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Abstract

We introduce a new method for detection of long-range cross-correlations
and cross-multifractality – multifractal height cross-correlation analysis
(MF-HXA). We show that long-range cross-correlations can be caused by
long-range dependence of separate processes and the correlations above
them. Similar separation applies for cross-multifractality – standard sep-
aration between distributional properties and correlations is enriched by
division of correlations between auto-correlations and cross-correlations.
Efficiency of the method is showed on two types of simulated series –
ARFIMA and Mandelbrot’s Binomial Multifractal model. We further ap-
ply the method on returns and volatility of NASDAQ and S&P500 indices
and uncover some interesting results.
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1 Introduction

Research of long-range dependence and multifractality in various time series has
grown significantly during the last years, e.g. Di Matteo (2007); Matos et al.
(2008); Czarnecki et al. (2008); Grech and Mazur (2004). Efficient detection of
long-range dependence and estimation of Hurst exponent is crucial for financial
analysts as its presence has important implications for portfolio selection, option
pricing and risk management. There are several methods for long-range depen-
dence detection, among the most popular are rescaled range analysis (Hurst,
1951), modified rescaled range analysis (Lo, 1991), rescaled variance analysis
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(Giraitis et al., 2003), detrended fluctuation analysis (Peng et al., 1994) and de-
trending moving average (Alessio et al., 2002). For detection of multifractality,
there are three popular methods – multifractal detrended fluctuation analysis
(MF-DFA) of Kantelhardt et al. (2002), generalized Hurst exponent approach
(GHE) of Di Matteo et al. (2003), which is based on height-height correla-
tion analysis of Barabasi et al. (1991), and wavelet transform modulus maxima
(WTMM) of Muzy et al. (1991). The precision of various methods has been
discussed as well (Couillard and Davison, 2005; Grech and Mazur, 2005; Weron,
2002; Barunik and Kristoufek, 2010; Kristoufek, 2010).

Recently, the examination of long-range cross-correlations has become of an
interest as it provides more information about the process. Podobnik and Stan-
ley (2008) generalized detrended fluctuation analysis for two time series and
introduced detrended cross-correlation analysis (DCCA). Zhou (2008) further
generalized the method and introduced multifractal detrended cross-correlation
analysis. In this paper, we introduce two new methods, which are a general-
ization of of height-height correlations of Barabasi et al. (1991) – multifractal
height cross-correlation analysis (MF-HXA) and its special case of height cross-
correlaction analysis (HXA).

The paper is structured as follows. In Section 2, we briefly discuss the ba-
sic notions of long-range correlations and multifractality. Section 3 introduces
the method of MF-HXA and discusses long-range cross-correlations and cross-
multifractality in detail. In Section 4, we show the efficiency of the method on
two simulated types of processes. In Section 5, we apply MF-HXA on daily re-
turns and volatility of NASDAQ and S&P500 between 1.1.2000 and 31.12.2009.
We find that there are significant cross-correlations in the process of volatilities
which is mainly caused by the long memory in the separate processes. Moreover,
multifractal analysis reveals that the correlations are the highest for the extreme
events whereas the multifractality remains rather weak. Section 6 concludes.

2 Long-range correlations and multifractality

In this section, we present basic notions of multifractality, long-range correla-
tions and long-range cross-correlations. As the subject is widely discussed in the
recent literature, we present only brief description. For more detailed reviews,
see Beran (1994); Kantelhardt (2009); Embrechts and Maejima (2002).

Stationary process is long-range dependent if autocorrelation function ρ of
said process decays as ρ(k) ≈ Ck2H−2 for lag k →∞. Parameter 0 < H < 1 is
called Hurst exponent after water engineer Harold Edwin Hurst who used the
exponent for description of river flows behavior of the Nile River (Hurst, 1951;
Mandelbrot and van Ness, 1968).

