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estimator overestimates the true tail exponent and can hardly be used on samples with
small length. Utilizing our results, we introduce a Monte Carlo-based method of estimation
- h for the tail exponent. Our proposed method is not sensitive to the choice of tail size and
Hill estimator . . X .
a-stable distributions works well also on small data samples. The new estimator also gives unbiased results with
Tail exponent estimation symmetrical confidence intervals. Finally, we demonstrate the power of our estimator on
the international world stock market indices. On the two separate periods of 2002-2005
and 2006-2009, we estimate the tail exponent.
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1. Introduction

Statistical analysis of financial data has been of vigorous interest in recent years, mainly among the physics
community [1-7]. One of the main reasons driving the research is the use of established statistical characteristics to better
describe and understand real-world financial data.

Dynamics of financial markets is the outcome of the large number of individual decisions based on heterogeneous
information. Financial returns representing the interaction of the market participants have been assumed to be normally
distributed for a long time. The strongest argument supporting this assumption is based on the central limit theorem, which
states that the sum of a large number of independent, identically distributed variables from a finite-variance distribution
will tend to be normally distributed. However, financial returns showed to have heavier tails, which is a possible source of
infinite variance.

Mandelbrot [8] and Fama [9] proposed stable distributions as an alternative to the Gaussian distribution model. Stable
distributions were introduced by Levy [10], who investigated the behavior of sums of independent random variables.
Although we know other heavy-tailed alternative distributions (such as student’s t, hyperbolic or normal inverse Gaussian),
stable distributions are attractive for researchers as they are supported by the generalized central limit theorem. The
theorem states that stable laws are the only possible limit distributions for properly normalized and centered sums of
independent, identically distributed random variables. A sum of two independent random variables having a Lévy stable
distribution with parameter « is again a Lévy stable distribution with the same parameter «. However, this invariance
property does not hold for different values of «. Observed stock market prices are argued to be the sum of many small
terms; hence, a stable model should be used to describe them. When o < 2, the variance of the stable process is infinite and
the tails are asymptotically equivalent to a Pareto law, i.e., they exhibit power-law behavior. Stable distributions have been
proposed as a model for many types of physical and economic systems as they can accommodate fat tails and asymmetry
and fit the data well. Examples in finance and economics are given in Refs. [8,9,11] or [12].
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There have, however, been many applications of Lévy stable distributions to empirical datasets which could raise doubts
about the correctness of the tail estimate [13-15]. There is a significant difference between the value of the estimated «
(based on the whole dataset) and the estimated tail exponent. The tail exponent is estimated only on an arbitrarily chosen
part of the data [16,17]. Since extreme observations of prices on financial markets are of great importance, this problem
deserves further research. If ¢ is underestimated, the occurrence of extreme events is overestimated. Ref. [ 17] shows that the
estimated tail exponent is very sensitive to changes in parameters and to the size of the dataset; hence, the estimates can be
highly misleading. Simulations show that a large dataset (10%) is needed for identification of the true tail behavior. The logical
step is to use high-resolution data analysis. Ref. [ 13] was one of the first to use high-frequency data, doing so for analysis of
the German stock market index. Several studies concerning estimation of stable distributions followed Refs. [1,18,14].

In our paper, we append an analysis of the finite sample properties of the Hill estimator to the discussions. Moreover, we
introduce a Monte Carlo-based tail exponent estimation method. In the first part, we briefly discuss the basics of the Hill
estimator as well as stable distributions and their tail behavior. In the second part, we provide the finite sample properties
of the Hill estimator and discuss the implications for its use on real-world data. In the third part, we utilize the results and
propose a tail exponent estimation method based on Monte Carlo simulations. Finally, we illustrate the power of our method
of estimation on leading world stock market indices and conclude.

