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Abstract. One of the biggest risks arising from financial operations is the risk of 
counterparty default, commonly known as a “credit risk”. Leaving unmanaged, the 
credit risk would, with a high probability, result in a crash of a bank.  In our paper, 
we will focus on the credit risk quantification methodology. Generalizing the well 
known KMV model, standing behind Basel II, we build a model of a loan portfolio 
involving a dynamics of the common factor, influencing the borrowers’ assets, 
which we allow to be non-normal. We show how the parameters of our model may 
be estimated by means of past mortgage deliquency rates. We give a statistical evi-
dence that the non-normal model is much more suitable than the one assuming the 
normal distribution of the risk factors.  
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1 Introduction 

In our paper, we will focus on credit risk quantification methodology. The minimum standards for credit risk 
quantification are often heavily regulated. The current recommended system of financial regulation is formalized 
in the Second Basel Accord (“Basel II,” Bank for International Settlements, 2006). Basel II is a document de-
scribing minimum principles for risk management in the banking sector. It is applicable all over the world, and 
in the European Union it is implemented into European law by the Capital Requirements Directive (CRD) (Eu-
ropean Commission, 2006). The regulation is designed in the way that banks are required to cover with a stock 
of capital a certain quantile loss from a certain risk (i.e. from a risk that counterparty wouldn’t pay back its liabil-
ities). 

Banks usually cover a quantile that is suggested by a rating agency, but with the condition that they have to 
observe the regulatory level of probability of 99.9% at minimum. The regulatory level may seem a bit excessive, 
as it can be interpreted as meaning that banks should cover a loss which occurs once in a thousand years. The 
fact is that such a far tail in the loss distribution was chosen because of an absence of data. The quantile loss is 
usually calculated by a Value-at-Risk type model (Saunders & Allen, 2002; Andersson et al., 2001).  

In this paper, we will introduce a new approach to quantifying credit risk with a focus on a mortgage portfo-
lio which can be classed with the Value-at-Risk models. Our approach is different from the regulatory method in 
the assumption of the loss distribution. In the general version of our model, we assume that risk factors that drive 
losses can be distributed not only standard normal assumed by the regulatory framework but can follow a more 
general distribution in time, the distribution of the common factor possibly depending on its history (allowing us 
to model a dynamics of the factor which appeared to be necessary especially during periods like the present 
financial crisis). To test our model, we will demonstrate its goodness-of-fit on a nationwide mortgage portfolio. 
Moreover, we will compare our results with the regulatory approach. 

The paper is organized as follows. After the introduction we will describe the usual credit risk quantification 
methods and Basel II-embedded requirements in detail. Then we will derive a new method of measuring credit 
risk, based on the class of generalized hyperbolic distributions and Value-at-Risk methodology. In the last part, 
we will focus on the data description and verification of the ability of the class of generalized hyperbolic distri-
butions to capture credit risk more accurately than the regulatory approach. At the end we summarize our find-
ings and offer recommendations for further research. 

2 Credit risk measurement methodology 

The Basel II allows two possible quantification methods for the credit risk: the “Standardized Approach” (STA) 
and the “Internal Rating Based Approach” (IRB). The IRB approach is more advanced than STA and is based on 
a Vasicek-Merton credit risk model (Vasicek, 1987) The main difference between STA and IRB is that under 
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IRB banks are required to use internal measures for both the quality of the deal (measured by the counterparty’s 
“probability of default – PD”) and the quality of the deal’s collateral (measured by the deal’s “loss given default 
– LGD”). The PD is the chance that the counterparty will default (or, in other words, fail to pay back its liabili-
ties) in the upcoming 12 months. A common definition of default is that the debtor is more than 90 days delayed 
in its payments (90+ days past due). LGD is an estimate of how much of an already defaulted amount a bank 
would lose.  

PD is usually obtained by one of the following methods: from a scoring model (Moody's KMV, JP Morgan 
CreditMetrics, etc.), from a Merton-based distance-to-default model (mainly used for commercial loans; Merton, 
1973 and 1974) or as a long-term stable average of past 90+ delinquencies. 

