
Software Analysis Unifying Particle Filtering and Marginalized
Particle Filtering

Václav Šmídl
Institute of Information Theory and Automation,

Prague, Czech Republic.
smidl@utia.cas.cz

Abstract – Particle filtering has evolved into wide range of
techniques giving rise to many implementations and special-
ized algorithms. In theory, all these techniques are closely
related, however this fact is usually ignored in software im-
plementations. In this paper, particle filtering is studied
together with marginalized particle filtering and a generic
software scheme unifying these two areas is proposed. It is
presented in general terms of object-oriented programming
so that it may be implemented in existing Bayesian filter-
ing toolboxes that are briefly reviewed. The power of the
approach is illustrated on a new variant of the marginal-
ized particle filter. A range of new variants of the filter is
obtained by plugging this class into the proposed software
structure. The framework and the illustrative example is im-
plemented in the BDM library.

Keywords: Marginalized particle filter, software analysis,
Bayesian filtering

1 Introduction
Implementation of algorithms of Bayesian filtering, or fil-
tering in general, are of two kind: generic, or application
specific. The latter is much more common in practical ap-
plications due specific restrictions on computational time or
hardware platform. Typical examples are implementation of
Extended Kalman filter for low level control of an electrical
drive [6], or marginalized particle filter for robot navigation
[10]. The generic implementations are less common, their
purpose being educational or deployment of modified ver-
sion of the algorithm within a chosen domain.

Software analysis is crucial for both kinds of implemen-
tations, the stress is however on different aspect. The key
problem of the application-specific implementation is to ad-
just the chosen algorithm to the fit the application domain
and its restrictions. The key problem of software analysis
for generic implementation is logical consistency and cer-
tain “elegance” in a way that potential users find the imple-
mentation easy to use.

In this paper, we are concerned with a generic implemen-
tation of Bayesian filtering in general, with special attention

paid to implementation of the marginalized particle filter
(MPF) [9], also known as Rao-Blackwellized particle filter
[3]. This type of filter is a combination of an analytic fil-
ter with a particle filter, both components which are already
available in many toolboxes of Bayesian filtering. Majority
of generic toolboxes is designed using object-oriented ap-
proach, hence we will study the filters from this perspective.
At the time of writing, the following noteworthy toolboxes
are designed using object oriented approach:

Bayes++, BFL, BDM C++ libraries of Bayesian fil-
ters, available from http://bayesclasses.
sourceforge.net/, http://www.orocos.
org/bfl, and http://mys.utia.cas.cz:
1800/trac/bdm/, respectively.

Kalmtool, NEF Matlab toolboxes for Bayesian filter-
ing, available from http://www.iau.dtu.
dk/research/control/kalmtool.html,
and http://nft.kky.zcu.cz/nef.html,
respectively.

None of these currently provides marginalized particle filter
in its general form. Discussion how to implement the MPF
in these toolboxes will be provided. A reference implemen-
tation is available within the Bayesian Decision-Making li-
brary (BDM).

1.1 Issues of Object-oriented approach
The following features of object-oriented approach [1] are

attractive for implementation Bayesian filtering: (i) inheri-
tance, which allows to create new algorithms by an exten-
sion of the previous algorithm, (ii) polymorphism, which
allows writing generic algorithms, and (iii) encapsulation
of data structures (attributes) and methods that operate on
these, which improves scalability of the solution. The dan-
ger of this approach lies in overusing these tools. The most
susceptible to overusing is the mechanism of inheritance.
When two classes having something in common are to be
implemented, it is possible to create a class representing
their common attributes or methods and design the two orig-
inal classes as its specialization. This way, the common

parts are implemented only in one place, however, at the
price of maintaining an extra class the meaning of which
may be unclear to others. Too many level of abstraction
can make the software design hard to understand and learn.
Finding the right balance in this issue is a delicate but very
important task.

In this paper, we present only conceptual levels of ab-
straction, from which the actual implementation is expected
to vary. Differences in implementation may depend on the
chosen implementation language and what other classes are
already implemented in the toolbox.

2 Theory of Bayesian Filtering
We are concerned with the classical problem of inference

of state variables parametrizing a sequence of observation
models in the following manner:

yt ∼ p(yt|xt, ut), xt ∼ p(xt|xt−1, ut). (1)

Here, xt is a vector known as the state variable, yt are the
observations and ut is a vector of observed exogenous input.
Variable dt = [y′t, u

′
t] aggregate all observable quantities.

