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a b s t r a c t

We reexamine the results of Serletis and Rosenberg [Serletis A, Rosenberg A. Mean rever-
sion in the US stock market. Chaos, Solitons and Fractals 2009;40:2007–2015.] who claim
that the returns of the most important US stock indices (DJI, NASDAQ, NYSE and S&P500)
are strongly anti-persistent and thus mean reverting. We apply various methods to detect
long-range dependence – detrending moving average, detrended fluctuation analysis, gen-
eralized Hurst exponent approach, classical rescaled range analysis and modified rescaled
range analysis. We show that there are no signs of anti-persistence in any of the indices.
Moreover, we discuss that the authors did not find any anti-persistence but rather showed
returns of the said assets do not follow the scaling power law around their moving average
with varying window length. Anti-persistence is thus spurious and due to wrong applica-
tion of detrending moving average method.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Analysis of long-range dependence is important for
financial analysis as its presence influences the basic impli-
cations for a risk management, a portfolio selection, an
option pricing or trading strategies. Therefore, it is essen-
tial to efficiently and correctly detect such dependence in
the time series.

We recall a self-similar process X(t) for which it holds
that X(ct) � cHX(t) in distribution for t P 0 and all c > 0. If
the process X(t) has stationary increments X(t) � X(t � 1),
then the Hurst exponent H is a self-similarity parameter
of process X(t) which refers to the long-range dependence
of the increments process [22]. The long-range dependence
is present in a stationary time series when an autocorrela-
tion function q(k) of said process decays as q(k) � Ck2H�2

for lag k ?1 where 0 < H < 1 is Hurst exponent. The criti-
cal value of Hurst exponent is 0.5 and suggests two possi-
ble processes – either an independent or a short-term
dependent process [15,4]. If H > 0.5, the auto-covariances
of the process are significantly positive at all lags so that

the process is persistent. On the other hand, if H < 0.5,
the auto-covariances are significantly negative at all lags
and the process is said to be anti-persistent. The persistent
process implies that a positive movement is statistically
more likely to be followed by another positive movement
or vice versa. Reversely, the anti-persistent process implies
that a positive movement is more statistically probable to
be followed by a negative movement and vice versa [17]. In
other words, the persistent process is trending whereas the
anti-persistent process reverts more frequently than a ran-
dom process.

This paper reacts to the results presented by Serletis and
Rosenberg [23] who claim to find a significant negative
long-range dependence (anti-persistence) in the returns of
the most important indices of the US stock markets – NAS-
DAQ Composite Index (NASDAQ), Dow Jones Industrial
Average (DJI), S&P500 index (SPX) and NYSE Composite
Index (NYSE). We reexamine the exact same period of the
time series and show that such a strong anti-persistence is
spurious and it is found due to an incorrect use of detrend-
ing moving average method [6]. Robustness of our results is
checked by other frequently used methods – detrended
fluctuation analysis (DFA) [20,13], generalized Hurst expo-
nent approach (GHE) [9], rescaled range analysis (R/S) [11]
and modified rescaled range analysis (M-R/S) [16].
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In their paper, [23] claim that the returns of the US indi-
ces between 5th February 1971 and 1st December 2006
can be characterized by the Hurst exponent of 0.0631,
0.0636, 0.0692 and 0.0672 for DJI, SPX, NASDAQ and NYSE,
respectively. Such results indicate strong anti-persistence
and it would imply that there was a significant potential
for above-average profit strategies as the direction of the
returns would be strongly predictable in such case
(the opposite sign of the upcoming return with respect to
the current one would be almost certain). We analyze the
same dataset and show that such anti-persistence is
spurious.

The paper is structured as follows. In Section 2, we focus
on the mostly used methods of the Hurst exponent estima-
tion – DMA, DFA, GHE, R/S and M-R/S. In Section 3, we
present a basic description of the data set. In Section 4,
we show the results of the long-range dependence detec-
tion. In Section 5, the spurious anti-persistence is dis-
cussed. Section 6 concludes. We show that there are no
signs of significant anti-persistence in any of the examined
indices. We also discuss that the spurious anti-persistence
found by Serletis and Rosenberg [23] is rather a sign of the
fact that the deviations of returns from their moving aver-
age do not follow scaling power law but rather stabilize for
longer windows of the moving averages.