Two basic measures of credit risk are expected and unexpected losses. The expected loss is the mean loss in the 
loss distribution, whereas the unexpected loss is the difference between the expected loss and a chosen quantile 
loss in the loss distribution. The expected (average) loss that could occur in the following 12 months is calcu-
lated as follows: 

 (1) 

where EAD is the exposure-at-default3 and EL is the abbreviation for “Expected Loss.”  

For calculations of unexpected losses, it is usually assumed that losses follow a certain distribution in time. 
The regulatory IRB framework uses for this purpose a mix of distributions of two risk factors, one individual for 
each borrower and one common for all borrowers. Both factors are assumed to follow a standard normal distri-
bution and to be correlated with a certain assigned value of the correlation coefficient. 

3 Our approach 

The usual approach to modelling the loan portfolio value is based on the famous paper by Vasicek (2002) assum-

ing that the value or the -th's borrower's assets at the time one can be represented as      

 (2) 

where  is the borrower's wealth at the time zero,  and  are constants and  is a (unit normal) random 
variable, which may be further decomposed as      

 

where  is a factor, common for all the borrowers, and  is a private factor, specific for the borrower (see 
Vasicek (2002) for details). 

The generalization 

We generalize the model in two ways: we assume a dynamics of the common factor  and we allow non-
normal distributions of both the common and the private factors. Similarly to the original model, we assume that   

 (3) 

where  is the wealth of the -th borrower at the time ,  is a random variable specific to the bor-
rower and  is the common factor following a general (adapted) stochastic process (such an assumption makes 
sense, for instance, if  models a macroeconomic variable or a price on a capital market).  

We assume all  to be mutually independent and idependent of , such that all , 

 , are identically distributied with , , , having a strictly in-

creasing continuous cummulative distribution function  (here, n is the number of borrowers). Note that we do 

not require increments of   to be centered (which may be regarded a compensation for the term  present in 
(1) but missing in (2). 

                                                           
3 Exposure-at-default is a Basel II expression for the amount that is (at the moment of the calculation) exposed to 
default. 
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Percentage loss in the generalized model 

Denote  the history of the common factor up to the time  Analogously to the original 

model, the conditional probability of the banrkupcy of the -th borrower at the time  given  equals to   

 

 

where  are the borrower's debts. 

Denote  the percentage loss of all the portfolio of the borrowers at the time . After taking the same steps 
as Vasicek (1991) (with conditional non-normal c.d.f.’s instead of the unconditional normal ones), we get, for a 

very large portfolio with homogeneous (in the sense that ,  borrowers that      

 

which furter implies that      

 (4) 

hence 

 (5) 

the latter formula determining roughly the dynamics of the process of the losses, the former one allowing us to 
do statistical inference of the common factor based on the time series of the percentage losses.  

To see that the Merton-Vasicek model is a special version of the generalized model, see the Appendix.  

In our version of the model we assume Z  to be normally distributed and the common factor to be multipli-
catively defined by  
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where �,, 21 ςς  are i.i.d. (possibly non-normal) variables (note that our choice of the dynamics corresponds to 
the assumption of i.i.d. returns if the common factor stands for prices of a financial instrument).  Since the equa-

tion (3) may be rescaled by the inverse standard deviation of  Z  without loss of generallity, we may assume that 

 is the standard normal distribution function. By (4), we get that 
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which allows us to use the sample ��� ,, 21 ςς  to estimate parameters of 1ς  (and consequently the distribution of 
the losses). 

As it was already said, we assume the distribution of 1ς  to be generalized hyperbolic and we use the ML es-
timation to get its parameters. Moreover, we compare our choice to several other classes of distributions. 