By Bayesian Filtering, we mean the recursive evaluation of
the filtering distribution, p(xt|d1:t), using Bayes’ rule [7, 3]:

p(xt|d1:t−1) =
ˆ
p(xt|xt−1)p(xt−1|d1:t−1) dxt−1,

(2)

p(xt|d1:t) =
p(yt|xt, ut)p(xt|d1:t−1),

p(yt|ut, d1:t−1)
(3)

p(yt|ut, d1:t−1) =
ˆ
p(yt|xt, ut)p(xt|d1:t−1)dxt (4)

where p(x1|) is the prior distribution, and d1:t =
[d1, . . . , dt] denotes the set of all observations. The inte-
gration in (2), and elsewhere in this paper, is over the whole
support of the involved probability density functions (pdf).
The denominator of (3) can be interpreted in two possible
ways: (i) as a density on yt, which is known as predictive
density from time t− 1, or (ii) as a numerical quantity with
substituted observed values of yt and ut, which is known as
marginal likelihood or evidence.

2.1 Particle Filtering (PF)
Particle filtering (PF) [3] refers to a range of techniques

for generating an empirical approximation of p(x1:t|d1:t),
where x1:t = [x1, . . . , xt] is the state trajectory:

p(x1:t|d1:t) ≈
1
n

n∑
i=1

δ(x1:t − x(i)
1:t), (5)

where x(i)
1:t, i = 1, . . . , n are i.i.d. samples from the poste-

rior and δ(·) denotes the Dirac δ-function. Therefore, this
approach is feasible only if we can sample from the exact
posterior, p(x1:t|d1:t). If this is not the case, we can draw

samples from a chosen proposal distribution (importance
function), q(x1:t|d1:t), as follows:

p(x1:t|d1:t) =
p(x1:t|d1:t)
q(x1:t|d1:t)

q(x1:t|d1:t)

≈ p(x1:t|d1:t)
q(x1:t|d1:t)

1
n

n∑
i=1

δ(x1:t − x(i)
1:t). (6)

Using the sifting property of the Dirac δ-function, the ap-
proximation can be written in the form of a weighted empir-
ical distribution, as follows:

p(x1:t|d1:t) ≈
n∑

i=1

w
(i)
t δ(x1:t − x(i)

1:t), (7)

w
(i)
t ∝

p(x(i)
1:t|d1:t)

q(x(i)
1:t|d1:t)

. (8)

Under this importance sampling procedure, the true poste-
rior distribution need only be evaluated point-wise. Further-
more, normalizing constant of p(·) is not required, since (7)
can be normalized trivially via a constant c =

∑n
i=1 w

(i)
t .

The challenge for on-line algorithms is to achieve recur-
sive generation of the samples and evaluation of the impor-
tance weights. Using (1) and standard Bayesian calculus,
(8) may be written in the following recursive form:

w
(i)
t ∝

p(yt|x(i)
t , ut)p(x

(i)
t |x

(i)
t−1)

q(x(i)
t |x

(i)
1:t−1, d1:t)

w
(i)
t−1. (9)

where, now, x(i)
t are drawn from the denominator of (9),

which can be chosen as p(xt|xt−1).

2.1.1 Choosing the number of particles
Convergence of the particle filter to the true posterior den-

sity is proved for n → ∞. Thus, the accuracy of approxi-
mation grows with more particles, as does the associated
computational cost. Optimal trade-off between accuracy and
cost can be done experimentally, or it can also be optimized
on-line, see [4] and followup work.

2.1.2 Proposal distribution
The choice of the right importance function is often key

to success of a particle filter in the a particular problem.
Substantial amount of research was dedicated to this issue,
yielding a range of options, see [12] for survey. An interest-
ing direction is to run a local filter within a particle filter and
use its posterior density as a proposal. In fact, other proposal
distributions can be interpreted as approximate Bayesian fil-
tering.

2.1.3 Adaptive Monte Carlo
Another approach to improvement of proposal densities

is adaptive Monte Carlo technique [2], where the proposal
density is parametrized by an unknown parameter which
is estimated recursively with growing number of generated
particles. Thus, this approach combines choice of the num-
ber of particles and improvement of the proposal.