2. Hurst exponent estimation methods

In this section, we present very brief description of
DMA, DFA, GHE, R/S and M-R/S. For more details, see the
mentioned references.

2.1. Detrending moving average

Detrending moving average (DMA), proposed by Alessio
et al. [1], is based on a filtering of the original series by
moving averages with different window sizes. For the time
series of length T, the moving average with the window
size of k for each point X(t) is defined as XkðtÞ ¼Pk�1

k¼0Xðt � kÞ=k. Fluctuations F2
DMAðkÞ, defined as the mean

squared error of X(t) from XkðtÞ, scale as F2
DMAðkÞ � ck2H .

DMA is sensitive to a choice of k. For our research, we
use kmin = 2 and kmax = 50 so that H is estimated from 49
points to get comparable results with the discussed paper
of [23]. The case of k = 1 is omitted as it implies F2

DMAð1Þ ¼ 0
for any series and thus gives no information about the
studied process.

2.2. Detrended fluctuation analysis

Detrended fluctuation analysis (DFA) was proposed by
Peng et al. [20] while examining series of DNA nucleotides.
In the procedure, the time series of length T is divided into
sub-periods of length t and the profile (cumulative devia-
tions from the mean) is constructed. The linear fit Xt(t) of
the profile is estimated for each sub-period. A detrended
signal Yt(t) is then constructed as Yt(t) = X(t) � Xt(t). Fluc-
tuation F2

DFAðtÞ, defined as an average mean squared error
from the linear fit over all sub-periods of length t, scales

as F2
DFAðtÞ � ct2H , where c is a constant independent of t

[13].
As DFA is based on linear fitting and averaging over sub-

periods, minimum sub-period length tmin as well as maxi-
mum length tmax needs to be set to avoid inefficient fitting
and averaging. In the research, we use tmin = 10 and
tmax = T/5 proposed in several studies [10,2,19].

2.3. Generalized Hurst exponent

Generalized Hurst exponent approach (GHE), proposed
for financial time series by Di Matteo et al. [9], is based
on scaling of qth order moments of the distribution of
the increments of the process X(t). The scaling is character-
ized on the basis of the statistic Kq(s) defined as
KqðsÞ ¼

PT�s
t¼0 jXðt þ sÞ � XðtÞjq
� ��

ðT � sÞ for time series of
length T. Parameter s can be understood as an ‘‘investment
horizon” in financial terms. The statistic scales as
Kq(s) � csqH(q). For the purposes of the long-range depen-
dence detection, we set q = 2 so that Hurst exponent H(2)
is estimated from relationship K2(s) � cs2H(2).

To get comparable results with DMA, we set smin = 1 and
smax = 50 so that H(2) is estimated from 50 points. Such
choice of parameters takes investment horizons from 1 to
50 trading days into consideration.

Note that for all the presented methods, the process X(t)
is the time series of logarithmic prices of the examined as-
sets to evaluate the potential long-range dependence in
the logarithmic (continuous) returns, i.e. we estimate the
Hurst exponent H as the self-similarity parameter for the
process of logarithmic prices of the indices which also
characterizes the long-range dependence in the process
of increments of the original process, i.e. the logarithmic
returns.

2.4. Classical and modified rescaled range analyses

Rescaled range analysis (R/S) can be used as either a
parametric (estimating H) or non-parametric method (test-
ing the presence of long-range dependence) [11,18]. As the
method was shown to be biased even for independent pro-
cesses [14,16], we use the non-parametric version of the
method to test the presence of long-range dependence so-
lely. For the increments time series of length T, we con-
struct a rescaled range of the series (R/S)T as a fraction of
a range of a profile (cumulative deviations from an arith-
metic mean) and a standard deviation of the increments
process.

V statistic is defined as

VT ¼
ðR=SÞTffiffiffi

T
p

and converges to a distribution defined as FV ðxÞ ¼
1þ 2

P1
k¼1ð1� 4k2x2Þe�2ðkxÞ2 for independent processes

[16,11,21]. As R/S analysis presented above (usually called
classical) is biased by a presence of short-term memory,
[16] proposed modified rescaled range analysis (M � R/S)
which differs from the classical one by a use of a modified
standard deviation SM, which is defined with a use of auto-
covariances of the increments series cj up to lag n as
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SM
In
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

In
þ 2

Xn

j¼1
cj 1� j

nþ 1

� �s
: ð1Þ

The distribution of the modified V statistic converges to
FV not only for independent processes but also for short-
range dependent ones.

