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Abstract: Economic processes are very often influenced simultaneously by a decision parameter
(that can be chosen according to conditions) and a random factor. Since mostly it is necessary
to determine the decision parameter without knowledge of a random element realization, a
deterministic optimization problem has to be defined. This deterministic problem can usually
depend on an “underlying” probability measure corresponding to the random element. The
investigation of such types problems often belong to the stochastic programming field. The great
attention has been focus on the problems in which objective functions depend “linearly” on the
probability measure. This note is focus on the cases when the above mentioned assumption is
not fulfilled; see e.g. Markowitz functionals or some risk measures. We try to cover static (one
stage problems) as well as dynamic approaches (multistage stochastic programming case).
Keywords:Optimization problems with random element, one stage stochastic programming
problems, multistage stochastic programming problems, linear and nonlinear functionals, risk
measures.

1 Introduction

Optimization problems depending on a probability measure correspond to many applications.
They can be often investigated in the framework of the stochastic programming theory; in one–
stage as well as in multistage settings. Objective functions are there mostly a linear “functional”
of the “underlying” probability measure. However, it happens relatively often that this assump-
tion is not fulfilled (see e.g. [?], [6], [9]). In this note, we focus on this nonlinear case. First, we
recall some corresponding one–stage problems, furthermore we try to generalize the definition
and corresponding results to the multistage case.

2 One–Stage Stochastic Programming Problems

We start with a “classical” one–stage problem. To this end let (Ω,S, P ) be a probability space;
ξ(:= ξ(ω) = [ξ1(ω), . . . , ξs(ω)]) an s–dimensional random vector defined on (Ω,S, P ); F (:=
F (z), z ∈ Rs) the distribution function of ξ; PF , Z(:= ZF ) the probability measure and support
corresponding to F . Let, moreover, g0(:= g0(x, z)) be a real–valued (say continuous) function
defined on Rn × Rs; X ⊂ Rn be a nonempty “deterministic” set. If the symbol EF denotes
the operator of mathematical expectation corresponding to F, then many economic applications
(considering with respect only to one time point) can be introduced as the problem:

Find

ϕ(F ) = inf{EF g0(x, ξ)|x ∈ X}. (1)
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Evidently, the objective function in (1) depends linearly on the probability measure PF .
However, some applications correspond to optimization problems in which this assumption is
not fulfilled. Let us consider the following very simple portfolio problem.:

Find

max

n∑
k=1

ξkxk s.t.

n∑
k=1

xk ≤ 1, xk ≥ 0, k = 1, . . . , n, s = n, (2)

where xk is a fraction of the unit wealth invested in the asset k, ξk denotes the return of the
asset k ∈ {1, 2, . . . n}. If ξk, k = 1, . . . , n are known, then (2) is a linear programming problem.
However, ξk, k = 1, . . . , n are mostly random variables with unknown realizations in a time
decision. If we denote

µk = EF ξk, ck,j = EF (ξk − µk)(ξj − µj), k, j = 1, . . . n, (3)

then it is reasonable to set to the portfolio selection two–objective optimization problem:

Find

max

n∑
k=1

µkxk, min

n∑
k=1

n∑
j=1

xkck,jxj s. t.

n∑
k=1

xk ≤ 1, xk ≥ 0, k = 1, . . . , n, (4)

where
n∑
k=1

n∑
j=1

xkck,jxj can be considered as a risk measure.

Evidently, there exists only rarely a possibility to find an optimal solution simultaneously
with respect to the both criteria. Markowitz suggested (see e.g. [2]) to replace the problem (4)
by one–criterion optimization problem of the form:

Find

ϕM (F ) = max{
n∑
k=1

µkxk−K
n∑
k=1

n∑
j=1

xkck,jxj} s. t.
n∑
k=1

xk ≤ 1, xk ≥ 0, k = 1, . . . , n, (5)

where K ≥ 0 is a constant.

