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Abstract. Ramsey model belongs to “classical” economic dynamic models.
It has been (1928) originally constructed (with a farmer’s interpretation) in
a deterministic discrete setting. To solve it Lagrangean or dynamic program-
ming techniques can be employed. Later, this model has been generalized to a
stochastic version. Time horizon in the original deterministic model as well as
in modified stochastic one can be considered finite or infinite.

We plan to deal with the stochastic model and finite horizon. However, in
spite of the classical approach to analyze it we employ a stochastic program-
ming technique. This approach gives a possibility to employ well known results
on stability and empirical estimates also in the case of the Ramsey model. How-
ever, first we introduce some confidence intervals. To obtain the new assertions
we restrict our consideration mostly to the case when the “underlying” random
element follows autoregressive (or at least Markov) sequence.
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1 Introduction

1.1 Deterministic Approach

To recall a “classical” deterministic Ramsey farmer model (in a discrete setting with a finite horizon) let
the time interval be divided into equal length subintervals denoted by t = 0, 1, . . . T ; Kt and Nt denote
the invested amounts of capital and labor in period t; Yt denote the amount of corn production in
the period t; Ct denote the consumption. Furthermore, let F, U denote production and utility functions
both defined on the corresponding subsets of R2 and RT+1 of the Euclidean spaces. If we assume that

Yt = F (Nt, Kt),

f(Kt) := F (N, Kt) + (1− δ)Kt, Nt = N, N ∈ N given, t = 0, . . . , T, (1)

where δ ∈ 〈0, 1〉 is the rate of capital depreciation, N denotes the set of natural numbers, then we can
recall a classical Ramsey problem ([2]) as the following deterministic optimization problem:

Find
ϕ := ϕ(K0, F, U) = max

{C0, ..., CT }
U(C0, . . . , CT ),

(C0, C1, . . . , CT ) := ((K1, C0), (K2, C1), . . . , (KT+1, CT )) ∈ K(f, F, K0),

(2)

where

K(f, F, K0) = {(Kt+1, Ct) : Kt+1 + Ct ≤ f(Kt),

0 ≤ Ct,

0 ≤ Kt+1, t = 0, . . . , T}; K0 knowm.

(3)

If K0 and F, f are known, then it is possible to determine (under general conditions) the optimal
(Kt+1, Ct) for every t = 0, . . . , T.
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Remark. In the classical Ramsey model it is assumed: There is no free lunch; 0 = F (0, 0), f(0) = 0; F
is a strictly increasing in both of its arguments, concave (i.e. we rule out increasing returns to scale) and
twice continuously differentiable.

Furthermore, evidently it is reasonable to assume that the production function F is nonnegative.
According to this fact, denoting by K a set that cover possible values Kt, t = 0, . . . , T and assuming
that there exist functions F , F̄ (or constants) defined on R2 such that

F (N, K) ≤ F (N, K) ≤ F̄ (N, K), t = 0, . . . , T, K ∈ K,

we can see that K(f, F , K0) ⊂ K(f, F, K0) ⊂ K(f, F̄ , K0),

ϕ(K0, F , U) ≤ ϕ(K0, F, U) ≤ ϕ(K0, F̄ , U).

(4)

1.2 Stochastic Approach

The problem (2), (3) is a deterministic dynamic optimization problem (with a finite time horizon) not
depending on any random factor. However, (in applications) very often the production function depends
on random elements ξt := ξt(ω), t = 0, . . . , T defined (from the mathematical point of view) on a
probability space (Ω, S, P ). We try to analyze this stochastic case successively, first, we assume:

i.1 There exist nonnegative functions F̄t, f̄t, t = 0, . . . , T, defined on R3 and R2 such that

F (N, Kt) := F̄t(N, Kt, ξ
t), N ∈ N given,

f̄(Kt) := f̄t(Kt, ξ
t) = F̄t(N, Kt, ξ

t) + (1− δ)Kt, t = 0, . . . , T. (5)

The problem (2), (3) is in this case replaced by the problem:

Find
ϕ := ϕ̄(K0, F̄

T , U) = max
{C0, ..., CT }

U(C0, . . . , CT ) (6)

subject to the constraints set

K̄(f̄ , F̄T , K0) := {(Kt+1, Ct) : Kt+1 + Ct ≤ f̄t(Kt, ξ
t),

0 ≤ Kt+1,

0 ≤ Ct, t = 0, 1, . . . , T},

K0 known, F̄ t := F̄ t = (F̄0, F̄1, . . . , , F̄t), t = 0, . . . , T.

