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Abstract. The paper continues the previous research aimed at design the automatic trading
system. The paper concerns rating the quality of designed approaches. It reviews both general
methods and methods specialized to trading. The proposed method is a combination of them.

Abstrakt. �lánek navazuje na p°edchozí výzkum týkající se obchodování s futures. Téma
je zam¥°eno na hodnocení d°íve navrºených algoritm·. �lánek reviduje hodnotící metody jak
obecné tak zam¥°ené na problematiku obchodování. Výsledkem je kombinovaná metoda, která
je testována a hodnocena v záv¥re£né £ásti.

1 Introduction

The paper towards automatic trading system for the futures contracts. The previous
research concerns the task de�nition and basic solution [3, 4]. The previous work proposed
many approaches and we have to compare them in order to select the most suitable one.
Two subtask are considered: First is how to recognize the good approach standalone, and
second deals with comparison of two approaches and selecting the better one.

To recognize a good approach, a �nal pro�t can be used as the measure of a success.
However in trading applications, the continuous development of the cumulative pro�t has
higher impact than the �nal pro�t. The analyzing the cumulative is more complex due
to working with the whole sequence, but can bring better insight to approach quality.

The comparison of two approaches seems to be easy, when the approaches are tested
on common data set. When even more data sets are available, the comparison becomes
complex, because each data set produces one dimension in results, then the comparison
of multidimensional results is needed. The typical problem is: Approach A makes a total
pro�t at �ve data sets $ 100000 USD, but pro�t was positive at only two data sets.
Approach B makes a total pro�t only $ 50000 USD, but it makes positive pro�t at four of
�ve data sets. Which approach is better? Both approaches can win, but the best should
be chosen according to the preference of trader.

The paper proposes a small review of the comparison methods and applies the methods
to one of the solved problems.

The paper contains two main parts. Section 2 introduces the problematics and de�nes
the task (Sec. 2.1), de�nes a coe�cient characterizing the quality of approach using the
cumulative gain (Sec. 2.2) and introduces methods for multi-dimension comparing (Sec.
2.3). Section 3 introduces futures trading (Sec. 3.1) and coe�cients used in trading (Sec.
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3.2), de�nes algorithm of approaches rating (Sec. 3.3). The algorithm is applied and
commented in Sec. 3.4.

2 Comparing methods

The section deals with de�nition of the solved task and given assumptions.

2.1 Task of interest

We assume a decision maker and system. Decision maker is human or machine with aims
related to the system. The decision maker obtains a data yt at the system, and design
the decision ut to reach his aims. The process is repeated each discrete time instant
t ∈ {1, . . . , T}. The aims of decision maker are characterized by a gain function G, which
maps the system output and decisions to a real number. Higher value indicates higher
success. The decision maker tries to maximize the gain function.

We focus on quality evaluation of designed decisions, hence we assume the knowledge
of a whole data y1, . . . , yT and decision sequence u1, . . . , uT . Moreover, we assume the
knowledge of the gain function:

G : (y1, . . . , yT , u1, . . . , uT )→ R (1)

and its additive shape

G =
T∑
i=1

gi, where gi : (y1, . . . , yi, u1, . . . , ui)→ R, (2)

and gi is called a one-step gain.
Let us de�ne cumulative gain via:

Gt =
t∑

i=1

gi. (3)

The gain is a sum over all time instants {1, . . . , T}, whereas cumulative gain is sum over
the �rst t time steps {1, . . . , t}, t ≤ T . Hence, we use the term �nal gain for the gain from
here onward. Moreover, the cumulative gain can be viewed as a sequence G1, . . . , GT and
characterizes the approach behavior.

We assume that there areM di�erent approaches trying to maximize the gain (2) and
N testing data sets or experiment data available to compare the success of the approaches.
In summary, we have M ×N �nal gains to decide, which approach is the best. Moreover,
we can obtainM×N×T values, in order to analyze the approaches using the cumulative
gains.