2.2 Marginalized Particle Filtering (MPF)
The main advantage of importance sampling is its gen-

erality. However, it may be computationally prohibitive
to draw samples from the possibly high dimensional state
space of xt. Furthermore, it is necessary to generate large
numbers of such particles in these cases in order to achieve
an acceptable error of approximation. These problems can
be overcome in cases where the structure of the model (1)
allows analytical marginalization over a subset, x1,t, of the
full state vector x′t = [x′1,t, x

′
2,t] [3, 9]. Therefore, we con-

sider the factorization

p(x1:t|d1:t) = p(x1,1:t|x2,1:t, d1:t)p(x2,1:t|d1:t),

where p(x1,1:t|x2,1:t, d1:t) is analytically tractable, while
p(x2,1:t|d1:t) is not. We replace the latter by a weighted
empirical distribution, in analogy to (6), yielding

p(x1:t|d1:t) ≈
n∑

i=1

w
(i)
t p(x1,1:t|x(i)

2,1:t, d1:t)δ(x2,1:t − x(i)
2,1:t),

(10)

w
(i)
t ∝

p(x(i)
2,1:t|d1:t)

q(x(i)
2,1:t|d1:t)

. (11)

Note that we now only have to sample from the space of
x2,t. The weights can, once again, be evaluated recursively:

w
(i)
t ∝

p(dt, x
(i)
2,t|x

(i)
2,t−1, d1:t−1)

q(x2,t|x(i)
2,1:t−1, d1:t)

w
(i)
t−1. (12)

Note that term p(dt, x
(i)
2,t|x

(i)
2,t−1, d1:t−1) in numerator of

(12) is equivalent to the normalizing constant of a Bayesian
filter that treats x(i)

2,t as observations:

p(x1,t|x2,1:t, d1:t) =
p(dt|x1,t, x2,t)p(x2,t|x1,t, xt−1)p(x1,t|xt−1)

p(dt, x2,t|x2,1:t−1, d1,t−1)
×

p(x1,t−1|x2,1:t−1, d1,t−1) (13)

2.2.1 Special cases
In this section we analyze special cases, where (13) is an-

alytically tractable with a reasonable candidate for the pro-
posal function :

1. conditionally independent evolution of x2,t, i.e.
p(x2,t|x1,t−1, x2,t−1) = p(x2,t|x2,t−1), then

p(dt, x
(i)
2,t|x

(i)
2,t−1, d1:t−1) =

p(dt|x(i)
2,t, d1:t−1)p(x

(i)
2,t|x

(i)
2,t−1). (14)

where integration over x1,t is performed only for
p(dt|x(i)

2,t, d1:t−1). This is a commonly encountered
case [13], in which standard sampling from the param-
eter evolution, p(x2,t|x2,t−1), can be used.

2. analytically tractable subspace, x1,t allows further par-
titioning of x1,t = [x1d,t, x1x,t], for which (14) also
arise, with each element in the chain rule marginalized
independently, i.e. p(dt|·) over x1d,t and p(x(i)

2 |·) over
x2x,t. The latter density can be again used as the pro-
posal. This is the case studied in [8].

3. integration can not be simplified, and must be per-
formed over the whole space x1,t, however, the pre-
dictive density p(dt, x2,t|x(i)

2,t−1, d1:t−1) is analytically
tractable. In that case, the proposal density can be ob-
tained by marginalization over dt. An example of this
case is given in Section 4.1.

2.3 Software representation
The number of possible configurations of a particle filter

is rather high, since techniques in Sections 2.1.1–2.1.3 can
be mutually combined. Extension to the Marginalized par-
ticle filter adds an extra degree of freedom, increasing all
previous choices can be combined with additional choices
of analytical filters. Having different filter for each possible
combination of variants leads to combinatorial explosion.

The task is to find a software scheme that allows to sepa-
rate these degrees of freedom in a systematic way, reducing
combinatorial explosion.

3 Software Analysis of Bayesian Fil-
tering

A range of styles can be used to design a software pack-
age for Bayesian filtering. The most general approach is
based on detailed analysis of the Bayesian theory which re-
sults in a complex set of classes. Some of these classes may
be unnecessary for specific purpose, which leads to various
simplifications. Toolboxes mentioned in Section 1 are good
examples of various levels of simplifications.