(7)

Furthermore, if we can assume that for an α ∈ 〈0, 1) there exist nonnegative functions F̄t, α, F̄
α
t , t =

0, . . . , T defined on R2 (not depending on a random element) such that

P{ω : F̄t, α(N, Kt) ≤ F̄t(N, Kt, ξ
t) ≤ F̄αt (N, Kt), t = 0, . . . , T} ≥ 1− α, (8)

then employing (1), (5) and setting f = f(Kt) := ft(Ft), f̄t(Kt, ξ
t) := f̄t(F̄t, ξ

t), t = 0, 1, . . . , T, we
obtain

P{ω : ft(F̄t, α) ≤ f̄t(F̄t, ξt) ≤ ft(F̄αt ), t = 0, . . . , T} ≥ 1− α. (9)

According to (7), the definition of K and ϕ (in which we replaced successively F by Ft, α and Fαt , t =
0, . . . , T ) we obtain

P{ω : K(f, F̄Tα , K0) ⊂ K̄(f̄ , F̄T , K0) ⊂ K(f, F̄T, α, K0) } ≥ 1− α. (10)

where F̄Tα = (F̄0, α, . . . , F̄T, α), F̄T, α = (F̄α0 , . . . , F̄
α
T ).

Proposition 1. Let i.1 be fulfilled. Let, moreover, for an α ∈ 〈0, 1〉 the relation (8) be fulfilled, then

P{ω : ϕ̄(K0, F̄
T
α , U ) ≤ ϕ̄(K0, F̄

T , U) ≤ ϕ̄(K0, F̄
T, α, U)} ≥ 1− α,

Proposition 1 gives a confidence interval for the optimal value of the problem (6) and (7) under the
assumption that the realization of (ξ0, . . . , ξT ) will be known at the beginning of the problem. Conse-
quently, it corresponds to some type of anticipative solution. Of course, this assumption is not realistic
and the following section better corresponds to a real situation. To this end, first we shall construct
the corresponding multistage programming problem and restrict our consideration to Markov type de-
pendence and furthermore to an autoregressive type of “underlying” sequences. Employing this special
cases we construct confidence intervals and furthermore we sketch a possibility to employ stochastic pro-
gramming results achieved for stability and empirical estimates to the dynamic Ramsey model with finite
horizon.



2 Multistage Stochastic Programming Approach

We assume:

i.2 The sequences of decisions (Kt+1, Ct) and random elements realizations ξt follows the relation

K0 −→ ξ0 −→ (K1, C0) −→ ξ1 −→ (K2, C1) −→ . . . . . . −→

−→ ξT−1 −→ (KT , CT−1),−→ ξT −→ (KT+1, CT ), K0 known,

i.3 the utility function U is additive with a discount factor β ∈ 〈0, 1〉,

U(C0, . . . , CT ) := Uβ(K0, C0, C1, . . . , CT ) =

T∑
t=0

βtut(Ct), (11)

where ut is an increasing utility function corresponding to the individual time point t ∈ {0, 1, . . . , T},

i.4 it is reasonable to determine a solution w.r.t. the mathematical expectation of the utility function.

According to i.2, the decision (Kt+1, Ct), t = 0, . . . , T is evidently nonanticipative; it means that for
every t ∈ {0, . . . , T}, (Kt+1, Ct) can depend on ξ0, . . . , ξt, K0, . . . , Kt, C0, . . . , Ct−1, but it can not
depend on ξt+1, . . . , ξT , Kt+2, . . . , KT+1, Ct+1, . . . , CT . If we define the mappings K̄t by

K̄t(Kt, ξ
t) := Kt(f̄ , F̄t, K0) = {(Kt+1, Ct) : Kt+1 + Ct ≤ f̄t(Kt, ξ

t),

0 ≤ Kt+1,

0 ≤ Ct }, t = 0, 1, . . . , T,

(12)

and if symbols F ξ
0

, F ξ
t|ξ̄t−1

denote the distribution function of ξ0 and the conditional distribution func-
tions of ξt conditioned by ξ̄t−1, then we can set to the stochastic Ramsey model (with the finite horizon
T ) the following multistage (T + 1– stage) stochastic programming problem:

Find

ϕ̄F (K0, F̄
T , U ) = EFξ0g0

F (K0, F̄
T , U, ξ0),

g0
F (K0, F̄

T , U, ξ0) = max
(K1, C0)∈ K̄0(K0, ξ0)

EF ξ1|ξ0 g
1
F ( K̄1, C̄0, F̄ 0, ξ̄1),

where the function g1
F (K̄1, C̄0, F̄ 0, ξ̄1) is defined recursively

gtF (K̄t, C̄t−1, F̄ t−1, ξ̄t) = max
(Kt+1, Ct)∈K̄t(Kt, ξt)

[
t∑

v=0
βvuv(Cv) + E

F ξ
t+1|ξ̄t g

t+1
F (K̄t+1, C̄t, F̄ t, ξ̄t+1)],

t = 1, . . . , T − 1 and,

gT−1
F (K̄T−1, C̄T−2, F̄T−1, ξ̄T−1) =

max
(KT , CT−1)∈K̄T−1(KT−1, ξT−1)

[
T−1∑
v=0

βT−1uv(CT−1) + E
F ξ

T |ξ̄T−1 max
(KT+1, CT )∈K̄T (KT , ξT )

βTuT (CT ),

gTF (K̄T , C̄T−1, F̄T , ξ̄T ) := max
(KT+1, CT )∈K̄T (KT , ξT )

T∑
t=1

βtu(Ct), K0 known,

(13)
where the symbol F denotes a system of the probability (mostly conditional) measures:

F = {Fξ0 , F ξ
t+1|ξ̄t , t = 0, . . . , T − 1}

ξ̄t = (ξ0, . . . , ξt), K̄t = (K0, . . . , Kt), C̄t = (C0, . . . , Ct).
(14)

Remark. We assume that all symbols in (12) and (13) are meaningful.

Evidently, for every t = 0, 1, . . . , T optimal decision (Kt+1, Ct) is a function of ξt. Consequently,
every realization of g0

F (K0, F̄
T , U, ξ0) is a random value with the realization denoting ϕ̄RF (K0, F̄

T , U).
Consequently, it is reasonable to construct confidence intervals, investigate stability and empirical esti-
mates properties. To this end we assume:



i.5. • The random sequence {ξt}T+1
t=−∞ fulfils the Markov property,

• there exist constants (degenerate random values) ξ̄t, α, ξ̄
α
t , t = 0, . . . T, α ∈ 〈0, 1) such that

Pξ0|ξ−1{ω : ξ̄0, α ≤ ξ0(ω) ≤ ξ̄α0 } ≥ 1− α,
Pξt|ξt−1{ω : ξ̄t, α ≤ ξt(ω) ≤ ξ̄αt } ≥ 1− α indenpedently on ξt−1, t = 0, . . . , T,

• for every F̄t the function (defined by the relation (5)) f̄t(F̄t, ξ
t) is an increasing function of ξt.

and if we define systems Fα, Fα (of degenerate distribution functions) by

Fα = {Fξ0(z) = δξ̄0, α(z), F ξ
t+1|ξt(z) = δξ̄t, α(z), t = 0, 1, . . . , T − 1},

Fα = {Fξ0(z) = δξ̄α0 (z), F ξ
t+1|ξ̄t(z) = δξ̄αt (z), t = 0, 1, . . . , T − 1},

(15)

then evidently we can obtain successively

Pξ̄T {ω : K̄t(Kt, ξ̄t, α) ⊂ Kt(Kt, ξ
t) ⊂ K̄t(Kt, ξ̄

α
t ), t = 0, 1, . . . , T} ≥ (1− α)T+1,

Pξ̄T {ω : ϕ̄RFα(K0, F̄
T , U) ≤ ϕ̄RF (K0, F̄

T , U) ≤ ϕ̄RFα(K0, F̄
T , U)} ≥ (1− α)T .

(16)

(A case of Markov dependence has been already analyzed for more general multistage problem in [3], [?]