2. Estimation of the tail exponent

The simplest method of estimating the tail exponent « is log-log linear regression. This method is very sensitive to
the sample size and the choice of the number of observations used in the regression. Ref. [17] shows that it also yields
biased estimates and cannot be used for financial applications. The popular method for estimating the tail exponent is
also the rank-frequency plot. Gabaix and Ibragimov [19] proposed an extension of the rank-frequency plot with lower bias
for small samples. The maximum likelihood method of estimation still belongs to most reliable techniques. For example
Clauset et al. [20] combine maximume-likelihood fitting with goodness-of-fit tests based on Kolmogorov-Smirnov statistic
and likelihood ratios. Recently, many authors have studied the return intervals between consecutive price fluctuations above
some volatility threshold. Podobnik et al. [21] found a simple relationship between the mean return intervals 7, and the
threshold q, 74 o g%, where « is the power-law exponent. As authors show, this approach can also be used for estimation
of the power-law exponent for financial data.

Another widely used tail exponent estimator, equivalent to maximum-likelihood fitting, based on order statistics is
proposed in Ref. [16]. Pickands [22] and Dekkers [23] show other variations of the Hill estimator. Mittnik et al. [24] provide
a modification of the Pickands estimator using high-order approximation. A quantile method is used by McCulloch [25]. For
more detailed discussion on tail estimators see Refs. [11,26].

The Hill estimator tends to overestimate the tail exponent of a stable distribution if the value of « is close to 2 and the
sample size is not very large. For a more detailed discussion see Refs. [17,11]. Several researchers have used misleading
estimators of the tail exponent « to conclude that various datasets had @ > 2, i.e., the data are not stable. First of all, let us
briefly introduce the Hill estimator.

2.1. Hill estimator

The most popular method for estimating the tail exponent « is the Hill estimator [16]. The Hill estimator is used to
estimate the tail exponent only; therefore, it does not assume a parametric form for the entire distribution function.

Let us suppose that X1, X5, . . ., X; is asequence of i.i.d. random variables with the distribution function F (x). Furthermore,
let us assume that 1 — F(x) has a regularly varying upper tail with coefficient —c.
PX>x)=1—Fkx) =x%L(x), x>0, (1)

where the function L(x) is slowly varying at infinity' (for more details see Ref. [26]).

Eq. (1) indicates that the right tail of the distribution function F (x) has the same asymptotic properties as the tail of the
Pareto distribution, see Ref. [27].

Let us define the order statistics X(1y > X2y > - -+ > X(,). The Hill estimator of the tail exponent « is defined as

-1
(1§
oy = (k > logX-is1) — 10gX(n-k)> ; (2)

i=1
where k is a truncation (or smoothing) parameter which defines a subsample used for the estimation, k < n.
Many authors have studied the asymptotical properties of the Hill estimator. According to Mason [28], the Hill estimator
is weakly consistent if

k
k — oo, - —>0 asn— oo. (3)
n

1y Eq. (1) is satisfied, the distribution function F(x) belongs to the maximum domain of attraction of ¢, F € MDA(¢), Where ¢, (x) = e, x > 0,
a > 0. For a more detailed treatment of the extreme value theory, see Ref. [11]



J. Barunik, L. Vacha / Physica A 389 (2010) 4863-4874 4865

Furthermore, Goldie and Smith [29] proved the asymptotic normality of the Hill estimator, i.e.,

V@' —a™) ~N@©O,a7?). (4)

Consequently, &y is also approximately normal with mean « and variance «?/k. Moreover, Ref. [30] shows that the Hill
estimator is asymptotically quite robust with respect to deviations from independence. For a more detailed discussion of
the properties of the Hill estimator see Refs. [26,11].

2.2. Choice of optimal k in the Hill estimator

In the classical approach, there is considerable difficulty in choosing the right value of the truncation parameter k since
it can influence the accuracy of the estimate significantly. The methods of choosing k from the empirical dataset are very
often based on a trade-off between the bias and the variance of the Hill estimator. k has to be sufficiently small to ensure
the observations X3y > X2, > --- > X still belong to the tail of the distribution. On the other hand, if k is too small, the
estimator lacks precision.

There are several methods for choosing the “optimal” value of k. The first possibility is to make a Hill plot, where &y is
plotted against k, and look for a region where the graph has fairly stable behavior to identify the optimal value of the order
statistics k. Alternatively, there are other methods for choosing the optimal k, such as the bootstrap approach [31].

