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Abstract. Isobar surfaces, a method for describing the overall shape of multi-
dimensional data, are estimated by nonparametric regression and used to eval-
uate the efficiency of selected markets based on returns of their stock market
indices.
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1 Introduction

This article describes the isobar surfaces approach, which finds a one-dimensional ordering of multidime-
sional data, and surfaces in R

d that enclose the u-th quantile of the data distribution according to the
one-dimensional ordering.

An isobar maps every direction to a particular distance from a center (specified by the quantile
function). The resultant surface for a fixed quantile u is also called an isobar. The article [4] contains the
first definition of isobars. Both authors of [4] extend their work in further articles in different ways.

M.F.Barme-Delcroix continued to study their theoretical properties and their connections with single-
dimensional extreme value theory. In [1] the stability of multivariate intermediate order statistics is
discussed. The article [2] studies multidimensional outlier-prone and outlier-resistant distributions and
[7] extends the theory of outlier-proneness. In [3], limit laws for multidimensional extremes are studied
with the usage of the one-dimensional Fisher-Tippett theorem. P. Jacob, the second autor of [4], focused
on practical estimation of the isobar shapes. The article [5] focuses on estimation of the edge of the
bounded support using nonparametric regression and [6] extends this method for unbounded support
using asymptotical location and isobars.

In our article, we use the shape of the isobar surfaces to test the efficient market hypothesis stating
that returns of efficient stock market indices have the behaviour of Brownian motion. The hypothesis is
stated e.g. in [8]. Various reasons for deviations from this hypothesis for otherwise efficient markets were
discussed in the literature.

The first part is concerned with theory and estimation of isobars. In the second part we perform
a simulation study for Gaussian distribution with different parameters and an assessment of the shape
and stability of the resulting isobars. In the third part we’ll estimate isobars for returns of stock market
indices (the NASDAQ Composite Index and the PX Index) and their lagged values and evaluate the
efficient market hypothesis for each index. Finally, we summarize the results and outline future progress.

2 Isobar surfaces and their estimation

Isobars are defined in generalized polar coordinates, so a coordinate transformation of data is required
beforehand. The transformation of a non-zero vector x ∈ R

d to generalized polar coordinates is

r = ‖x‖2 , θ =
x

‖x‖2
,

where ‖x‖2 is the Euclidean norm of the vector x. Observe that the generalized angle θ lies on S
d−1, the

sphere of unit radius in R
d.

We’ll use the definition of isobar as it appears in [4], pp. 2. For every u ∈ (0, 1), the u-level isobar is
defined as a mapping of a fixed θ to the value of the inverse distribution function of the Euclidean distance
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from the origin: θ → F−1
R |Θ(u). The name “u-level isobar” will also be used interchangeably for the surface

Su = F−1
R |Θ(u) determined by each θ with a fixed quantile u in the inverse of the conditional distribution

function F−1
R |Θ. For this definition and the estimation method described later to be valid, the random

variable X = (R,Θ) whose multidimensional realizations comprise our sample needs to satify certain
requirements. We assume continuity of the mariginal density fΘ(θ), conditional density fR |Θ(r | θ) and
the conditional distribution function FR |Θ(r | θ). We also need the distribution function to be a bijection
so that its inverse exists. The introduced mapping is assumed to be continuous and strictly positive.

A description of the ordering of multidimensional data by quantiles follows. Consider a sample of n
independent realizations of the random variable X, e.g. Xi = (Ri,Θi), 1 ≤ i ≤ n. For every i there
exists an unique ui-level isobar containing the point Xi. Denoting Xi,n the realizations ordered by their
respective quantile values ui, the maximum value is given by the point Xn,n which belongs to the upper-
level isobar with level max1≤i≤n ui. In practice, we’ll assess the 1-level isobar on the grounds of the
asymptotical location property as described in [6]. For large n, the furthest points from the origin lie near
the n−1

n
-level isobar. The 1-level isobar is then simply the edge of the bounded support. Citing Definition

3 from [6], pp. 175:

The distribution of r.v. X on R
d is said to have the asymptotical location property if a.s. for

each ǫ > 0 and each sample Xi, 1 ≤ i ≤ n, with the same distribution as X and with size
n ≥ n0 = n0(ǫ, ω): infx∈S(n−1)/ndist(x,Xn,n) ≤ ǫ and supx∈S(n−1)/n min1≤i≤n dist(x,Xi) ≤ ǫ.