4 Data and results 

4.1 The class of generalized hyperbolic distributions 

Our model is based on the class of generalized hyperbolic distributions first introduced in Barndorff-Nielsen et 
al. (1985). The advantage of this class of distributions is that it is general enough to describe fat-tailed data. It 
has been shown (Eberlein, 2001, 2002, 2004) that the class of generalized hyperbolic distributions is better able 
to capture the variability in financial data than the normal distribution, which is used by the IRB approach. Gene-
ralized hyperbolic distributions have been used in an asset (and option) pricing formula (Rejman et al., 1997; 
Eberlein, 2001; Chorro et al., 2008), for the Value-at-Risk calculation of market risk (Eberlein, 2002; Eberlein, 
1995; Hu & Kercheval, 2008) and in a Merton-based distance-to-default model to estimate PDs in the banking 
portfolio of commercial customers (e.g., Oezkan, 2002). To verify that our model based on the class of genera-
lized hyperbolic distributions is able to better describe the behavior of mortgage losses, we will use data for the 
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US mortgage market. The dataset consists of quarterly observations of 90+ delinquency rates on mortgage loans 
collected by the US Department of Housing and Urban Development and the Mortgage Bankers Association.4 
The rate used is the best substitute for losses that banks faced from their mortgage portfolios, relaxing the LGD 
variable. The dataset begins with the first quarter of 1979 and ends with the third quarter of 2009. The develop-
ment of the US mortgage 90+ delinquency rate is illustrated in Figure 1. We observe an unprecedentedly huge 
increase in the 90+ delinquency rate beginning with the second quarter of 2007.  

 
Figure 1 Development of US 90+ delinquency rate 

4.2 Results 

We considered several distributions for describing the distribution of 1ς  (hence of 1)(
≥ttL ), namely loglogistic, 

logistic, lognormal, Pearson, inverse Gaussian, normal, gamma, extreme value, beta and the class of generalized 
hyperbolic distributions. The dataset used for distribution fitting was constructed from the above described data 
by using formula (6) from the previous part. In the set of distributions compared, we were particularly interested 
in the goodness-of-fit of the class of generalized hyperbolic distributions and their comparison to other distribu-
tions. For the fitting procedure we used the R package “ghyp”. We used the chi-square goodness-of-fit test. In 
general, only five from the considered distributions were not rejected to describe the dataset based on the chi-
square statistic (on a 95% level). 

Beside the chi-square statistic, we used a different statistic to compare all the tested distributions and sort 
them by their values: the Anderson-Darling statistic (Anderson & Darling, 1952) and the Wasserstein distance. 
All the statistics are measures of the distance between the original sample and the tested distribution. The follow-
ing table summarizes our results. It includes distributions that were not rejected based on the chi-square statistic. 
The table is sorted by the Anderson-Darling statistic: 

 

Table 1 Comparison of goodness-of-fit of tested distributions 

According to the Table 1, both the chi-square and Anderson-Darling statistics show that the generalized 
hyperbolic distribution (GHD) has the best fit. Our calculations show that the class of generalized hyperbolic 
distributions is able to describe the behavior of delinquencies much better than the other distributions widely 
used for risk assessment (normal, lognormal, logistic, gamma), even if we considered the dynamics of the com-
mon factor when using them. This fact can have a large impact on the economic capital requirement, as the class 
of generalized hyperbolic distributions is heavy-tailed and thus would imply a need for a larger stock of capital 
to cover a certain percentile delinquency. We will now demonstrate the difference between the economic capital 
requirements calculated under the assumption that mortgage losses follow a generalized hyperbolic distribution 
and under the Basel II IRB method (assuming standard normal distributions for both risk factors and a 15% cor-
relation between the factors5).  

                                                           
4 The Mortgage Bankers Association is the largest US society representing the US real estate market, with over 
2,400 members (banks, mortgage brokers, mortgage companies, life insurance companies, etc.). 
5 The correlation 15% is a benchmark set for the mortgage exposures in the Basel II framework and thus we will 
use this benchmark for our computations. 

Distribution Wasserstein metric Anderson Darling Chi-square statistic  P-value of chi-square 

Generalized hyperbolic 0.0080 0.193 4.19 0.96 
LogLogistic 0.0089 0.278 5.05 0.93 
Logistic 0.0099 0.309 6.64 0.83 
Inverse Gaussian 0.0141 0.849 17.35 0.10 
Normal 0.0156 0.896 15.96 0.14 
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4.3 Economic capital at the one-year horizon: implications for the crisis 

In this section, we compare the capital requirement calculated by the IRB regulatory approach (assuming that 
both risk factors are driven by the standard normal distribution) and our dynamic framework with a generalized 
hyperbolic distribution. To show the difference between the regulatory capital requirement (calculated by the 
IRB method) and the economic capital requirement calculated by our model, we will perform the economic capi-
tal requirement calculations at the 99.9% probability level as well. 