2.2 Cumulative gain comparison

It is disputable, whether the �nal gain is a good criterion for rating of the approaches. In
some tasks, the good �nal gain can be reached only by a few last steps, hence the analysis
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of the cumulative gain is required. But working with a whole sequence of cumulative
gain containing T values is di�cult. Hence, it is needed to characterize the quality of
cumulative gain by one coe�cient, and this section de�nes such a coe�cient.

The ideal cumulative gain increases, therefore the knowledge of a trend is important.
To reach this knowledge, the sequence can be �tted by a linear function y(t) = at + b,
where a, b are parameters. We assume a sequence of values G1, G2, . . . , GT , and we search
the best values of coe�cients a, b to minimize squared error mina,b

∑T
t=1(G

t − y(t))2.
The obtained coe�cients amin, bmin characterize the nearest linear approximation of the
original sequence. Hence, the values of amin, bmin can be used to evaluate the success of
the approach.

The coe�cient amin re�ects a trend of cumulative gain. The positive value charac-
terizes an increase, the negative one a decrease. The value of coe�cient a is related to
strength of the increase, higher value means sharper increase. Thus, it can be used as a
relatively good criterion of the approach quality.

On the other hand, the linear approximation is not suitable, when the di�erence
between original sequence and approximation (Gt−amint−bmin) is not normal distributed.
This property cannot be warranted by any cumulative gain. Hence, the credibility of the
coe�cient amin is lowered. The credibility of coe�cient amin is given by value of error
squares s =

∑T
t=1(G

t− amint− bmin)
2, the less value of s brings better credibility of amin.

To obtain one characteristic coe�cient, let us de�ne increase coe�cient cI as follows:

cI =
a

log10(s)
, with s =

T∑
t=1

(Gt − at− b)2, (4)

where amin, bmin are coe�cients of the best linear approximation of the cumulative gain
sequence. The logarithm is used due to big di�erences in values of s for the trading task.

The higher value of cI is rated as better result of an approach. The positive value
of coe�cient cI characterizes the increase of cumulative gain, the weighting by di�erence
s lowers the value of coe�cient for bad �tted sequences. The coe�cient cI covers our
requirements for working with cumulative gain, hence the further sections deals with
comparing results obtained on more data sets.

2.3 Multi-dimension comparing

As was introduced, the comparison of two approach is simply, when they are tested
at one data set, but when more data set is available, the decision become complex.
The complexity originates from fact that the comparison has nature of multidimensional
task, where each data set forms one dimension of compared vectors. Following two
subsections deals with this task. Section 2.3.1 try to transform the multidimensional
task to one-dimensional by weighted summing. Whereas, the Section 2.3.2 let the task
multidimensional and de�nes comparison of vectors.

Analogical with Sec. 2.1, we assume M approaches and N testing data sets. The aim
is select the best approach, hence we form M vectors R1, . . . , RM containing the results,
which are quality measures related to each data sets. The quality measures can be �nal
gain, increase coe�cient, or other variable characterizing the approach quality. Thus,



4

each vector contains N values Ri = (ri1, . . . , r
i
N). Our aim is to chose the best approach

using only this vectors.

2.3.1 Weighted sum

The �rst simply solution is to summarize the results and evaluate

Sm =
N∑

n=1

rmn

for each approach m ∈ {1, . . . ,M}. Then each approach is characterized by one real
number and it is simple to compare them.