In our simulations later in this paper, we show that choosing k from the Hill plot is very inaccurate and for higher values
of « it is almost impossible to set its right value. Resnick [26] clearly illustrates why this technique very often leads to a
“Hill horror plot” from which it is not possible to discern the correct value of k. Using the Hill estimates from simulated
random variables on a standard symmetric Lévy-stable distribution for different values of k, we also clearly demonstrate
that choosing the “correct” k is a very difficult task. Furthermore, for a short dataset (<10°), it is usually impossible to find
out the right value of k, especially when « is close to 2. Unfortunately, this setting is very often the case when we analyze
empirical financial market data.

To overcome the problem of choosing the optimal k, we introduce a new estimation method based on the comparison of
the estimate of the empirical dataset with estimates on a pre-simulated random variable from the standard Lévy distribution
for k on the interval [1%-20%]. The main advantage of our approach is that it does not assume the smoothing parameter k
to be known.

3. Finite sample properties of the Hill estimator for different heavy tails

We would like to study the finite sample behavior of the Hill estimator in detail for stable distributions with different
heavy tails first. Let us start with an introduction to stable distributions.

3.1. Stable distributions

Stable distributions are a class of probability laws with appealing theoretical properties. Their application to financial
modeling comes from the fact that they generalize the Gaussian distribution, which does not describe well-known stylized
facts about stock market data. Stable distributions allow for heavy tails and skewness. In this paper, we provide a basic idea
about stable distributions. Interested readers can find the theorems and proofs in Refs. [32-34].

The reason for the term stable is that stable distributions retain their shape up to scale and shift under addition: if X, X,
X5, ..., X, are independent, identically distributed stable random variables, then for every n

X1+X2+"'+Xnicnx+dn (5)

for constants ¢, > 0 and d,,. Equality (i) here means that the right-hand and left-hand sides have the same distribution.
Normal distributions satisfy this property: the sum of normals is normal. In general, the class of all laws satisfying (5) can
be described by four parameters, («, 8, v, 8). The parameter « is called the characteristic exponent and must be in the range
a € (0, 2]. The coefficients c, are equal to n/%, The parameter g is called the skewness of the law and must be in the range
—1 < B < 1.If B = 0, the distribution is symmetric, if § > 0 it is skewed to the right, and if 8 < 0 it is skewed to the left.
While parameters « and S determine the shape of the distribution, y and § are scale and location parameters, respectively.

Due to a lack of closed form formulas for probability density functions (except for three stable distributions: Gaussian,
Cauchy, and Levy), the a-stable distribution can be described by a characteristic function which is the inverse Fourier
transform of the probability density function, i.e., ¢(u) = E exp(iuX).

A confusing issue with stable parameters is that there are multiple parametrizations used in the literature. Nolan [32]
provides a good guide to all the definitions. In this paper, we will use Nolan’s parametrization, which is jointly continuous
in all four parameters. A random variable X is distributed by S(«, 8, y, §) if it has the following characteristic function:
exp (—y"‘lu|°‘ [1 +ip (tan ”70‘) (sign u)(|yul™* — 1)] + iSu) a#1

o) = 2
exp (—y|u| |:1 + iﬂ;(sign u) ln(y|u|)] + i(Su) a=1.

(6)
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There are only three cases where a closed-form expression for density exists and we can verify directly if the distribution
is stable—the Gaussian, Cauchy, and Lévy distributions. Gaussian laws are stable with « = 2 and 8 = 0. More precisely,
N(0, %) =5(2,0, o/ﬁ, 0). Cauchy laws are stable with @ = 1and 8 = 0, Cauchy(y, ) = S(1, 0, y, §); and finally, Lévy
laws are stable with @ = 1/2 and 8 = 1; Lévy(y, 8) = S(1/2, 1, v, y + §). Ref. [32] shows these examples in detail.