A critical value of Hurst exponent is 0.5 and suggests two possible processes –
either an independent process (Beran, 1994) or a short-term dependent process
(Lillo and Farmer, 2004). If H > 0.5, auto-covariances decay hyperbolically and
are positive at all lags, the process is then called long-range dependent with pos-
itive correlations (Embrechts and Maejima, 2002) or persistent (Mandelbrot and
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van Ness, 1968). On the other hand, if H < 0.5, auto-covariances again decay
hyperbolically and are negative at all lags and the process is said to be long-
range dependent with negative correlations (Embrechts and Maejima, 2002) or
anti-persistent (Mandelbrot and van Ness, 1968). The persistent process implies
that a positive movement is statistically more likely to be followed by another
positive movement or vice versa. On the other hand, the anti-persistent process
implies that a positive movement is more statistically probable to be followed
by a negative movement and vice versa (Vandewalle et al., 1997).

If the process can be described by single Hurst exponent H, it is called
monofractal. If different Hurst exponents are needed for various scales, the
process exhibits crossovers. Further, there can be different Hurst exponents
for parts of the series, which is solved by a use of time-dependent (or local)
Hurst exponent (Grech and Mazur, 2004). The most complicated is the case
when there is a whole spectrum of Hurst exponents which is needed for a full
description of the process made of many complex fractal processes (Kantelhardt
et al., 2002).

Both of the above described phenomena can be present in the relation be-
tween two separate series. A series may be long-range dependent but can also
have a long memory of a different process so that it is long-range cross-dependent
with Hurst exponent Hxy. Cross-correlation function ρxy of processes xt and
yt then decays as ρxy ≈ Ck2Hxy−2. Similarly to the standard case, if the whole
spectrum of cross-correlation Hurst exponents Hxy is needed for description
of cross-correlations between two processes, the relation is cross-multifractal.
Further features of long-range cross-correlations and cross-multifractality are
discussed in following sections.

3 Multifractal height cross-correlation analysis

We introduce the multifractal height cross-correlation analysis (MF-HXA) in
this section. The connection to the generalized Hurst exponent approach (GHE)
is discussed in detail as well as a crucial division of long-range cross-correlations.
The last subsection discusses a detection of cross-multifractality in a pair of
series.

3.1 Method

Detection of long-range dependence and estimation of generalized Hurst expo-
nent H(q) of Barabasi et al. (1991) is based on q-th order height-height corre-
lation function of time series X(t), with q > 0, as

Kq(τ) =
1

T − τ

T−τ∑
t=0

(|X(t+ τ)−X(t)|q) (1)

which scales as

Kq(τ) ≈ cτ qH(q). (2)
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We generalize the method presented above and introduce the multifractal
height cross-correlation analysis (MF-HXA) which can be used for the detection
of long-range correlations and multifractality between two separate time series.

In the procedure, we take the first differences of time series {x(t)}Tt=0 and
{y(t)}Tt=0 and obtain {4x(t)}Tt=1 and {4y(t)}Tt=1. The differences are further
standardized by deduction of the corresponding mean µ and division by the
corresponding standard deviation σ so that we get new series {4x̃(t)}Tt=1 =

{4x(t)−µx

σx
}Tt=1 and {4ỹ(t)}Tt=1 = {4y(t)−µy

σy
}Tt=1. Further, the series are cumu-

lated so that we obtain {X(t)}Tt=0 and {Y (t)}Tt=0 with X(t) =
∑t
i=14x̃(i) and

Y (t) =
∑t
i=14ỹ(i). Moreover, X(0) = Y (0) = 0. Generalizing Equation 1 for

two time series, we obtain

Kxy,q(τ) =
1

T − τ

T−τ∑
t=0

(|[X(t+ τ)−X(t)][Y (t+ τ)− Y (t)]|q/2) (3)