3. Data and initial analysis

We reexamine the same sample period as in [23] – DJI,
NASDAQ, NYSE, SPX between February 5th 1971 (founda-
tion of NASDAQ Composite index) and December 1st
2006. Basic descriptive statistics are summarized in Table
1 and Fig. 1 shows the logarithmic returns for the exam-
ined period. The evolution of the indices is very similar
while the biggest differences are present during the market
crash of 1978 – NASDAQ was hit in lower magnitude when
compared to the other indices – and after the ‘‘DotCom”
bubble burst – NASDAQ shows the highest increase in vol-
atility compared to the other examined indices.

The returns of all examined indices posses typical char-
acteristics of financial time series – negative skewness and
excess kurtosis [7]. Normality of the returns is strongly re-
jected by both Jarque–Bera and Shapiro–Wilk tests. First-
order autocorrelation of the returns are positive for all four
indices – 0.05, 0.10, 0.10, 0.06 for DJI, NASDAQ, NYSE and
SPX, respectively. A non-presence of significant autocorre-
lations in the first 20 lags is strongly rejected by standard
Box-Pierce Q-test for all the indices. Finally, all indices
are stationary as KPSS test does not reject stationarity for
any index while ADF test rejects a unit-root for all indices.
For the test statistics and p-values, see Table 1.

We further illustrate the evolution of the autocorrela-
tions by autocorrelation functions (ACF) and partial auto-
correlation functions (PACF) in Fig. 2. For each index,
there are several significant autocorrelations at different
lags. A simple examination of ACF and PACF of the indices
can tell important information about potential presence of
anti-persistence. In Fig. 3, ACF and PACF of two popular

long-range dependence models – fractional Gaussian noise
(fGn) and autoregressive fractionally integrated moving
average (ARFIMA) – with H = 0.1 (strong anti-persistence
close to the one claimed to be found in [23]) and
T = 9040 are presented. When the autocorrelation func-
tions of the US indices are compared with the ones of the
artificial processes, the significant differences are obvious.
Firstly, very significant negative autocorrelation is present
at the first lag for both fGn and ARFIMA. Secondly, PACF is
significantly negative at all 20 lags while the autocorrela-
tions are slowly increasing (getting closer to zero) with
the increasing lag. None of these are present in ACF and
PACF of DJI, NASDAQ, NYSE and SPX. Such a strong anti-
persistence of the returns as argued in [23] can be rejected
by the simple examination of ACF and PACF. Nevertheless,
we follow with more rigorous and deeper analysis of
potential long-range dependence in the returns of the
examined US stock indices.

4. Results

In the previous section, we have shown that all of the
examined indices share the same basic statistical proper-
ties – negative skewness, leptokurtosis, non-normality, po-
sitive first-order autocorrelations, fast decay of
autocorrelations with increasing lag k and stationarity.
Thus there are no clear signs of long-range dependence vis-
ible from these basic properties. Detailed examination of
potential long-range dependence follows.

We start with the parametric methods (i.e. estimating
Hurst exponent) – DMA, GHE, and DFA. The estimated
Hurst exponents and corresponding coefficient standard
errors for all four indices are presented in Table 2. Hurst
exponents based on GHE and DFA show quite homoge-
neous results – there is no long-range dependence in DJI,
NYSE and SPX as the estimates of Hurst exponents cannot
be statistically distinguished from H = 0.5 while NASDAQ
shows weak signs of persistence (at 99% level of signifi-
cance). In general, NASDAQ is characterized by the highest

Table 1
Descriptive statistics.

DJI NASDAQ NYSE S&P500

Mean 0.00029 0.00035 0.00031 0.00030
SD 0.01021 0.01189 0.00916 0.00993
Max 0.09666 0.13255 0.08622 0.08709
Min �0.25632 �0.12043 �0.21286 �0.22900
Skewness �1.80491 �0.30851 �1.53977 �1.43878
Excess kurtosis 48.25733 10.75666 36.79083 35.54557
Observations 9043 9040 9045 9043

Jarque–Bera 882,371 43,726 513,699 479,192
p-Value 0.0000 0.0000 0.0000 0.0000
Shapiro–Wilk 0.9101 0.8866 0.9171 0.9188
p-Value 0.0000 0.0000 0.0000 0.0000

q(1) 0.0478 0.1009 0.1037 0.0590
Q(20) 55.1648 191.6704 127.2067 69.7841
p-Value 0.0000 0.0000 0.0000 0.0000

KPSS 0.1813 0.0874 0.1327 0.1349
5% critical value 0.4630 0.4630 0.4630 0.4630
ADF �26.7642 �23.1461 �26.4745 �26.7512
p-Value 0.0000 0.0000 0.0000 0.0000
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Fig. 1. Logarithmic returns of the US indices.