For all values of the parameter « < 2 and —1 < 8 < 1, stable distributions have two tails that are asymptotically power
laws. The asymptotic tail behavior of non-Gaussian stable laws for X ~ S(«, 8, v, §) witha < 2and —1 < 8 < 1isdefined
as follows:

lim x*P (X >x) = ¢, (1+ ) y© @
X—>00
lim X*P (X < —x) = co (1= B) ¥, ®
X—>00
where
L (T
Cy = sin (7) I'(a)/m. 9
If the data are stable, the empirical distribution function should be approximately a straight line with slope —« in a log-log

plot.
A negative aspect of non-Gaussian stable distributions (« < 2) is that not all moments exist.? The first moment EX is not
finite (or is undefined) when o < 1. On the other hand, when 1 < o < 2 the first moment is defined as

o

Non-Gaussian stable distributions do not have finite second moment. It is also important to emphasize that the skewness
parameter f is different from the classical skewness parameter used for the Gaussian distribution. It cannot be defined
because the second and third moments do not exist for non-Gaussian stable distributions. The kurtosis is also undefined,
because the fourth moment does not exist either.

The characteristic exponent « gives important information about financial market behavior. When o < 2, extreme events
are more probable than for the Gaussian distribution. From an economic point of view, some values of the parameter « do
not make sense. For example, in the interval 0 < o < 1 the random variable X does not have a finite mean. In this case, an
asset with returns which follow a stable law with 0 < o < 1 would have an infinite expected return. Thus, we are looking
for 1 < o < 2 to be able to predict extreme values more precisely than by the Gaussian distribution.

3.2. Research design

The simulations are constructed so as to show how the Hill estimator behaves for different heavy tails data. For this
purpose we use the Lévy stable distribution depending on parameters («, 8, ¥, §) and set them to («, 0, ﬁ/z, 0), where
1.1 < o < 2 with a step of 0.1. For each parameter «, 1,000 time series with lengths from 103 to 10° are simulated and the
tail exponent is estimated using the Hill estimator for k < 1% and k € (1%, 20%] separately.

In other words, we simulate the grid of different « for different series lengths. For each position in the grid, we estimate
the tail exponent using the Hill estimator. This allows us to study the finite sample properties of the Hill estimator for
different length series, different tail exponents and different k.

3.3. Results from Monte Carlo simulations

The biggest problem with the optimal choice of k is that « is not known, so we cannot really choose the optimal k. In our
simulation, we show the finite sample properties of the Hill estimator k < 1% and k € (1%, 20%] separately.

3.3.1. Hill estimation fork > 1%

We begin the simulations with a time series length of 103, which is a usual sample length for real-world financial data, i.e.,
it equates to approximately 4 years of daily returns of a stock. Fig. 1 shows the 95% confidence intervals® of the Hill estimate
for different « for all k. It can be seen that it is very difficult to statistically distinguish between different tail exponents «
and it is very unclear which optimal k we should choose.

Fig. 2 shows much more precise results for a time series of length 10°. This allows for narrow confidence intervals, but
even with this exact result we can see that the Hill estimator is problematic as it overestimates the value of the tail exponent
and we cannot pick the optimal k even from this large grid of simulated data. The only way of estimating the tail exponent
would be to pick k, estimate the tail exponent, and compare it to the grid of simulated confidence intervals. But we would
still need at least a 10° sample size to achieve an exact result. As we can see in Fig. 1, we cannot get a statistically significant
estimate on data with length 10°. Table 1 shows the optimal value of k, where the Hill estimator gives a good estimate of
the tail exponent o.*

2 1tis possible to define a fractional absolute moment of order p, where p is any real number. For 0 < p < «, E |X| is finite, but forp > o, E [X|P = 00 [32].
3 All confidence intervals are computed from the asymptotic normality of the sample.
4 Optimal value of k is such k for which the difference of the estimated and simulated « is minimal.
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Fig. 1. Hill estimate of the tail exponent on the 1%-20% tail, 10% length.
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Fig. 2. Hill estimate of the tail exponent on the 1%-20% tail, 10° length.

The figures suggest that the Hill estimator does not overestimate the tail exponent on the 1% tail so strongly. Thus, we
repeat the exercise for k < 1%.