For q = 1, generalized height correlation function represents the scaling of
absolute deviations of covariates, and for q = 2, it corresponds to standard cross-
correlation function. We propose multifractal height cross-correlation analysis
(MF-HXA) based on the generalization of Equation 2. Scaling relationship
between Kxy,q(τ) and generalized cross-correlation Hurst exponent Hxy(q) is
obtained as

Kxy,q(τ) ≈ cτ qHxy(q). (4)

For q = 2, the method can be used for the detection of long-range cross-
correlations solely and we call it height cross-correlation analysis (HXA). Ob-
viously, for {x(t)}Tt=0 = {y(t)}Tt=0, MF-HXA turns into the generalized Hurst
exponent approach of Di Matteo et al. (2003), which is equivalent to height-
height correlation analysis of Barabasi et al. (1991).

3.2 Two types of cross-corelations

Similarly to Hurst exponent H(2), the cross-correlation Hurst exponent 0 <
Hxy(2) < 1 has a critical value of 0.5 which indicates that the examined series
are cross-independent (or cross-short-range-dependent). For Hxy(2) > 0.5, the
series are cross-persistent so that an increment (a decrement) in 4x(t)4y(t) is
more statistically probable to be followed by another increment (decrement)
in 4x(t + 1)4y(t + 1). Reversely for Hxy(2) < 0.5, the series are cross-
antipersistent so that an increment (a decrement) in 4x(t)4y(t) is more statis-
tically probable to be followed by a decrement (an increment) in4x(t+1)4y(t+
1).

For cross-independent and cross-short-range-dependent processes, the cross-
correlations at high lags are not significant so that [X(t+ τ)−X(t)][Y (t+ τ)−
Y (t)] ≈ 0. If T � τ , it can be easily shown that

Hxy(q) ≈ Hxx(q) +Hyy(q)

2
(5)
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Therefore, Hxy(2) 6= 0.5 can be caused by long-range dependence of the two
processes even if there are no ”true” long-range cross-correlations. Therefore,
we need to distinguish between two types of long-range cross-correlations: (i)
primary long-range cross-correlations caused by true long-range interrelation
between two series where the series is not only affected by its own long-range
dependence but also by the long memory of the other series, and (ii) secondary
long-range cross-correlations which are caused by long-range dependence of the
separate series. To distinguish between the two types of cross-correlations, we
can use Equation 5.

3.3 Cross-multifractality

If a spectrum of Hurst exponents Hxy(q) is needed to describe the relationship
between two time series, the series are cross-multifractal. The generalized cross-
correlation Hurst exponent Hxy(q) is independent of q for monofractal series or
it is dependent on q for multifractal series. For high qs, the averages in Equation
3 are dominated by high values of [X(t + τ) − X(t)][Y (t + τ) − Y (t)]; for low
qs, the averages are dominated by low values of [X(t + τ) − X(t)][Y (t + τ) −
Y (t)]. Therefore, Hxy(q) is expected to be decreasing in q. Moreover, the
influence of joint distributional properties implies that multifractality can be
due to the cross-correlations as well as the broadness of the joint-distribution
(Kantelhardt, 2009). Again, the effect of correlations can be separated into two
– auto-correlations and cross-correlations according to Equation 5.

To examine a scale of multifractality, there are two measures of multifractal-
ity usually used – α and f(α). These are used as an additional tool to a simple
examination of the behavior of Hxy(q) as the generalized exponents can vary
significantly even for monofractal processes (Kantelhardt et al., 2002). Both
measures are partially connected to the scaling exponent τ(q), which is defined
as τ(q) = qH(q) for a standard case and as τ(q)xy = qHxy(q) from Equations 2
and 4. Singularity strength, or Hölder exponent, α is a characteristic measure
of a series whereas singularity spectrum f(α) characterizes a dimension of a
series characterized by α. To obtain α and f(α), we generalize the procedure of
Barabasi et al. (1991) for two time series.