Summing the results is simply and e�ective, but has a lot of disadvantages. When one
of data sets produces outstanding results, the total sum is in�uenced by this outlayer and
the results are not correct. Moreover, the maximal obtainable results must be comparable
for all data sets, because the higher potential gives higher weight to given data set. The
maximal and minimal possible value of results can be calculated for some special tasks
and using them the following coe�cient can be de�ned:

FPm
n =

rmn −Gmin
n

Gmax
n −Gmin

n

× 100%, (5)

where Gmin
n and Gmax

n are minimal and maximal result values obtainable at nth data set.
Let the coe�cient is called �nal percentage. The �nal percentage express the percent-
age of success reached by approach according to maximal and minimal potential results
reachable on the given data set. Summing FPm

n over n ∈ {1, . . . , N} brings the equiv-
alent results, where each experiment has the same weight independent on its potential.
Instead of summing, it is better to calculate the mean value:

MFPm =
1

N

N∑
n=1

FPm
n (6)

the results can be interpreted as mean potential percentage of the approach m. Let
coe�cient MFPm is called mean �nal percentage. The coe�cient (6) is generalized
weighted sum. When the minimal results potential equals zero (Gmin

n = 0), then it is
equivalent to weighted sum with weights: wn = 1/Gmax

n .
The coe�cient MFP assigns each approach one number and the searching the best

approach is transformed to sorting the number.

2.3.2 E�cient solution

Another way to compare the vectors R1, . . . , RM is by de�ning dominating and e�cient
solution.

The vector Ri = (ri1, . . . , r
i
N) is dominated by vector Rj = (rj1, . . . , r

j
N) even if following

inequalities are valid:
∀n ∈ {1, . . . , N} rin ≤ rjn,
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and
∃n ∈ {1, . . . , N} rin < rjn.

E�cient solution is such a vector from the set {R1, . . . , RM}, which is not domi-
nated by any other vector. The term of e�cient solution is taken from multiobjective
optimization [1].

Taking only e�cient solutions, the set of outstanding solutions can be found. The
e�ciency does not mix results reached on di�erent data sets, i.e. the outstanding results
on one data set cannot help the approach rating such as in poor summing the gains.

On the other hand, the e�cient solutions typically forms a subset of {R1, . . . , RM}.
Hence, the method does not lead to one best approach, but it excludes a small set of
outstanding approaches. The method cannot prefer one of e�cient solutions, until the
additional information about preferences is not added.

3 Example: commodity futures trading

The commodity futures trading is challenging task related to trading on stock exchanges
and prices speculation. The commodity futures means an contract for delivering the
commodity to given date in future. The price of contract is often object of speculation.

The speculator can speculate for following situations:

Price increase, the speculator buys the contract, it is said to open the long position.
Then, he waits, until the price increases, and sells the contract (it is said to close
the long position).

The pro�t is the di�erence of buy/sell contract price. The di�erence, whether
speculator makes pro�t or loss, depends, whether the price follows his expectation.
Hence, the pro�t from the long position is made, when the price increases, whereas
the speculator loses the same value, when the price decreases.

Price decrease, the speculator sells the contact, it is said to open the short position.
The fact, that he can sell not-owned contract, is related to principles of given
exchange, the speculator can lend the contract for this operation. Then, he will
buy the contract back, it is said to close the short position.

Inde�nite, the speculator has no opened position. He is in so called �at position, or
out of market. Speculator neither pro�ts nor loses by this operation.

A transaction cost must be paid for each contract, which changes the position.
The period from entering the non-�at position at market to leaving the position is

called trade. The trade is very important, because the pro�t in cumulative gain is only
hypothetical. But at the end of the trade, the cumulative gain corresponds with the real
realized pro�t.

3.1 Task de�nition

Let denote the price in time t by yt and position held in time t by ut. The structure of
ut is following: the absolute value |ut| sets the number of contracts in an open position;
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and the signum of ut sets the kind of position, minus for short and plus for long position.
The �at position is characterized by ut = 0.

For this notation the gain function is de�ned as:

G =
T∑
t=1

gt =
T∑
t=1

(yt − yt−1)ut−1 − C|ut − ut−1|︸ ︷︷ ︸
gt

, (7)

where C is the normalized transaction cost. For o�ine experiments, the transaction cost is
arti�cially increased by so-called slippages. Slippages are required due to delay between
prompting the market command and its realization, during this short time period the
price can change. Second reason for slippages is that the action on market changes the
price itself and this is often not included in o�-line experiments. Both reasons causes
that the price in real trading could be di�erent from the value stored in data sets. To
avoid this di�erence, the transaction cost has two parts C = c + s for our task, where
c is transaction cost payed to exchange provider for each contract in position, and s are
slippages, which arti�cially make the transaction cost higher.