The general mathematical formalism of Bayesian calcu-
lus is rather simple. All operations are performed on prob-
ability density functions (pdfs), denoted p(a|c), where a, c
are multivariate random variables. On these data structures
are defined the following operations:

marginalization: p(a|c) =
´
p(a, b|c)db.

chain rule: p(a, b|c) = p(a|b, c)p(b|c) = p(b|a, c)p(a|c).

Bayes rule: p(a|b, c) = p(b|a,c)p(a|c)
p(b|c) where p(b|c) =´

p(b|a, c)p(a|c)da.

In principle, all Bayesian algorithms are derived using just
these operations. It is tempting to establish a class for pdfs
and three operations on them, however, this approach has
some pitfalls. The main cause of this is analytical tractabil-
ity of the integrations and the resulting need for approxi-
mations. Software packages thus face the challenge how to
represent a range of approximations.

mixture_template StandardParticle
1

1

1

*

1n

pdf
+ evallogcond(value : vector, condition : vector) : double
+ samplecond(condition : vector) : vector
+ conditional(variable : RV) : pdf
+ marginal(variable : RV) : pdf

epdf
+ sample() : vector
+ evallog(value : vector) : double
+ mean() : vector
+ covariance() : matrix

Particle ParticleFilter1nInnerBayes

components
MarginalizedParticle

proposal

BayesRule
+ bayes(data : vector, condition : vector)
+ evidence() : double
+ epredictor() : epdf
+ evalpred(value : vector) : double
+ posterior() : epdf

Diagram: class diagram Page 1
Figure 1: UML-like schematics of the proposed software analysis

3.1 Typical software designs
The central class for all Bayesian object oriented tool-

boxes is a class “Filter” which correspond to the recursive
Bayes rule. A typical implementation is to define Filter as
an abstract class with a method which accepts conditional
pdfs as arguments and updates posterior pdf. For example,
this is implemented by Bayes++, BFL, and similarly in NEF
where the pdfs are aggregated into a single structure called
model. The resulting pdf is sometimes represented by a class
(BFL, NEF) or by its statistics without any further general-
ization (Bayes++). The remaining Bayesian operations, i.e.
marginalization and chain rule are not implemented in any
of the mentioned toolboxes.

The advantage of this approach is its close relation to the
standard Markov model (1), where each part of the model
is clearly distinguished. Such design is also easy to imple-
ment when the filter is assumed to use only one approxi-
mation, which is typical of standard textbook filters: ex-
tended Kalman filter or particle filter. When the problem
statement exactly fits these requirements, this approach is
sufficient and appropriate. The operations of marginaliza-
tion and chain rule are not missed since these are trivial for
the unconditional Normal and Empirical pdf.

However, this approach is difficult to extend to non-
standard techniques, such as forgetting in exponential fam-
ily, or Marginalized Particle Filters. For example, forget-
ting in exponential family is based on direct approximation
of the Bayes rule without an explicit parameter evolution
model [5]. Moreover, some auxiliary variables within the
filters may require specialized classes which create a com-
plex hierarchy of inheritance. For example, a proposal for
particle filtering using EKF as its local filter (Section 2.1.2)
is located in the sixth level of abstraction from the root pdf
class in BFL.

3.2 Elementary Classes of Bayesian Calculus
In order to improve expressiveness of a software toolbox,

we conjecture that it is necessary to implement more of the
Bayesian calculus within the root classes. Here, we describe
software analysis that is used in the BDM library. The root

classes are implemented as non-pure1 interfaces, i.e. us-
ing only methods without any attributes. A subset of the
root classes and their most important methods is displayed
in Figure 1.

Class pdf: represents conditional pdf, which supports
common operations such as sampling and evaluation
of its value in a given point. For these operations, it is
necessary to know also the value of the conditioning
variable. Contrary to other packages, marginalization
and conditioning (complement of marginalization
within the chain rule) are also defined.
Note that operations marginalize() and
condition() represent only decomposition
within a chain rule. Composition of joint density from
the decomposed pdfs is provided by offspring called
mprod.

Class epdf: is a specialization of class pdf for empty set
of conditioning variables. In such a case, it is possible
to define more operations, such as evaluation of mo-
ments (methods mean() and covariance()) with
numeric output.