3.3.2. Hill estimation fork < 1%

Figs. 3-6 show the behavior of the Hill estimator on generated datasets with length 10°~10°. The results suggest that it
makes no sense to use the Hill estimator for tail exponent estimation even on the 10° dataset. For example, o of 1.2-1.6
cannot be statistically distinguished from each other. Only the dataset with length 10° shows better results. Using the



4868 J. Barunik, L. Vacha / Physica A 389 (2010) 4863-4874
Table 1
Optimal k for various sample lengths n from 10> to 10°.
n a
1.1 1.2 1.3 14 1.5 1.6 1.7 1.8 1.9 2
10° 9.11% 15.92% 17.28% 18.53% 20.42% 20.84% 21.15% 21.78% 22.20% 21.88%
10* 8.88% 13.55% 17.17% 18.73% 19.95% 20.83% 21.38% 21.71% 21.97% 22.01%
10° 8.04% 13.73% 16.84% 18.78% 20.04% 20.80% 21.35% 21.73% 21.98% 22.10%
10° 8.29% 13.60% 16.80% 18.74% 20.00% 20.80% 21.35% 21.73% 21.98% 22.15
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Fig. 3. Hill estimate of the tail exponent on the <1% tail, 10° length.
Table 2
Optimal range of k for series length 106 for k < 1%.
o Range
1.2 0.08%-1%
1.3 0.1%-0.35%
14 0.06%-0.22%
15 0.15%-0.25%
1.6 0.01%-0.12%
1.7 0.03%-0.12%
1.8 0.02%-0.08%
1.9 0.02%-0.06%
2 0.005%-0.03%

simulations on such a long dataset, we can choose the optimal range of k. More exactly, the optimal k interval is such where
the estimated value of the tail exponent does not deviate from its theoretical value by more than 5%. Table 2 shows the
optimal sets of k where the Hill estimator was a good estimate of the tail exponent.

In order to estimate the true tail exponent, we need a dataset with a length of at least 10°; otherwise, inference of the
tail exponent may be strongly misleading and rejection of the Lévy stable regime may not be appropriate. For the sake of
clarity, we have to note that the results for the « = 2 should be interpreted with caution as is the special case of Gaussian

distribution which does not have heavy tails. Thus, the Hill estimator is not appropriate in this case.

In the next section, we develop a Monte Carlo-based tail exponent estimator which deals with all of these problems.
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Fig. 5. Hill estimate of the tail exponent on the <1% tail, 10° length.
4. Tail exponent estimator based on Monte Carlo simulations

After the study of the finite sample properties of the Hill estimator, we utilize the results and introduce our Monte Carlo-
based estimator. The Monte Carlo technique provides an attractive method of building exact tests from statistics whose
finite sample distribution is intractable but can be simulated; thus, it can be utilized in our problem.

We construct our Monte Carlo-based tail exponent estimator as follows.

(1) Generate 10001i.i.d. a-stable distributed random variables X0 of length n,i.e. X{°, x;°, .. ., X;° ~ S(ag, 0, +/2/2, 0), for
each ag parameter from the range [1.01, 2] with step 0.01.
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(2) For each X*0, estimate the tail exponent using the Hill estimator for all k from the interval (1%-20%), i.e. &q, k-

(3) From Monte Carlo simulations compute the expected value E[&q, «] of the Hill estimator for all k and all cg.

(4) Using the Hill estimator estimate the tail exponent &.mp « 0N an empirical dataset of length n for all k from the interval
(1%-20%).

(5) Our Monte Carlo-based estimator &yc is defined as

Gye = argmin Y [Fomp k — g i]l- (11)
apel1.01,.2]

In other words, we simulate random variables X of length n for 100 different «’s (representing the tail parameter) 1000
times.> On these random variables, we estimate the tail exponent using the Hill estimator on the (1%-20%) tail (as we have
shown in the previous section, the Hill estimator does not really work on k < 1% for series of lengths < 10°). Using the
simulated variables, we get the expected value of the Hill estimator for all k and all «.

After we have obtained the behavior of the Hill estimator for a large grid of different tail exponents and k, we can estimate
the tail exponent on the empirical dataset. Thus, we estimate the tail exponent of empirical data using the Hill estimator for
all values of k. As the last step, we minimize the loss function which is defined by Eq. (11) through the whole simulated grid
of ag. Our Monte Carlo-based tail exponent estimate éyc is the value for which the distance between E[Qg, k] and Gempk is
minimal (Eq. (11)).