The slippages are estimated by an economic specialist. We use values obtained from
Colosseum a.s. due our cooperation. Although the slippages makes the task more di�cult,
the trading system pro�table at o�-line data with slippages has big chance to be pro�table
in real trading.

3.2 Requirements to applicability

The economist have designed a lot of additional criteria to rate, whether the approach is
good or bad. This criteria are closely related to the trading task. Moreover, the economist
will decide, whether the approach will be applied in practice, hence is important to
take this coe�cients and criteria into a consideration. This section overview the main
coe�cients and introduces the criteria required to application of the approaches.

3.2.1 Main coe�cients

Net pro�t is the same variable as the �nal gain (7).

Gross pro�t is the net pro�t calculated only over the pro�table trades. The pro�table
trade is trade which starts with lower value of cumulative gain than �nishes.

Gross loss is analogy with gross pro�t, but for non-pro�table trades. The Gross pro�t
is positive number, gross loss is negative number and net pro�t is sum of them.

Total cost is total amount of transaction cost c payed for realization of decision as was
introduced in Sec. 3.1. The total cost is calculated via: (−1)

∑T
t=1 c|ut − ut−1|.

Total slippages is total amount of slippages s, calculated in analogy with transaction
cost (−1)

∑T
t=1 s|ut − ut−1|. The slippages can be used for analyzing the results,

because in the trading task is typical that slippages make the result negative (see
[2]).
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Trades is count of trades done during the experiment.

Winning/Losing trades is count of trades with positive/negative pro�t.

Days long/short/�at is count of time instants, when a contract was held in long/short/�at
position. (The word 'days' is related to fact that we work with a day-data.)

Maximal drawdown is the biggest negative di�erence in cumulative gain sequence.
This variable characterizes the risk related to given approach. The drawdown of
bad approach is relatively same value as the �nal gain.

Length of drawdown characterizes the length of the maximal drawdown, i.e. how
many time instants was the drawdown realized. Again, the bad approach has
drawdown with comparable length as the data sequence.

3.2.2 Combinations of coe�cients

The previous coe�cient are raw coe�cient obtainable from result. Following coe�cients
can be computed from the raw coe�cients and give us criteria for identifying the good
approach.

Percent pro�t gives percentage of winning trades:

Percent pro�t =
Winning trades

Winning trades+ Losing trades
.

Pro�t factor is ratio of earned and lost money:

Pro�t factor = −Gross pro�t
Loss

.

Pro�t per trade is average pro�t obtained in trade

Pro�t per trade =
Net pro�t
Trades

.

3.2.3 Criteria on good approach

There is a di�erence between theoretical design of approaches and its applicability in
practice. Whereas, the theoretical success is each small bettering of an approach, the
practical application demands signi�cantly good results. The criteria to application of the
tested approach for futures trading were designed by economic specialist from Colosseum
a.s. The criteria are presented in Table 1.

3.3 Algorithm of rating

The decision, which approach is best, should be done using following rules:

1. The non-e�cient approaches are excluded, the �nal gain is taken as measure of
approach quality. This step chooses a subset of the original approaches.
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Coe�cient Relation Value
Net pro�t greater than 0
Maximal drawdown less than 1/10 net pro�t
Length of drawdown less than 250 days
Percent pro�t greater than 0.4
Pro�t factor greater than 1.5
Pro�t per trade greater than $100 USD

Table 1: Requirements on approach to applicability in practice.

Ticker Commodity Exchange
CC Cocoa CSCE
CL Petroleum-Crude Oil Light NMX
FV2 5-Year U.S. Treasury Note CBT
JY Japanese Yen CME
W Wheat CBT

Table 2: Reference markets, their tickers and exchanges.