Isobar estimation is performed by the non-parametric regression of [5, 6]. For the estimation we’ll
assume homotheticity of isobars, e.g. for some strictly positive continuous function v(θ) and a distribution
function G,

FR |Θ(r | θ) = G

(

r

v(θ)

)

for r ∈ [0, v(θ)].

The function v(θ) corresponds to the 1-level isobar and unambiguously describes the shape of all isobars.
The distribution of x

v(θ) is spherically symmetric and it can be fully described by G on [0, 1].

We estimate v(θ) using radial regression:

w(θ) = E(R |Θ = θ) =

v(θ)
∫

0

1−G

(

r

v(θ)

)

dr = c v(θ),

where c is the expected value of G. The estimate of the expected value of R given Θ = θ describes the
shape of 1-level isobar up to a multiplicative constant. This constant is chosen in a way that the estimated
expected value shape ŵ(θ) contains the whole data after scaling:

v̂(θ) =
ŵ(θ)

ĉ
, where 1/ĉ = max

1≤i≤n

Ri

ŵ(Θi)
.

The original method in [5] performs non-parametric regression on data transformed into hyperspherical
coordinates (r, ϕ), resulting in the estimate of w(ϕ1, . . . , ϕd−1). This parametrization, however, suffers
from pole singularities in higher dimensions (d > 2), which hurts non-parametric regression. Therefore
we propose to estimate w(θ) in the domain (r, x) after projecting the data on the unit sphere Sd−1

and adding r as an extra coordinate. The estimate of w(θ) then corresponds to the estimate of w(x)
constrained to x ∈ Sd−1. This method is a little slower due to the extra coordinate, but doesn’t suffer
from degeneracies. In the following, we’ll use and evaluate both methods.

3 Simulation study – normal distribution

Since we assume Brownian motion for data obtained from efficient markets, we need to know how non-
parametric isobar shape estimation behaves in the ideal case of normal distribution. Computations were
performed in the R environment for statistical computing. For multidimensional non-parametric regression
the np package was used. The best results were obtained by choosing locally-weighted linear regression,
Gaussian kernels and k-nearest-neighbour kernel bandwidth estimation.
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Figure 1: Isobars for Gaussian distibution samples with n = 3000 and covariance matrices
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Figure 2: Isobars for Gaussian distibution samples with covariance matrix
(

1
0.2
0.2
1

)

and n ∈
{100, 300, 1000, 3000}.

We’ve estimated isobar shapes of two-dimensional Gaussian distribution samples with zero mean
and several covariance matrices. We’ve tested various sample sizes (n: 100, 300, 1000 or 3000) from
distributions with diagonal covariance matrices (variances (1, 1) or (1, 9)) and from distributions with
non-zero covariances (variances: (1, 1), covariances: 0.2 or 0.8). An excerpt of the results is shown in
Figures 1 and 2. Inner shapes represent the expected value estimation ŵ(θ), outer shapes represent the
estimation of the 1-level isobar v̂(θ). The result for the hyperspherical parametrization of [5] is gray while
the result of the proposed projection approach is black. The farthest point for each parametrization is
highlighted. The obtained isobar shapes started resembling circles (uncorellated marginals with equal
variances) and ellipsoids (unequal variances or corellated marginals) around sample sizes 300 and 1000.