In the case when it is possible to assume:

i.6 There exists a random sequence εt := εt(ω), t = . . . , ,−1, 0, 1, . . . defined on (Ω, S, P ) and a
positive, increasing, Lipschitz function H(z) defined on R1 such that

• ξ−1, εt (defined on (Ω, S, P ), t = 0, 1, . . . are stochastically independent random values,

• εt, t = 0, 1 . . . are identically distributed. (We denote the distribution function corresponding to
ε1 by the symbol F ε and suppose the realization ξ−1 to be known),

i.7 for α ∈ 〈0, 1) there exist εα, ε
α such that P{ω : εα ≤ ε1(ω) ≤ εα} ≥ 1− α,

i.8 ξt follows random sequence such that ξt = εtH(ξt−1), t = . . .− 1, 0, 1, . . . ,

i.9 ξt follows random sequence such that ξt = εt +H(ξt−1), t = . . .− 1, 0, 1, . . .

we can obtain “stronger” results.

Considering the assumptions i.6, i.7 and i.8 we obtain successively

Pξt|ξt−1{ω : εαH(ξt−1) ≤ εtH(ξt−1) ≤ εαH(ξt−1)} ≥ 1− α, t = 0, . . . , T, (17)

Pξ̄T |ξ−1{ω : εαH(ξ−1) ≤ ε0H(ξ−1) ≤ εαH(ξ−1) . . . . . . ,

εαH(ξT−1) ≤ εTH(ξT−1) ≤ εαH(ξT−1)} ≥ (1− α)T ,

K̄t(Kt, ξ
t) := K̄εt (Kt, ξ

t−1, εt) = {(Kt+1, Ct) : Kt+1 + Ct ≤ f̄t(F̄ t, εtH(ξt−1)),

0 ≤ Kt+1

0 ≤ Ct }, t = 0, . . . , T.

Defining in this special case systems Fα(ε), Fα(ε) of degenerate distribution functions by

Fα(ε) = {Fξ0|ξ−1(z) = δξ̄0, α(z), F ξ
t+1|ξ̄t(z) = δξt, α(z), t = 0, 1, . . . , T − 1}, ξt, α = εαH(ξt−1),

Fα(ε) = {Fξ0|ξ−1(z) = δξ̄α0 (z), F ξ
t+1|ξ̄t(z) = δξαt ,(z), t = 0, 1, . . . , T − 1}, ξαt = εαH(ξt−1)

(18)
we can successively obtain

Pξt|ξt−1{ω : K̄t(Kt, εαH(ξt−1) ⊂ Kt(Kt, ε
tH(ξt−1) ⊂ K̄t(Kt, ε

αH(ξt−1), } ≥ 1− α, t = 1, . . . , T,

Pξ̄T {ω : ϕ̄RFα(ε)(K0, F̄
T , U) ≤ ϕ̄RF(ε)

(K0, F̄
T , U) ≤ ϕ̄RFα(ε)(K0, F̄

T , U)} ≥ (1− α)T ,
(19)



where F(ε) is the corresponding system F defined by the assumption i.6., i.8.

Remark. In [2] (pp.35) it is assumed f(Kt+1) = Ztf(Kt)+(1−δ)Kt, where Zt, t = 0, 1, . . . are random
elements. We prefer a stochastic influence given by the assumptions i.8 or i.9.

Theorem 1. Let the assumption i.2, i.3, i.4, i.5 be fulfilled, then

PF ξ̄T {ω : ϕ̄RFα(K0, F̄
T , U) ≤ ϕ̄RF (K0, F̄

T , U) ≤ ϕ̄RFα(K0, F̄
T , U)} ≥ (1− α)T .

If moreover i.6, i.7, i.8 are fulfilled, then

PF ξ̄T {ω : ϕ̄RFα(ε)(K0, F̄
T , U) ≤ ϕ̄RF(ε)(K0, F̄

T , U) ≤ ϕ̄RFα(ε)(K0, F̄
T , U)} ≥ (1− α)T .

Remark.

1. Evidently if α = 0, then the introduced bounds can be obtained by deterministic problems.
2. Replacing i.8 by i.9 we can obtain a similar result to the second assertion of Theorem 1.

3 A Note to Stability and Empirical Estimates

Employing multistage stochastic programming theory we can see that the problem (13) is a system of
parametric one-stage stochastic problems in a relatively simple form. We utilize this fact to investigate
the model. To this end, first, we recall some stability results for one–stage stochastic optimization.

3.1 One–Stage Case

Let X ⊂ Rn be a nonempty compact set, g0(x, ζ) be a function defined on Rn ×R1, ζ := ζ(ω) be a ran-
dom value defined on (Ω, S, P ). If we denote by F ζ , PF ζ , ZF ζ the distribution function, the probability
measure and the support corresponding to the random value ζ, then we can introduce simple one-stage
stochastic programming problem in the following form:

Find
ϕ0(F ζ , X) = inf{EF ζg0(x, ζ)|x ∈ X}.