2. The non-e�cient approaches are excluded, the coe�cient cI is taken as measure of
approach quality. This step chooses a subset of the original approaches.

3. The approaches are sorted by their MFP - the highest value as �rst.

4. The approaches are tested consequently, whether su�ce the requirements on appli-
cable approach. The proving is done over all data sets, hence each approach must
satisfy 6×N conditions. The �rst, su�cient is rated as the best approach, because
is e�cient and has highest MFP.

3.4 Tuning the parameters

We have available price history from �ve market (see Tab. 2) and approach presented in
[4], where are 2 parameters the length of regressor l ∈ {1, 2, . . . , 10} and the forgetting
factor λ ∈ {1, 0.999, 0.99, 0.9}. (The explanation of the parameters is not important.)
Thus, we have 40 couples of parameters and our aim is to estimate, which couple is the
best. Due to availability of �ve data sets, the count of experiments is 200.

Table 3 reviews the results obtained by presented method (see Sec. 3.3). The values
in the table were constructed by ordering the MFP coe�cients (see Sec. 2.3.1), where the
highest value of MFP was denoted by 1, second highest by 2 etc. And the highlighted
approaches were marked as e�cient in both steps 1 and 2 of algorithm from Sec. 3.3.

For last step of the algorithm, there is no approach satisfying all requirements for
applicability. The nearest is the approach with the parameters l = 1 and λ = 1, where
are satis�ed 20 conditions from 30.

For the further research, the parameters couple l = 1 and λ = 1 will be used, although
the non-applicability. The reason for this choice is that the given approach is the most
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successful and moreover the analysis with respect to cI coe�cient de�ne in Sec. 2.2
reaches also the best results (see Tab. 4).

The testing of cI coe�cient showed that approaches with value cI > 1.5 have increasing
cumulative gain without big drawdowns. Hence, the coe�cient cI can be used for rating
the best approach in further research.

4 Conclusion

The paper concerns with the criteria of comparing approaches testing on data sets. The
algorithm of the best approach choosing is designed. The algorithm is applied on the
results obtained in tuning approach for futures trading task, and it chooses the best
approach.

The main advantage of the designed algorithm lies in possibility to compare the
approaches tested on more data sets. The algorithm combines the simply method of
weighted sum with e�cients solutions and applicability of approach. This combination
is also great advantage.

The disadvantage of given algorithm is that the algorithm can exclude all approaches
due to applicability conditions. And opposite, the e�cient solution often selects big
subset.

The algorithm will be tested in further research, but it make the ground idea for
further algorithms in rating the approaches.
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l λ = 1 λ = 0.999 λ = 0.99 λ = 0.9

1 1 21 26 28
2 13 17 23 30
3 8 15 25 27
4 6 19 18 33
5 2 11 20 35
6 3 12 22 36
7 5 14 31 37
8 4 16 29 38
9 10 24 34 39
10 9 7 32 40

Table 3: Comparison of 40 approaches for Bellman function estimation, each approach
is de�ned by couple l and λ, the e�cient solutions are highlighted and the numbers in
table are order of approaches by MFP.

l λ = 1 λ = 0.999 λ = 0.99 λ = 0.9

1 1.0551 -0.3355 -1.2594 -1.7522
2 0.2444 -0.1365 -0.3234 -1.6807
3 0.6385 0.3818 -0.5466 -1.7164
4 0.4861 -0.0215 0.1084 -1.8719
5 0.6014 0.2383 -0.2796 -2.3504
6 0.6046 0.0992 -0.4663 -2.8133
7 0.5481 0.1318 -1.6669 -3.4924
8 0.5002 -0.0869 -1.2192 -3.7682
9 0.3632 -0.7274 -1.9563 -4.3346
10 0.2865 0.4667 -1.7901 -5.0938

Table 4: The mean value increase coe�cient cI calculated over available data sets.