When constructing loss forecasts, we faced the following problem: we estimated the generalized hyperbolic 
distributions on quarterly observations and thus we needed to transform the quarterly changes obtained to yearly 
figures. In particular, to forecast a yearly loss, we may repeatedly use (4) to get  
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which leads to complicated integral expressions. We therefore decided to use simulations to obtain yearly fig-
ures. We were particularly interested in the following: the capital requirement based on average loss and the 
capital requirement based on last experienced loss. The average loss is calculated as a mean value from the orig-
inal dataset of 90+ delinquencies and serves as a “through-the-cycle” PD estimate. This value is important for 
the regulatory-based model (Basel II) as a “through-the-cycle” PD should be used there. The last experienced 
loss is, on the second hand, important for our model with GHD distribution due to the dynamical nature of the 
model. The next Table summarizes our findings. To illustrate how our dynamic model would predict if the stan-
dard normal and the normal distributions were used, we added this version of the dynamic model as well. 
 
Model Basel II IRB (through-

the-cycle PD) 

Our dynamic model with normal 

distribution 

Our dynamic model with 

GHD 

Distribution used for 

the individual factor 

Standard Normal Standard Normal Standard Normal 

Distribution used for 

the common factor 

Standard Normal Normal Generalized Hyperbolic 

99.9% loss 10.2851% 19.7605% 22.9078% 

Table 2 Comparison of Basel II, Dynamic Normal and Dynamic GHD models tail losses 

The first column in the Table 2 relates to the IRB Basel II model, i.e. a model with a standard normal distri-
bution describing the behavior of both risk factors and the correlation between these factors set at 15%. The 
second column contains results from the dynamic model where a standard normal distribution of the individual 
risk factor is supplemented by the normal distribution, which describes the common factor and its parameters 
were estimated in the same way as those of GHD. The last column is related to our dynamic model where the 
GHD is assumed for the common factor. The results in the Table 2 show that the dynamic model, based on the 
last experience loss, predicts much higher quantile losses in both cases. However, heavy tails of the GDH distri-
bution further evoke higher quantile losses, which at the end lead to a higher capital requirement. 

5 Conclusion 

We have introduced a new model for quantification of credit losses. The model is a generalization of the current 
framework developed by Vasicek and our main contribution lies in two main attributed: first, our model brings 
dynamics into the original framework and second, our model is generalized in that sense that any statistical dis-
tribution can be used to describe the behavior of risk factors.  

To illustrate that our model is able to better describe past risk factor behavior and thus better predicts future 
need of capital, we compared the performance of several distributions common in credit risk quantification. In 
this sense, we were particularly interested in the performance of the class of Generalized Hyperbolic distribu-
tions, which is often used to describe heavy-tail financial data. For this purpose, we used a quarterly dataset of 
mortgage delinquency rates from the US financial market. Our suggested class of Generalized Hyperbolic distri-
butions showed much better performance, measured by the Wasserstein and Anderson-Darling metrics, than 
other “classic” distributions like normal, logistic or gamma. 

In the next section, we have compared our dynamic model with the current risk measurement system re-
quired by the regulation. The current banking regulation uses the standard normal distribution as an underlying 
distribution that drives risk factors for credit risk.  

Our results show that the mix of standard normal distributions used in the Basel II regulatory framework is, 
at the 99.9% level of probability, underestimating the potential unexpected loss on the one-year horizon.  There-
fore, introducing the dynamics may lead to a better capturing of tail losses. Within our dynamic model we have 
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further compared the predictions based on the normal and the class of generalized hyperbolic distributions. Our 
results show that the heavy-tailed generalized hyperbolic distribution predicts the biggest tail loss. 
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