Let P(R1) denote the set of Borel probability measures on R1 and let the system M1(R1) be defined
by M1(R1) = {P ∈ P(R1) :

∫
R1

|z|P (dz) <∞}. We introduce the following system of assumptions:

A.1 g0(x, ζ) is a uniformly continuous function on X × Rs. Moreover, g0(x, ζ) is for every x ∈ X a
Lipschitz function of ζ with the Lipschitz constant L not depending on x,

A.2 g0(x, ζ) is a uniformly continuous, bounded function on X × Rs. Moreover g0(x, ζ) is for every
ζ ∈ ZF ζ a Lipschitz function on X with the Lipschitz constant not depending on ζ ∈ ZF ζ ,

A.3 • {ζi}∞i=−∞ is a sequence of independent random values corresponding to F ζ ,

• F ζN is an empirical distribution function determined by {ζi}Ni=1, N = 1, 2, . . . ,

A.4 PF ζ is absolutely continuous w.r.t. the Lebesgue measure in R1.

Proposition 2. [5] Let PF ζ , PGζ ∈M1(R1), X be a compact set. If A.1 is fulfilled, then

|ϕ0(F ζ , X)− ϕ0(Gζ , X)| ≤ L
∫
R1

|F ζ(z)−Gζ(z)|dz.

Proposition 3. [9] Let PF ζ ∈M1(R1), the assumptions A.1, A.3 be fulfilled, then

P{ω :

∫
R1

|F ζ(z)− F ζN (z)|dz −→N−→∞ 0 } = 1.

Let t > 0 and A.1 or A.2 and A.3, A.4 be fulfilled, then it is suitable to introduce γ ∈ (0, 1/2) such
that

P{ω : Nγ |ϕ0(F ζ , X)− ϕ0(F ζN , X)| > t} −→N−→∞ 0. (20)

It follows from [7] that γ can depend on the distribution tails. If e.g. the tails are exponential, then the
relation (20) is valid for γ ∈ (0, 1/2). If we can assume only the Pareto tails, then some (weaker) results
can also be proven.



3.2 Multistage Case

First, it follows from i.6 with either ξt = εtH(ξt−1), t = . . . , −1, 0, 1, . . . or with ξt = εt +H(ξt−1), t =
. . . , −1, 0, 1, . . . and the relation (12) that (under rather general assumptions) the set K̄t((Kt ξ

t), t =
0, . . . , are nonempty. Let us, furthermore, to assume:

A.4 F̄t(N, Kt, ξ
t), t = 0, . . . , T are (for every N) Lipschitz functions of (Kt, ξ

t),

A.5 ut(Ct), t = 0, . . . , T are Lipschitz functions of Ct,

then for F ε, Gε ∈ M1(R1), employing the approach of [3], [4], [6] and rather general assumptions, we
obtain two systems F(ε), G(ε) and L̄ > 0 such that

|ϕ̄F(ε)(K0, F̄
T , U) − ϕ̄G(ε)(K0, F̄

T , U)| ≤ L̄
∫
R1

|F ε(z)−Gε(z)|dz.

Furthermore, replacing Gε by an empirical distribution functions F εN determined by {εt}0t=−N we obtain
a system FN (ε) and consequently also an empirical estimate ϕ̄FN (ε)(K0, F̄

T , U) of ϕ̄F(ε)(K0, F̄
T , U). It

follows from Proposition 3 and and the relation (20) that (under very “suitable” conditions) the properties
(convergence rate) of the empirical estimates of ϕ̄F (K0, F

T , U) are very similar to the properties of
empirical estimates in one stage case.

4 Conclusion

In the contribution we have tried to give an analysis of the classical stochastic Ramsey model (with final
horizon) employing stochastic programming approach. A relationship between dynamic programming
and multistage problems has been already investigated (see e.g. [1]). It is very easy to see that the
multistage stochastic programming problem corresponding to the Ramsey model is very suitable for this
investigation. Especially, in the case of Markov dependence or “underlying” autoregressive sequences
it gives possibility to construct confidence intervals for the optimal value (autoregressive case has been
investigated for more general problem already e.g. in [6] and [8]). Evidently, the presented results
can be generalized to more general stochastic programming problem, however this investigation is over
possibilities of this contribution.
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