Konno and Yamazaki introduced in [7] another risk measure w(x) by

w(x) = EF |
n∑
k=1

ξkxk − EF [

n∑
k=1

ξkxk]|. (6)

Some other suitable risk measures can be found e.g. in [9].

Evidently, w(x) is a Lipschitz function of EF [
n∑
k=1

ξkxk] and, consequently, the problem

Find

max{λ
n∑
k=1

µkxk − (1− λ)EF |
n∑
k=1

ξkxk − EF [
n∑
k=1

ξkxk]|, λ ∈ 〈0, 1〉 (7)

can be covered by the more general problem:

Find

ϕ(F ) := ϕ̄(F ) = inf{EF g1
0(x, ξ,EFh(x, ξ))|x ∈ X}, (8)

where h(x, z) = (h1(x, z), . . . , hm1(x, z)) is m1–dimensional vector function defined on Rn ×Rs,
g1

0(x, z, y) is a real–valued (say uniformly continuous) function defined on Rn ×Rs ×Rm1 .
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3 Multistage Stochastic Programming Problems

Many real–life problems with a random factor, those are developing over time, can be treated by
multistage stochastic techniques. To this end let random factors ξk and decisions xk k = 0, 1, . . .
follow the scheme:

x0 −→ ξ0 −→ x1(:= x1(ξ0, x0)) −→ ξ1 −→ x2(:= x2(ξ̄1, x̄1)) −→ ξ2 −→ . . . . . . −→

xM−1(:= XM−1(ξ̄M−2, x̄M−2)) −→ ξM−1 −→ xM (:= xM (ξ̄M−1, x̄M−1)) −→ ξM . . . ,
(9)

where x̄k = [x0, x1, . . . , xk], ξ̄k = [ξ0, ξ1, . . . , ξk], k = 0, 1, . . .

Evidently, it follows from the relation (9) that for every k = 0, 1, . . . the decision xk can
depend on x0, . . . , xk−1 and ξ0, . . . ξk−1, however it can not depend on xk+1, . . . and ξk, . . . We
say that the decision has to be nonanticipative.

Considering the above mentioned situation with respect to a discrete time interval 〈0,M〉
and supposing that the decision parameter can be determined with respect to the average of a
corresponding objective function, we can set usually to the relation (9) a “classical” multistage
(M + 1–stage) stochastic programming problem (for more details see e.g. [1] or [10]):

Find

ϕF (M) = inf {E
F ξ0

g0
F (x0, ξ0)|x0 ∈ K0}, (10)

where the function g0
F (x0, z0) is defined recursively

gkF (x̄k, z̄k) = inf{E
F ξ

k+1|ξ̄k=z̄k g
k+1
F (x̄k+1, ξ̄k+1)|xk+1 ∈ Kk+1

F (x̄k, z̄k)},

k = 0, 1, . . . ,M − 1,

gMF (x̄M , z̄M ) := gM0 (x̄M , z̄M ), K0 := X0.

(11)

ξj := ξj(ω), j = 0, 1, . . . ,M denotes an s–dimensional random vector defined on a probabil-
ity space (Ω,S, P ); F ξ

j
(zj), zj ∈ Rs, j = 0, 1 . . . ,M the distribution function of the ξj and

F ξ
k|ξ̄k−1

(zk|z̄k−1), zk ∈ Rs, z̄k−1 ∈ R(k−1)s, k = 1, . . . , M the conditional distribution function
(ξk conditioned by ξ̄k−1); P

F ξ
j , , P

F ξ
k+1|ξ̄k , j = 0, 1, . . . ,M, k = 0, 1, . . . , ,M − 1 the correspond-

ing probability measures; Zj := Z
F ξ

j ⊂ Rs, j = 0, 1, . . . ,M the support of the probability

measure P
F ξ

j . Furthermore, the symbol gM0 (x̄M , z̄M ) denotes a uniformly continuous function

defined on Rn(M+1)×Rs(M+1); X0 ⊂ Rn is a nonempty compact set; the symbol Kk+1
F (x̄k, z̄k) :=