The most time-consuming part of estimation is bandwidth selection. Both parametrizations get stuck
in local minima – the hyperspherical parametrization often averages all data (k = n), while the projection
approach has better details, but may overfit (k too small). We solve the problem by allowing the algo-
rithm to take multiple restarts of the randomized bandwidth search, but for larger n, the speed of this
approach can become prohibitive. We’ve chosen 5 and 10 restarts for the hyperspherical and projection
approach, respectively. Since the software doesn’t support periodic domains needed in the hyperspherical
parametrization, we had to emulate this functionality by placing copies of the data along multiples of 2π.
This has slowed the estimation to the level of the second parametrization, which needs an extra coordinate.
The results have shown that both parametrizations perform equally well, at least in the case of d = 2.

4 Application – stock market indices

After the choice of methods of isobar shape assessment we’ll proceed to their application to stock market
index returns. The efficient market hypothesis states that returns (closing−opening price) of market
indices in efficient markets follow Brownian motion (see e.g. [8]). In practice, this assumption is mostly
violated by the periodic structure (day, week, quarter, year) of agent behaviour. Further bias mostly
reveals non-rational behaviour, non-zero information costs or delayed reactions. Our goal is to measure
the efficiency of a market using isobar shapes.

Our data consists of weekly closing and opening prices for the past ten years (sample size around
500) obtained from the Reuters Wealth Manager service. The y-axis denotes the current value of stock
market index returns, the x-axis denotes their lagged values. Under the efficient market hypothesis, the
isobar shape for this configuration should be close to a circle (since Brownian motion is independent with
itself when lagged). From all the studied stock market indices we’ve selected two. The first one is the
NASDAQ Composite Index, comprised of 2742 stocks of the NASDAQ Stock Market. The other one is
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Figure 3: Lags of 1–14 weeks for the NASDAQ Composite Index.
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the PX Index comprised of 14 stocks of the Prague Stock Exchange (only five of which are Czech). We’ve
studied isobar shapes for lags between one and fifteen weeks.

Isobar shapes for the NASDAQ Composite Index (Figure 3) are very close to circles except for the
13-week lag, which can be explained by the expected quarterly periodicity of agent behaviour. Based on
visual examination, the market of NASDAQ may follow the efficient market hypothesis. On the other
hand, the isobar shapes of the PX Index (Figure 4) deviate from circles for longer lags (of 4, 7, and
10–14 weeks). This shows that the efficient market hypothesis doesn’t apply to the market described by
the PX Index. The wild shape of the PX Index two-week lag might also be due to a local minimum of
the bandwidth – the five-fold increase of the number of restarts might not be sufficient yet (indices not
shown here exhibited similar shapes also for the hyperspherical parametrization). This can be resolved by
a further increase of the number of restarts, or by a change of the search algorithm. Another possibility
is to switch to a different software package.

Our future goal is to create a measure of market efficiency. Since this can be formulated as similarity
of the isobar shape to a circle, this measure can be based on the number of neighbors included in the
kernel during bandwidth selection.

5 Conclusion

We’ve investigated the possibilities of using the isobar surfaces approach with homothetic isobars for
both simulated and real data. In the simulation study, we’ve found suitable methods for estimating non-
parametric regression, the sample size needed for the application of our methods, and isobar shapes for
Gaussian distrubusions with varying parameters. This knowledge was applied during the assessment of
the efficient market hypothesis using isobar shapes. We’ve assessed the isobar shape for stock market
index returns. For the NASDAQ Composite Index the shapes supported the efficiency hypothesis, for
the PX Index we can reject the hypothesis. During the estimation of the isobar shape by nonparametric
regression we’ve encountered problems during the automated bandwidth selection – even with an increased
number of parameter search restarts, the search still stays in local minima. The problem can be solved
by changing to a different implementation of nonparametric estimation. This will allow us to focus on
finding an objective measure of market efficiency in our future work.
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Figure 4: Lags of 1–14 weeks for the PX Index.

301