To characterize the relationship between the series X(t) and Y (t), we con-
struct the a probability measure pt(τ) connected to a hierarchy of changes of
the two series. The measure is calculated as

pxy,t(τ) =

√
|[X(t+ τ)−X(t)][Y (t+ τ)− Y (t)]|∑T−τ

t=1

√
|[X(t+ τ)−X(t)][Y (t+ τ)− Y (t)]

. (6)

As pxy,t(τ) is a standard probability measure, it holds that
∑T−τ
t=1 pxy,t(τ) =

1 and pxy,t(τ) ≥ 0. We further define a generating function for two time se-
ries χq,xy(τ), which is associated with the probability measures pxy,t(τ), and
corresponding generalized dimensions Dxy,q as
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χxy,q(τ) =

T−τ∑
t=1

pqxy,t(τ). (7)

χxy,q(τ) = τ (q−1)Dxy,q . (8)

Finally, we use Legendre transformation and obtain singularity strength α
through change of generalized dimension Dxy,q with varying q. Singularity
spectrum f(α) is then obtained with a use of both α and Dxy,q. The specific
relationships hold as follows

αxy =
∂[(q − 1)Dxy,q]

∂q
(9)

f(αxy) = qαxy − (q − 1)Dxy,q (10)

The above described lengthy procedure can be alternatively replaced by a
more simple one. If we assume that the probability measure pxy,t(τ) describes
the hierarchy of both series X(t) and Y (t) uniformly, we can write pxy,t(τ) = 1

T
for τ → 0. Such assumption allows to use only Hxy(q) for the construction of
singularity strength α and singularity spectrum f(α). It then holds that1

αxy =
∂[qHxy(q)]

∂q
−Hxy(1) (11)

f(αxy) = q
∂[qHxy(q)]

∂q
− qHxy(q) (12)

Note that for each of Equation 9 – 12, a unity is sometimes added to both
values of α and f(α) in the literature dealing with multifractal spectrum and
singularities (Kantelhardt et al., 2002).

4 Two illustrative examples

To validate MF-HXA, we present results for two randomly generated processes
– two independent ARFIMA processes and two independent multifractal series
based on Mandelbrot’s Binomial Multifractal model. Note that both variants
of the processes are independent so that the expected cross-correlation Hurst
exponents Hxy(q) are equal to arithmetic means of Hxx(q) and Hyy(q) of the
separate processes.

1For a detailed derivation, see the Appendix of Barabasi et al. (1991)
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4.1 Two ARFIMA processes

Autoregressive fractionally integrated moving average models (ARFIMA) are
generalization of autoregressive moving average models (ARMA) of Box and
Jenkins (1970) which allow for long-range dependence. With a use of backshift
operator B, ARFIMA models are represented by (1−

∑p
i=1 ϕiB

i)(1−B)dXt =

(1 +
∑q
i=1 θiB

i)εt, where (1 − B)d =
∑d
k=0

(−1)kBkΓ(d+1)
Γ(k+1)Γ(d−k+1) (see Baillie et al.

(1996) for details). d is a fractional differencing parameter and it holds that
d = H − 0.5.

In Figure 1a, we show estimates of Hxx(q), Hyy(q) and Hxy(q) for two in-
dependent ARFIMA processes with Hxx = 0.7 and Hyy = 0.9 with T = 1000,
τmin = 2, τmax = 100 and q = 0.1, 0.2, . . . , 9.9, 10. Even though the both series
are monofractal, the generalized Hurst exponents range from Hxx(0.1) = 0.7442
to Hxx(10) = 0.6579 and from Hyy(0.1) = 0.9281 to Hyy(10) = 0.8546. The
differences are due to finite sample size and emphasize a need for using α and
f(α) as the measures of multifractality. Importantly, the estimates of the gen-
eralized Hurst exponents characterizing the long-range dependence solely are
close to the expected values – Hxx(2) = 0.7134 and Hyy(2) = 0.9035. Further,
the estimates of cross-correlation Hurst exponents Hxy(q) satisfy the relation of
Equation 5 with only small deviations holds for all qs.