4.1. Properties of apc

In this section we study the finite sample properties of our estimation method. For this purpose, we will again use
the Monte Carlo procedure, which will provide us the statistical inference for our estimator. We simulate independent
identically a-stable distributed random variables of length n from S(«, 0, v/2 /2, 0) with varying o € [1.01, 2] with step
0.01. For each simulated sample, we apply our method and estimate the tail exponent. This Monte Carlo simulation allows
us to derive the finite sample properties of our estimator, so we can get the confidence interval of the estimates.

Fig. 7 plots the 99%, 95%, and 90% quantiles of our tail exponent estimator based on 100 simulations. Table 3 provides
exact simulated confidence intervals for several values of «.

In comparison with the Hill estimator, or any other tail exponent estimator, our method has several advantages. The
largest advantage is that the method is not sensitive to the choice of k, unlike most of the other estimation methods discussed
in the previous text. Our method also works well for smaller samples, i.e. 103, as it yields much narrower confidence intervals
compared to the Hill estimator.

5 A more exact confidence interval can be obtained by generating more random variables.
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Fig. 7. Plots of 99%, 95%, and 90% quantiles of our Monte Carlo-based tail exponent estimator based on 100 simulations.

Table 3

Quantiles of our estimation method.
o 0.5% 2.5% 5% e 95% 97.5% 99.5%
1.1 1.01 1.01 1.01 1.11 1.21 1.22 1.25
1.2 1.01 1.04 1.05 1.19 1.31 1.34 1.38
1.3 1.12 1.13 1.15 1.29 1.41 1.42 1.49
14 1.23 1.26 1.27 1.39 1.54 1.56 1.58
1.5 1.34 1.35 1.37 1.49 1.61 1.63 1.66
1.6 1.38 1.48 150 1.60 1.77 1.80 1.88
1.7 1.55 1.56 1.58 1.69 1.79 1.83 1.87
1.8 1.62 1.62 1.66 1.79 1.88 1.89 1.96
1.9 1.77 1.77 1.78 1.89 1.98 2 2
2 1.94 1.95 1.95 2 1.99 2 2

5. Empirical study

To illustrate the power of our tail exponent estimation method, we employ empirical data. We use the daily returns of
the following stock market indices: the German DAX 30, the US S&P 500 and Dow Jones Industrial 30 (D]I), the London FTSE
100, the Nikkei 225, and the Singapore Straits Times from the beginning of 2002 to the end of 2009. More precisely, we
choose the last 2000 observations for each index and divide them into two equal periods, 2002-2005 and 2006-2009, each
containing 1000 observations. This way, we can compare different world stock market indices and their behavior before and
during the current financial crisis.

Figs. 9 and 10 show the histograms of the tested indices. Fig. 9 shows the histograms for the first period 2002-2005,
while Fig. 10 shows the histograms for the second period 2006-2009. All the data are leptokurtic, showing excessive peaks
around the mean and thicker tails than those of the normal density. Moreover, the data from the second period tend to show
even more excessive kurtosis and heavier tails than the ones from the first period. This is probably caused by the large price
movements that occurred during the deep financial turmoil in the years 2007-2009. By contrast, the first period of stable
growth is closer to the standard normal distribution.

We use our Monte Carlo method to estimate the tail exponents for all the datasets. Before we start the estimations, we
set the length n of the simulated series from our algorithm to 1,000 so that it corresponds to the length of the empirical
dataset and we can statistically compare the estimates. Table 4 shows the tail exponent estimates with confidence intervals.
Let us further demonstrate the estimation method on the example of the London FTSE 100 index for the second period. Fig. 8
plots the empirical Hill estimates through different k and compares them to 1,000 simulations of « = 1.55, « = 1.69, and
o = 1.87 (these are our Monte Carlo estimates with the 0.025% and 97.5% quantiles). It is immediately visible from the plots
that the loss function defined in our estimation algorithm reaches its minimum for « = 1.69. We plot another two cases
just for illustration of what our estimate looks like at the critical levels. After minimizing the loss function and choosing the
tail exponent, we derive the finite sample properties of the estimate. From Table 4, we can see that 1.55 and 1.87 are the
0.025% and 97.5% quantiles.