Class RV: serves as an identifier of random variables and
their realizations. The marginalization and condition-
ing operators require to know which variable in the
joint density needs to be marginalized. Methods of
class RV include creation of unions and intersections.

Class BayesRule: implements recursive version of the
Bayes rule. The update operation is called bayes()
and it requires only numerical values in arguments: the
vector of observation yt and the vector of all condition-
ing variables. This single method implements both the
time update and data-update steps (2) and (3). It is as-
sumed that if the knowledge of model (1) is required, it
will be represented as attributes within an offspring of
this class. This policy gives more control to offspring
over the models they accept or require.
The posterior density is provided by an interface

1Some of its methods are not virtual.

method posterior() returning an offspring of epdf.
For more complex filters, the resulting epdf is itself an
interface class handling access to internal attributes.
The method bayes() has an additional role, which is
to evaluate the value of logarithm of the marginal like-
lihood or evidence (4), which is accesible by method
logevidence(). Given the importance of this value
for model selection it is surprising how many software
toolboxes do not evaluate this value.
By design, this class has also enough informa-
tion to evaluate (4) at t + 1, i.e. f(yt+1|ut+1)
(method predictor()). A simplified method
epredictor() is defined when the model has no
variables in conditioning or when their numerical value
is known. These methods are important for applica-
tions in adaptive control, but their relevance in filtering
will be shown later.
In contrast to other toolboxes, the class is not named
“Filter” since it also covers recursive estimators of sta-
tionary parameters.

These classes are specialized into specific families such as:
Gaussian and Student epdfs, or Kalman filter and Expo-
nential family filters for BayesRule. Care is taken that all
abstraction layers have also theoretical meaning. An exam-
ple is the BayesRule for exponential family, which is an
abstract class that extends the BayesRule by methods as-
sociated with forgetting (discounting), such as scheduling of
the discount factor.

3.3 Particle filtering
In this Section, we argue that wide range of particle fil-

ter variants can be build from the basic classes in Section
3.2. First, lets have a look at the proposal function. The
difference between the trivial proposal, q(xt|xt−1, d1:t) ≡
p(xt|xt−1), and some smarter proposals is the addition of
the data into the conditioning. Clearly a proposal function
is a posterior density resulting from some application of the
Bayes rule. Therefore, it seems more suitable to model the
proposal by a Bayesian filter (BayesRule) rather than a
conditional density (pdf). The sampling from it is done
in two steps: (i) update the posterior, (ii) sample from the
posterior. A complication of this approach stem from the
fact that the resulting sample is reused as mean of the prior
for the proposal in the next step [11]. This step needs to
be implemented either by the BayesRule of the proposal,
yielding an extra layer of abstraction, or by the particle fil-
ter, reducing its generality. At the time of writing, the first
approach seems to be a slightly better option.

Second suggestion of this Section is to implement each
particle as a special case of the BayesRule. This implies
that function of the the whole filter is separated in two levels,
the filter-wide level and the particle level. Potentially, each
particle may contain proposal density which forms the third
level of BayesRule objects. This hierarchy is shown in
Figure 2 left in informal way, and Figure 1 in UML notation.

The ParticleFilter level has the following role:

ParticleFilter

Particle

Proposal

ParticleFilter

Particle

Proposal

InnerBayes

Figure 2: Hierarchy of BayesRule levels in the proposed
particle filtering scheme.

• Its attributes are an array of Particles and an array
of their weights

• Method bayes() calls bayes() of all par-
ticles, collect their non-normalized weights via
logevidence(). This may be done iteratively when
variable particle size or adaptive MC strategies are
used. Finally, the weights are normalized and re-
sampling takes place.

• All remaining methods (e.g. posterior(),
epredictor(), etc.) are implemented by call-
ing corresponding methods of the Particles and
weighting them appropriately.

The Particle level in the StandardParticle imple-
mentation has the following role:

• Its prior and posterior density is a Dirac delta function
with the value of x(i)

t as its statistics.

• Method logevidence() returns contribution of the
non-normalized weight in time t, i.e. (9) without w(i)

t−1.

• Method epredictor() returns the observation den-
sity with substituted value of x(i)

t .