4.2 Mandelbrot’s Binomial Multifractal series

Mandelbrot’s Binomial Multifractal (MBM) is the simplest multifractal measure
(Mandelbrot et al., 1997). Let m0 > 0, m1 > 0 and m0 +m1 = 1 and let us work
on interval [0,1]. In the first stage, the mass of 1 is divided into two subintervals
[0,1/2] and [1/2,1], when there is m0 in the first subinterval and m1 in the
second one. In following stage, each subinterval is again halved and its mass is
divided between the smaller subintervals in ratio m0 : m1. After k stages, we
obtain a series of 2k values. Note that the values are deterministically given as
there is no noise added in the simplest version of the method. For an interval
[z, z+ 2−k], the value µ has a value of µ[z, z+ 2−k] = mkϕ0

0 mkϕ1

1 , where ϕ0 and
ϕ1 stand for relative frequencies of numbers 0 and 1 in a binary development of
2kz, respectively.

In Figure 1b, we show estimates Hxx(q), Hyy(q) and Hxy(q) for two inde-
pendent MBM models with m0 = 0.2 and m0 = 0.4, respectively. We generated
the series with 10 steps and obtained T = 1024 observations and kept other
parameters the same so that MF-HXA is run with τmin = 2, τmax = 100 and
q = 0.1, 0.2, . . . , 9.9, 10. The variation of Hxx(q), Hyy(q) and Hxy(q) is much
stronger than in the case of monofractal ARFIMA models. The values range
from Hxx(0.1) = 0.8645 to Hxx(10) = 0.4305 and from Hyy(0.1) = 0.8175 to
Hyy(10) = 0.6819 for the respective processes. Importantly, Equation 5 holds
for all qs with only insignificant deviations.
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5 Application

To show the usefulness of MF-HXA, we apply the method on NASDAQ and
S&P500 stock indices between 1.1.2000 and 31.12.2009 (2531 observations). The
choice of the two indices from the same country has significant advantage over
different variants as a number of different trading days is very limited and there
is almost no need for data adjustments. We denote NASDAQ series as ”x” and
S&P500 series as ”y” throughout the section. Evolution of logarithmic prices of
both indices is shown in Figure 2 and basic descriptive statistics are summarized
in Table 1. We can see that both indices move together whereas NASDAQ is
more volatile. Both indices follow the standard stylized facts about financial
markets with negatively skewed and leptokurtic returns (Cont, 2001).

We research on the potential long-range dependence and cross-correlations
in returns and volatility. As a measure of volatility, we take absolute returns,
which is standard in financial literature and also intuitive as returns can be
taken as a product of a sign and a magnitude (absolute return). As one of the
first indicators of the potential long-range correlations or cross-correlations, cor-
relation functions are examined. In Figure 3a and 3b, there are auto-correlation
and cross-correlation functions of returns and absolute returns, respectively, for
lags k = 1, 2, . . . , 200. Logarithmic representation of absolute values of correla-
tion coefficients shows slow decay whereas correlations of returns show no such
evolution. Even though the returns of the indices are strongly correlated with
ρxy(0) = 0.8652, there are no significant correlations for higher lags. On the
other hand, the absolute returns are less correlated than standard returns with
ρxy(0) = 0.7869 but the long-range correlations and cross-correlations decay
slowly indicating a potential presence of long-range dependence.

To test such assertion, we apply MF-HXA on both returns and volatility
of NASDAQ and S&P500 with T = 2531, τmin = 2 and τmax = 100 for q =
0.1, 0.2, . . . , 9.9, 10. We choose τmin and τmax to have enough values for the final
regression according to Equation 4. A step of 0.1 of different qs ensures that
the evolution of the generalized Hurst exponents, corresponding α and f(α) is
smooth and well interpreted. Figures 4 and 5 show the estimates of Hxx(q),
Hyy(q) and Hxy(q) for returns and volatility, respectively. Figures 6 and 7 show
the singularity strengths α and the singularity spectra f(α). To distinguish
between different causes of multifractality, we also present the estimates for
shuffled series in each of Figures 4 - 7. By shuffling, we tore all correlations in
the data while the distribution remains the same. The multifractality in shuffled
series is then caused by distribution solely.