Fig. 2. ACF and PACF of DJI, NASDAQ, NYSE and S&P500 in (a)–(d), respectively.
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Hurst exponents for all three methods when compared to
DJI, NYSE and SPX. DMA method yields higher estimates
than the other methods by approximately 0.1 for all the
indices. To further examine the reason for this difference,
we analyze the scaling of F2

DMAðkÞ; F2
DFAðtÞ and K2(s).

Figs. 4, 6 and 8 show the scaling of F2
DMAðkÞ; F2

DFAðtÞ and
K2(s) for DMA, GHE and DFA, respectively. For DMA,
F2

DMAðkÞ increases concavely for low ks and scales linearly
for higher scales for all four indices. Such behavior indi-
cates that the estimates are affected by the presence of

short-range dependence in the process, which has actually
been shown to be present in all the examined processes in
the previous section. For GHE, K2(s) behaves differently
and shows potential crossover between two linear scaling
laws approximately in the middle of the scaling range.
However, the crossover is quite weak for all the examined
indices. Nevertheless, the crossover can be existent again
due to the presence of short-range dependence in the pro-
cesses. For DFA, F2

DFAðtÞ shows quite stable linear scaling for
majority of scales t. However, for higher scales, the scaling
becomes unstable and volatile as F2

DFAðtÞ is based on low
number of averaged values.

As the scaling obviously changes with different scales,
we observe the multi-scaling phenomena which in this
case is most probably caused by the presence of short-
range dependence in the examined processes. To examine
the multi-scaling in more detail, we focus on the estimates
of Hurst exponents when a different number of points is

Fig. 3. ACF and PACF of fGn and ARFIMA with H = 0.1 in (a) and (b), respectively.

Table 2
Hurst exponent estimates and standard errors.

DMA GHE DFA

DJI 0.5766 (0.0222) 0.4877 (0.0044) 0.4645 (0.0009)
NASDAQ 0.6544 (0.0196) 0.5639 (0.0064) 0.5533 (0.0012)
NYSE 0.5957 (0.0289) 0.5057 (0.0072) 0.4887 (0.0006)
SPX 0.5769 (0.0227) 0.4891 (0.0053) 0.4995 (0.0009)

Fig. 4. Scaling of F2
DMAðkÞ on y-axis with changing k on x-axis for k = 2,3, . . . ,49,50 for DJI, NASDAQ, NYSE and SPX for (a)–(d), respectively.
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taken into consideration for the final regression. Figs. 5, 7
and 9 show the estimates for DJI, NASDAQ, NYSE and SPX
based on DMA, GHE and DFA, respectively. In the Figures,
we show the estimates of Hurst exponents for varying
number of scales taken into consideration. As the long-
range dependence is defined as an asymptotic property,

we start with a full range of scales and decrease the range
in steps to eventually estimate Hurst exponents on the
three highest scales for either F2

DMAðkÞ or K2(s) or F2
DFAðtÞ.

The results support our findings and for DMA and GHE,
even the estimates of Hurst exponents based on low num-
ber of statistics are stable.

Fig. 5. 95% confidence intervals for the estimates of Hurst exponent based on DMA (y-axis) with changing number of ks taken into consideration (x-axis) for
DJI, NASDAQ, NYSE and SPX for (a)–(d), respectively. For 50 points taken into consideration, all ks are used for the estimation; for three points, only k = 48,
49, 50 are used for the estimation of Hurst exponent.

Fig. 6. Scaling of K2(s) on y-axis with changing s on x-axis for s = 1,2, . . . ,49,50 for DJI, NASDAQ, NYSE and SPX for (a)–(d), respectively.