Kk+1

F ξ
k+1|ξ̄k (x̄k, z̄k), k = 0, 1, . . . ,M−1 denotes a multifunction mapping Rn(k+1)×R(k+1) into the

space of subsets of Rn. ξ̄k(:= ξ̄k(ω)) = [ξ0, . . . , ξk]; z̄k = [z0, . . . , zk], zj ∈ Rs; x̄k = [x0, . . . , xk],
xj ∈ Rn; Z̄k := Z̄kF = Z

F ξ0
× Z

F ξ1
. . . × Z

F ξk
, j = 0, 1, . . . , k, k = 0, 1, . . . ,M. Symbols E

F ξ0
,

E
F ξ

k+1|ξ̄k=z̄k , k = 0, 1, . . . ,M−1 denote the operators of mathematical expectation corresponding

to F ξ
0
, F ξ

k+1|ξ̄k=z̄k , k = 0, . . . ,M − 1, F = {F ξ0(z0,F ξ
k|ξ̄k−1

(zk|z̄k−1
), k = 1, . . . ,M}.

The problem (10) is a “classical” one–stage stochastic programming problem depending on
the probability measure Pξ0 , the problems (11) are for k = 0, 1, . . . ,M parametric one–stage
stochastic programming problems depending on the conditional probability measures P

F ξ
k+1|ξ̄k .

Simultaneously, the objective functions depend “linearly” on the above mentioned measures.
However, this assumption is not fulfilled every time; see the former section for one–stage case.
Now we try to generalize one–stage case to the multistage approach. To this end we assume:
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i.1 There exist m1–dimensional vector functions h̄j(xj , zj) = (hj1(xj , zj), . . . , hjm1(xj , zj)) de-

fined on Rn×Rs and real–valued (say uniformly continuous) functions ḡj0(xj , zj , yj) defined
on Rn ×Rs ×Rm1 , j = 0, 1, . . . ,M such that

gM0 (x̄M , z̄M ) :=
M∑
j=0

ḡj0(xj , zj ,E
F ξ

j |ξ̄j−1=z̄j−1 h̄j(xj , ξj)). (12)

The multistage problem (10), (11) then can be (according to (9)) replaced by the following
problem with nonlinear objective functions:

Find
ϕ̄F (M) = inf{E

F ξ0
[ḡ0

0(x0, ξ0,E
F ξ0

h̄0(xj , ξ0)) + ḡ0
F (x0, ξ0)]|x0 ∈ K0}, (13)

where the function g0
F (x0, z0) is defined recursively

ḡkF (x̄k, z̄k) = inf{E
F ξ

k+1|ξ̄k=z̄k [ḡk+1
0 (xk+1, ξk+1,E

F ξ
k+1|ξ̄k=z̄k h̄

k+1(xk+1, ξk+1))+

ḡk+1
F (xk+1, ξk+1)]|xk+1 ∈ Kk+1

F (x̄k, z̄k)},
k = 0, 1, . . . ,M − 2,

ḡM−1
F (x̄M−1, z̄M−1) := inf{E

F ξ
M |ξ̄M−1 ḡM0 (xM , ξM ,E

F ξ
M |ξ̄M−1=z̄M−1 , h̄M (xM , ξM ))|

xM ∈ KMF (x̄M−1, z̄M−1)}, K0 := X0,
ḡMF (x̄M , z̄M ) := ḡM0 (xM , zM ,E

F ξ
M |ξ̄M−1=z̄M−1 h̄M (xM , ξM )).