From a simple graphical analysis, returns show only weak signs of multi-
fractality while volatility seems more multifractal where the important part is
caused by the distributional properties of the absolute returns. For NASDAQ,
S&P500 and cross-multifractality, there are no significant differences. For more
rigorous examination, we calculate differences between maximum and minimum
generalized Hurst exponents for different qs and differences between maximum
and minimum singularity strengths αs. The results are presented in Tables 2
and 3 for returns and volatility, respectively. In the Tables, relative differences
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represent percentages of the overall multifractality which is caused by correla-
tions and the rest is due to distributional properties.

The results for returns are quite straightforward – the majority of multifrac-
tality in returns of NASDAQ is due to correlations whereas the opposite is true
for S&P500. Cross-multifractality is caused by both cross-correlations and dis-
tribution broadness with equal weights. Note that the multifractality and cross-
multifractality for returns is weak. For volatility, the majority of multifractality
is caused by distributional properties where again for NASDAQ, the weight of
correlations is higher than for S&P500. The case of cross-multifractality is very
similar to the multifractality of NASDAQ. However, there is one significant dif-
ference. Note that such results can be read from both the generalized Hurst
exponents and singularity strengths.

In Figure 5b, there is an obvious deviation of Hxy(q) from the average of
Hxx(q) an Hyy(q) for q ≥ 5 while the deviation increases with q. Such be-
havior in shuffled series indicates that the scaling law is stronger in tails of
joint-distribution which means that the series are more correlated in extreme
events. Moreover, for the special case of q = 2, which corresponds to long-range
dependence and cross-dependence, there is no significant dependence found in
returns. However, there is very strong persistence found in volatility of both
NASDAQ (Hxx(2) = 0.9757) and S&P500 (Hyy(2) = 0.9728) and strong cross-
persistence (Hyy(2) = 0.9781) between the indices. However, when we compare
Hxy(2) for volatility with the average value of Hxx(2) and Hyy(2), we conclude
that the cross-persistence is almost entirely due to the dependence in the sepa-
rate indices.

6 Conclusions

In the paper, we introduced new method for detection of long-range cross-
correlations and cross-multifractality – multifractal height cross-correlation anal-
ysis (MF-HXA). We showed that long-range cross-correlations can be caused by
long-range dependence of separate processes and/or by dependence between the
two series. Similarly for cross-multifractality, the causes can be separated into
three groups – multifractality due to joint-distributional properties and due
to correlations, which can be further divided into auto-correlations and cross-
correlations.

We applied MF-HXA on returns and volatility of NASDAQ and S&P500
for the period between 1.1.2000 and 31.12.2009. We showed that there are
no significant long-range correlations or cross-correlations in the returns. For
volatility, both types of correlations are found, cross-correlations are found to be
almost entirely due to strong persistence in separate processes of volatility. In
multifractal analysis, we found interesting discrepancy between the two indices –
majority of multifractality in returns is caused by correlations for NASDAQ and
by distributional properties for S&P500. For volatility, multifractality is mainly
caused by distributional properties. As for cross-multifractality, we uncovered
strong correlations for extremal events whereas the cross-multifractality itself
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seems to be led more by NASDAQ component.
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Table 1: Descriptive statistics of NASDAQ and S&P500 returns

