk.

Thus, it can serve as a lower bound of the true risk. On the
other hand, probability of instability

Pr(instability) = Pr(bt < −1)

=
1

2

(
1− erf

b̂t + 1√
2var(bt)

)
(9)

may serve as an upper bound.
Final oscillation detection algorithm is then as follows:

Off-line: choose initial alternative statistics, V̄ , ν̄ and for-
getting factor φ.

On-line: at each time t do:
1) update statistics V, ν using (5),
2) compute posterior mean and variance via (6) and (7)
3) compute probability of unstable oscillations using (8) or

(9)

IV. RESULTS ANALYSIS

In order to verify the designed techniques, two different sets
of data are considered. The first data set is from real PMU
measurements. The second data set is obtained by means of
numerical simulations.

A. Real data analysis

The first case study represents analysis of a real retrospec-
tive time series. In particular, time series of power flow (see
Fig. 2) has been registered using PMU devices from 500 kV
power grid [4] with sampling period of 20 ms. Note that
the condition of instability (9) allows to detect instability of
the system, however, the condition of unstable oscillation (8)
provides smoother estimates without the outlier artifact at the
end of the instability region.

B. Model data analysis

The second case study represents analysis of data obtained
by means of numerical simulations. A classical model of
the two-area system shown in Fig. 3 was used for inter-area
oscillations modeling.

Test system parameters are represented in [15]. Area 1 and
Area 2 are sending and receiving subsystems accordingly.
White noise having signal-to-noise ratio 40db and spectral
width 0.5 Hz (accidental load variation) was added to the load
which makes the simulations more complicated and realistic.
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Fig. 2. Analysis of real data with φ = 0.97. Top: observed power flow
through 500kV transmission line. Centre: Risk of instability (9) Bottom:
Risk of unstable oscillations (8).

Fig. 3. An 11-bus test system

The sampling period is 0.02 second. During the simulation,
the following scenario of changing an active power flow from
Area 1 to Area 2 has been studied:
• From 50 to 115 second, increase of active power output

of G2 from 500 MW to 660 MW. Active power increase
rate 2.5 MW per second;

• From 165 to 230 second, decrease of active power output
of G2 from 660 MW to 500 MW. Active power decrease
rate 2.5 MW per second.

Variation of voltage on Bus 8 during the simulation process
and corresponding risk of instability are displayed in Fig. 4.

Nowadays, PMU measurement technologies provide a good
observability of real-time processes in power systems. It is to
be noted that when having started, the inter-area oscillations
can be easily detected by a system operator. However, correctly
assessing where they actually start is a non-trivial task. The
computed probability of both real and modeled oscillations
marks the start of the oscillations quite clearly. Thus, after
detailed studies it is possible that the considered method
can be adopted to give the transmission operator qualitative
information regarding stability margins.

V. CONCLUSION

We addressed the problem of robust detection of inter-
area electro-mechanical unstable oscillations in power systems
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Fig. 4. Numerical simulation. Results for voltage amplitude data. Top:
observed data. Bottom: computed probability of unstable oscillations.

using dynamic data registered by PMU. Oscillating systems
have been modeled by a second order autoregressive system.
The stability is assessed by probability of unstable poles of
the estimated approximate linear system.

The algorithm was tested on recorded retrospective data,
in particular power flow through 500kV transmission line [4]
was employed. We found that the computed probability of
oscillations clearly marks the start of the unstable oscillations.
We conjecture that the designed algorithm has an advantage
over the conventional approach based on Kalman filtering,
because it is able to estimate covariance of the observation σt.
For deeper understanding of its properties, the algorithm has
been tested on voltage data obtained by numerical simulations
of well studied and understood scenarios.

Our current work involves search for a physically based
model of parameter evolution which would allow more accu-
rate prediction of future behavior of the system. A framework
for comprehensive comparative analysis of proposed approach
is currently under construction.
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