(14)

4 Problem Analysis

Of course the investigation of the problems (10), (11) or (13), (14) is very complicated. The
stability (w.r.t. probability measure space) and empirical estimates (of the problem (10), (11))
have been investigated e.g. in [3], [5]. To investigate the problems (13), (14) we recall cor-
responding results for one–stage case. To this end let P(Rs) denote the set of Borel prob-
ability measures on Rs, s ≥ 1 and let M1(Rs) = {P ∈ P(Rs) :

∫
Rs
‖z‖1sP (dz) < ∞}, ‖ ·

‖1s denotes L1 norm in Rs. We introduce the assertion proven in [6], based on the ap-
proach employed in [4].
Proposition 1. [6] Let X be a compact set, G be an arbitrary s–dimensional distribution
function. Let, moreover, PF , PG ∈M1(Rs). If

1. g1
0(x, z, y) is for x ∈ X, z ∈ Rs a Lipschitz function of y ∈ Y with a Lipschitz constant Ly;
Y = {y ∈ Rm1 : y = h(x, z) for some x ∈ X, z ∈ Rs},

2. for every x ∈ X, y ∈ Y there exist finite mathematical expectations
EF g

1
0(x, ξ,EFh(x, ξ)), EF g

1
0(x, ξ,EGh(x, ξ)), EGg

1
0(x, ξ,GFh(x, ξ)),

3. hi(x, z), i = 1, . . . ,m1 are for every x ∈ X Lipschitz functions of z with the Lipschitz
constants Lih (corresponding to L1 norm),

4. g1
0(x, z, y) is for every x ∈ X, y ∈ Rm1 a Lipschitz function of z ∈ Rs with the Lipschitz

constant Lz (corresponding to L1 norm),

then there exist Ĉ > 0 such that

|ϕ̄(F )− ϕ̄(G)| ≤ Ĉ
s∑
i=1

∞∫
−∞

|Fi(zi)−Gi(zi)|dzi. (15)
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Evidently, the assertion of Proposition 1 can be employed for the investigation of empirical
estimates of the problem (8) (for more details see [6]). There has been proven that convergence
rates of the problems (1), (8) are (under the corresponding assumptions) the same. They can
depend on the tails of one–dimensional marginals distribution functions.

To investigate the problem (13), (14) we introduce a system of the next assumptions:

i.2 There exists a random vector εk := εk(ω)), k = . . . ,−1, 0, 1, . . . defined on (Ω,S, P )

• ξ0, εk (defined on (Ω,S, P ), k = 1, 2, . . . are stochastically independent,

• εk, k = 0, 1 . . . are identically distributed. (We denote the distribution function cor-
responding to ε1 by the symbol F ε),

i.3 there exists a Lipschitz vector (s–dimensional) function H(z) defined on Rs such that (for
sequence of s–dimensional random vectors {ξk}∞k=−∞ one of the following conditions is
valid

• ξk = εkH(ξk−1), k = . . .− 1, 0, 1, . . . ,

• ξk follows random sequence such that ξk = εk +H(ξk−1), k = . . .− 1, 0, 1, . . .

i.4 The multifunction Kk+1
F (x̄k, z̄k), k = 0, 1, . . . ,M − 1 do not depend on the system F .

A similar system of the assumptions have been already employed in [5], [8].

Employing the proofs technique of the paper [6] we can (under some additional assumptions)
obtained (for problems (13), (14)) very similar results to them for one–stage case. Evidently,
to this end it is necessary to find out assumptions under which the functions ḡkF (x̄k, z̄k), k =
0, . . . ,M are uniformly continuous and Lipschitz functions of zk with the Lipschits constant not
depending on x̄k, z̄k−1. Furthermore the constraint sets have to be compact sets Kk+1

F (x̄k, z̄k),
k = 0, 1, . . . , M − 1 have to be compact. To this end the approach of the papers [3], [5] can be
employed. However, more detailed investigation is over the possibility of this note.

5 Conclusions

In the note we have tried to introduce some types of optimization problems in which objective
functions are not linear “functionals” of the “underlying” probability measures. Furthermore, we
tried to give a brief sketch of their stability and empirical estimates investigation. According to
this, it is possible to see that the results in the case of linear dependence and some nonlinear case
are the same for corresponding one–stage problems. Moreover, if the random element follows
autoregressive random sequences (in the multistage case) we can obtain also very similar results
for the multistage case.
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Department of Econometrics
Institute of Information Theory and Automation
Academy of Sciences of the Czech Republic
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