NASDAQ S&P500

Mean -0.0002 -0.0001
SD 0.0181 0.0136

Skewness -0.1269 -0.1262
Kurtosis 6.7762 11.5119

JB 1510 7644
JB (p-value) 0.0000 0.0000

correlation of returns 0.8652 0.8652
correlation of volatility 0.7869 0.7869

Table 2: Measures of multifractality for NASDAQ and S&P500 returns

original shuffled difference relative

maxHxx −minHxx 0.1705 0.0401 0.1304 0.7649
maxHyy −minHyy 0.1556 0.1432 0.0123 0.0793
maxHxy −minHxy 0.1548 0.0773 0.0776 0.5010

maxαxx −minαxx 3.0158 1.0205 1.9953 0.6616
maxαyy −minαyy 3.3868 2.6387 0.7481 0.2209
maxαxy −minαxy 3.1543 1.5841 1.5702 0.4978

Table 3: Measures of multifractality for NASDAQ and S&P500 volatility

original shuffled difference relative

maxHxx −minHxx 0.1642 0.1139 0.0503 0.3065
maxHyy −minHyy 0.1666 0.1169 0.0497 0.2982
maxHxy −minHxy 0.1635 0.1010 0.0625 0.3822

maxαxx −minαxx 3.7433 2.6796 1.0637 0.2842
maxαyy −minαyy 2.4016 2.2525 0.1491 0.0621
maxαxy −minαxy 2.8505 2.0745 0.7760 0.2722
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Figure 1: (a) Estimates of Hxx(q), Hyy(q) and Hxy(q) (y-axis) for two ARFIMA
processes with Hxx = 0.7 and Hyy = 0.9 for different qs (x-axis); (b) Estimates
of Hxx(q), Hyy(q) and Hxy(q) (y-axis) for two MBM with m0 = 0.2 and m0 =
0.4, respectively, for different qs (x-axis).
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Figure 2: Evolution of logarithmic prices of NASDAQ and S&P500 (y-axis) in
time (x-axis) from 1.1.2000 to 31.12.2009.
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Figure 3: (a) Auto-correlation and cross-correlation function for returns of NAS-
DAQ, S&P500 up to lag 200; (b) Auto-correlation and cross-correlation function
for volatility of NASDAQ, S&P500 up to lag 200.
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Figure 4: Estimates of Hxx(q), Hyy(q) and Hxy(q) (y-axis) for returns of NAS-
DAQ and S&P500 for q = 0.1, 0.2, . . . , 10 for original (a) and shuffled data (b).
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Figure 5: Estimates of Hxx(q), Hyy(q) and Hxy(q) (y-axis) for absolute re-
turns of NASDAQ and S&P500 for q = 0.1, 0.2, . . . , 10 for original data (a) and
shuffled data (b).
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Figure 6: Singularity strengths α (x-axis) and singularity spectra f(α) (y-axis)
for returns of NASDAQ, S&P500 and combined for q = 0.1, 0.2, . . . , 10 for orig-
inal (a) and shuffled data (b).

15



(a) (b)

-­‐25	
  

-­‐20	
  

-­‐15	
  

-­‐10	
  

-­‐5	
  

0	
  

-­‐3,5	
   -­‐3	
   -­‐2,5	
   -­‐2	
   -­‐1,5	
   -­‐1	
   -­‐0,5	
   0	
  

f(alpha)_xx	
   f(alpha)_yy	
   f(alpha)_xy	
  

-­‐20	
  

-­‐18	
  

-­‐16	
  

-­‐14	
  

-­‐12	
  

-­‐10	
  

-­‐8	
  

-­‐6	
  

-­‐4	
  

-­‐2	
  

0	
  

-­‐3,5	
   -­‐3	
   -­‐2,5	
   -­‐2	
   -­‐1,5	
   -­‐1	
   -­‐0,5	
   0	
  

f(alpha)_xx	
   f(alpha)_yy	
   f(alpha)_xy	
  

Figure 7: Singularity strengths α (x-axis) and singularity spectra f(α) (y-axis)
for absolute returns of NASDAQ, S&P500 and combined for q = 0.1, 0.2, . . . , 10
for original (a) and shuffled (b).
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