This may seem as an arbitrary construction for a particle
filter, but it has the following significant advantages:

• It provides a natural abstraction between particle-
specific features, such as the choice of proposal (Sec-
tion 2.1.2) and filter-specific features, such as the
strategy of selection of the number of particles (Sec-
tion 2.1.1). The only exception from this division is
the Auxiliary particle filter which is implemented on
the ParticleFilter level, due to availability of
method epredictor() for each particle.

• It unifies marginalized particle filtering with stan-
dard particle filtering as the marginalization does not
affect the ParticleFilter level, but only the
Particle level.

Note that it is also possible to interpret the standard particle
filter as a special case of marginalized particle filter, or the
other way around.

3.4 Marginalized Particle Filtering
The particle level in the MarginalizedParticle

implementation has the following role:

• It contains an extra attribute InternalBayes of type
BayesRule with state variable x1,t, and observa-
tions [dt, x

(i)
2,t], representing (13).

• Prior an posterior density is a product of Dirac
function on x2,t and posterior of the internal
InternalBayes,

• Method logevidence() returns
InternalBayes.logevidence(), minus
the likelihood of the proposal.

• Method epredictor() returns marginal of the
InternalBayes.epredictor() on dt.

• Method bayes() may differ for various special
cases in Section 2.2.

For example, method bayes() for the third—most
general—special case of MPF is roughly as follows:

1. Compute predictive density:

p(dt, x2,t|·) =InternalBayes.epredictor();

2. Obtain proposal:

p(x2,t|·) = p(dt, x2,t|·).marginalize(x2,t),

3. Generate new sample:

x
(i)
2,t = p(x2,t|·).sample();

4. Update internal state:

InternalBayes.bayes([d′t, x
(i)
2,t

′
]′);

5. Return logarithm of evidence:

InternalBayes.logevidence()
−p(x2,t|·).evallog(x(i)

2,t);

The other special cases from Section 2.2 are sim-
plifications of the above mentioned algorithm. They
can be implemented either by specialization of the
MarginalizedParticle, or by specialization of
classes for InternalBayes. This decision needs to be
again balanced with respect to abstraction level dilemma,
Section 1.1. At the time of writing, the former approach
seems more advantageous.

4 Discussion
The presented structure of particle filtering implementa-

tion may seems to be over-engineered, given that a simple
particle filter can be implemented in a few lines of code in
scripting environments like Matlab, Python or R. If the task
is to implement one variant of the filter, then it is probably
the best approach to take. However, with growing number
of implemented variants of filters, it soon becomes difficult
to maintain. On the contrary, the power of the presented
approach is increasing with amount of available code. This
will be illustrated on a simple example.

4.1 Illustrative example of use
Consider the following system,

xt = g(xt−1) + vt,
yt = h(xt) + wt,

Cov
([

vt

wt

])
=
[
Q S′

S R

]
, (15)

whereQ,S,R are unknown parameters. This system is suit-
able for marginalized particle filtering, since for a given
value of xt, (15) has conjugate prior of the Inverted Wishart
type. This estimator is well studied, with predictors and their
marginals available in analytical forms of the multivariate
Student type. Extensions of this estimator for non-stationary
parameters or unknown mean values are available in theory
[7], or code (class l of BDM). For detailed treatment of this
model with S = 0, see [8].

Computation of MPF for system (15) in BDM requires to
redefine only one class. The need for redefinition comes
from the fact that the ARX class requires residues xt −
g(xt−1) and yt − h(xt) on the input. Computation of
these residues can be implemented either within an offspring
of MarginalizedParticle, or an offspring of ARX.
We choose the former, and implement it as a new class
NoiseParticle which computes the residues and passes
them to the InternalBayes object, which may be of
any class that estimates statistics of residues, e.g. ARX. By
such a small step we have gained the following flexibility:

• The ARX class support estimation of time-varying co-
variances via forgetting, with various options. Hence,
the resulting MPF models estimates not only stationary
covariance but also time-varying covariances.

• The ARX class has a build-in function for structure es-
timation, which decides which elements of the covari-
ance are most likely zero. This function is implemented
as heuristic Bayesian hypothesis testing.

• The InternalBayes attribute may be changed to be of
any (meaningful) type of BayesRule. Other mean-
ingful types are exponential family estimators or their
approximations, such as Mixtures of exponential fam-
ily (class MixEF in BDM, its recursive form uses on-
line EM, or QB algorithm).