Unlike the classical Hill estimation procedure, we can see that our method is not sensitive to the choice of k. Moreover, it
is a much stronger result for the tail exponent, as it accounts for all possible k’s, not only the one chosen. Using the classical
Hill estimation procedure, we would select k and compute the tail exponent, but as we discussed in the previous text, there
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Table 4
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Exact confidence intervals (quantiles) of the estimated tail exponent .

Empirical confidence intervals

0.5% 2.5% 5% Amc 95% 97.5% 99.5%
German DAX 30 2002-2005 1.50 153 1.55 1.64 1.77 1.8 1.85
2006-2009 1.47 153 1.56 1.70 1.79 1.81 1.87
US S&P500 2002-2005 1.53 1.57 158 1.74 1.85 1.88 1.94
2006-2009 1.35 1.38 14 1.54 1.63 1.70 1.72
US DJI 30 2002-2005 1.50 153 1.55 1.69 1.83 1.87 1.89
2006-2009 1.29 1.38 14 1.54 1.66 1.70 1.77
London FTSE 100 2002-2005 1.34 1.42 143 1.57 1.69 1.69 1.71
2006-2009 1.50 1.55 1.55 1.69 1.82 1.87 1.91
Japan Nikkei 225 2002-2005 1.79 1.81 1.84 1.93 1.98 2 2
2006-2009 1.58 1.60 1.62 1.77 1.88 1.89 1.89
Singapore Straits 2002-2005 1.72 1.72 1.74 1.85 1.94 1.95 1.97
2006-2009 1.47 1.50 1.52 1.66 1.78 1.81 1.87
a=1.55 a=1.69 a=1.87
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Fig. 8. Plot of Hill estimates through different k for the FTSE index (second period of 2006-2009) for « = 1.55, « = 1.69, and « = 1.87, which are our
Qe with the 0.025% and 97.5% quantiles.

is always a trade-off between bias and variance when choosing the optimal k. Our method reduces this problem. Finally, the
sample on which we estimate the tail exponent is quite small. In previous sections, we showed that Hill estimation does not
work well for such small samples, but our method works fine.

6. Conclusion

In this paper, we have researched the finite sample behavior of the Hill estimator under «-stable distributions and we
introduce a Monte Carlo-based method of estimation for the tail exponent.

First of all, we provide Monte Carlo confidence intervals for the Hill estimator under different «’s and k on the interval
k e (0,20%] of sample size 10>°-10°. We also provide the optimal range of k for the series length 10°. Based on our
simulations, we conclude that in order to estimate the true tail exponent using the Hill estimator, we need a dataset of at
least 10° length, i.e., high frequency data; otherwise, inference of the tail exponent may be strongly misleading and rejection
of the Lévy stable regime may not be appropriate.

In the second part of the paper, we utilize the results and introduce a tail exponent procedure based on Monte Carlo
simulations. It is based on the idea of simulating a large grid of random variables from the Lévy stable distribution with
different o exponents and estimating the tail exponent using the Hill estimator for all different k. After obtaining the behavior
of the Hill estimator on this large grid of different tail exponents and k, all we need to do is to estimate the tail exponent on
the empirical dataset for all k’s and compare all the values with the simulated grid. Using this algorithm, we get estimates
of the tail exponent.

In comparison with the Hill estimator, or any other tail exponent estimator, our method has several advantages. The
largest advantage is that it is not sensitive to the choice of k. Moreover, the method works well for small samples. The new
estimator gives unbiased results with symmetrical confidence intervals.

Finally, we illustrate the power of our tail exponent estimation method on an empirical dataset. We use daily returns of
leading world stock markets: the German DAX, the US S&P 500 and Dow Jones Industrial (DJI), the London FTSE, the Nikkei
225, and the Singapore Straits Times from the beginning of 2002 to the end of 2009. We divide this period into two equal
sub-periods and compare the tail exponents estimated using our method.
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Appendix

See Figs. 9 and 10.
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