• By plugging the NoiseParticle class into differ-
ent ParticleFilters, we obtain standard PF, PF

with variable number of particles, auxiliary PF, etc.
The range of options is only limited by the number
of available ParticleFilter variants which may
have been initially implemented for a completely dif-
ferent filter.

Note that it is possible to recognize several un-published
versions of MPF within the list above. For all these filters,
there is no need to develop and publish any theory – it is
already available and implemented.

4.2 Implementation in other toolboxes
The previous Section illustrated the power of the pro-

posed approach in the BDM library. However, it can be
easily implemented in all object-oriented toolboxes, such as
those in Section 3.1. The key operation that are required—
and currently missing in these toolboxes—are operations
logevidence() and epredictor() on the root Bayes
filter class, and operation marginalize() on the class
representing pdfs.

5 Conclusions
The presented software analysis reveals a that a particle fil-
ter can be implemented as an interaction of three (or more)
layers of Bayesian filters, Section 3. Each of these layers
represent one degree of freedom corresponding to (i) stan-
dard vs. auxiliary vs. adaptive MC particle filtering, (ii)
particle vs. marginalized particle filter, (iii) proposal den-
sity filters and internal marginal filters. These degrees of
freedom can be arbitrarily combined, giving rise to combi-
nations that has not been published yet. As shown is Section
4.1, new filters arise just by combining existing methods in
software without any need for new theory.

The approach is presented in general form to illustrate
the main idea, which can be implemented differently in
existing toolboxes. Reference implementation of the ap-
proach is available within the BDM library http://mys.
utia.cas.cz:1800/trac/bdm/, with extra layers of
abstraction that makes implementation in C++ more conve-
nient. The library is available as an open-source project,
with interfaces to Matlab and Python.

Acknowledgment
Support of grants MŠMT 1M0572 and GAČR

102/08/P250 is gratefully acknowledged.

References
[1] G. Booch, R. Maksimchuk, M. Engle, B. Young,

J. Conallen, and K. Houston. Object-oriented analy-
sis and design with applications. 2007.

[2] J. Cornebise, E. Moulines, and J. Olsson. Adaptive
methods for sequential importance sampling with ap-
plication to state space models. Statistics and Comput-
ing, 18(4):461–480, 2008.

[3] A. Doucet, N. de Freitas, and N. Gordon, editors. Se-
quential Monte Carlo Methods in Practice. Springer,
2001.

[4] D. Fox. Adapting the sample size in particle filters
through KLD-sampling. The international Journal of
robotics research, 22(12):985, 2003.

[5] R. Kulhavý and M. B. Zarrop. On a general con-
cept of forgetting. International Journal of Control,
58(4):905–924, 1993.

[6] Z. Peroutka. Design considerations for sensorless con-
trol of PMSM drive based on extended Kalman filter.
In 11th European Conference on Power Electronics
and Applications (EPE), Dresden, Germany, 2005.

[7] V. Peterka. Bayesian approach to system identifica-
tion. In P. Eykhoff, editor, Trends and Progress in
System identification, pages 239–304. Pergamon Press,
Oxford, 1981.

[8] S. Saha, E. Özkan, V. Šmídl, and F. Gustafsson.
Marginalized particle filters for Bayesian estimation of
noise parameters. In Proceedings of the 13th Interna-
tional Conference on Information Fusion, Edinburgh,
UK, 2010.

[9] T. Schön, F. Gustafsson, and P.-J. Nordlund. Marginal-
ized particle filters for mixed linear/nonlinear state-
space models. IEEE Transactions on Signal Process-
ing, 53:2279–2289, 2002.

[10] S. Thrun, W. Burgard, and D. Fox. Probabilis-
tic Robotics (Intelligent Robotics and Autonomous
Agents). MIT press, Cambridge, Massachusetts, USA,
2005.

[11] R. Van der Merwe, A. Doucet, N. De Freitas, and
E. Wan. The unscented particle filter. Advances in Neu-
ral Information Processing Systems, pages 584–590,
2001.

[12] M. Šimandl and O. Straka. Sampling densities of par-
ticle filter: a survey and comparison. In Proceedings
of the 26th American Control Conference (ACC), New
York City, USA, 2007.

[13] V. Šmídl and A. Quinn. Variational Bayesian fil-
tering. IEEE Transactions on Signal Processing,
56(10):5020–5030, 2008.