L. Kristoufek / Chaos, Solitons & Fractals 43 (2010) 68–78 73
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Fig. 7. 95% confidence intervals for the estimates of Hurst exponent based on GHE (y-axis) with changing number of ss taken into consideration (x-axis) for
DJI, NASDAQ, NYSE and SPX for (a)–(d), respectively. For 50 points taken into consideration, all ss are used for the estimation; for three points, only s = 48,
49, 50 are used for the estimation of Hurst exponent.

Fig. 8. Scaling of F2
DFAðtÞ on y-axis with changing t on x-axis for t ¼ 5;6; . . . ; T

5� 1; T
5 for DJI, NASDAQ, NYSE and SPX for (a)–(d), respectively.
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For DMA, the estimates of Hurst exponents slowly con-
verge to support the earlier findings – the estimates for DJI,
NYSE and SPX converge to the values close to 0.5 while the
estimate of NASDAQ converge to 0.58. The estimates based
on GHE are more stable and show the same results as DMA
– NASDAQ is weakly persistent while there are no signs of
long-range dependence for the other indices. The situation
is most complicated for DFA. Even though the scaling of
F2

DFAðtÞ seems linear, it is rather unstable when we look
at the estimates of Hurst exponents based on different
scales t. The evolution of the estimates indicates that
tmax = T/5 is too restrictive and averaging of F2

DFAðtÞ over
only five of these statistics yields inefficient and unstable
results, which biases the final estimate. This fact makes
the results of DFA hardly usable apart from the most basic
estimates of Hurst exponent taking all scales into
consideration.

We follow with the non-parametric methods (i.e. test-
ing presence of long-range dependence in the process) –
R/S and M-R/S. As most of the Hurst exponent estimators
are biased by the presence of short-range dependence in
the process [16,12] as well as various distributional prop-
erties [3], we use two types of moving block bootstrapping
– a simple one and a one with pre-whitening and post-
blackening [24] – as well as simple shuffling for a construc-
tion of the confidence intervals for hypothesis testing. For
moving block bootstrap method, the corresponding V sta-
tistic is constructed for the new series made of shuffled
blocks of 10 observations from the original series. For
pre-whitening and post-blackening, we apply AR(1) pro-
cess. For each series, bootstrapping and shuffling is

repeated 1000 times. With a use of shuffling, we obtain
confidence intervals which are robust to different distribu-
tional properties. Moreover, with a use of moving block
bootstrap, we obtain confidence intervals which are robust
to short-range dependence, heteroskedasticity and various
distributional properties of the original series. Therefore,
we can distinguish between the effects of distribution,
short-range dependence and potential presence of long-
range dependence in the examined series.

In Tables 3–5, we present the estimates of V statistics
for the stock indices. We have estimated the statistics for
the lags n = 0,1, . . . ,10 and in the same way, the confidence
intervals (two-tailed at 5% significance level) have been
constructed. From Table 3, we can say that independence
cannot be rejected for three indices – DJI, NYSE and SPX
– while for NASDAQ, we reject independence for 7 out of
11 different lags taken into consideration. For the boot-
strapped confidence intervals, there is no single value of
V statistic falling outside the intervals indicating no long-
range dependence. Therefore, the results based on moving
block bootstrap support the findings about DJI, NYSE and
SPX and specify the type of dependence in NASDAQ as a
short-range one. Thus, there are no signs of significant
long-range dependence in the returns processes of all the
examined indices. These results again contradict the ones
of [23] who claimed that all the returns of the indices are
strongly negatively long-range dependent.

Overall, all used methods – R/S, M-R/S, GHE, DMA and
DFA – indicate that none of the indices can be character-
ized as the anti-persistent process. Even though the esti-
mates of Hurst exponent for NASDAQ indicate weak

Fig. 9. 95% confidence intervals for the estimates of Hurst exponent based on DFA (y-axis) with changing number of ts taken into consideration (x-axis) for
DJI, NASDAQ, NYSE and SPX for (a)–(d), respectively. The rest of the notation holds accordingly.
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persistence, we have shown that it is rather an effect of
short-range dependence on the estimators than a true per-
sistence. Therefore, neither persistence characterizes any
of the indices. Altogether, none of the examined indices
can be characterized by long-range dependence of any
type.

5. Discussion

As our results are very different from the ones of [23], it
raises an important question about the reason why it is so.
The results we present are robust as the outcomes are

almost equal for all the used methods – DMA, DFA, GHE,
R/S and M-R/S. Moreover, the results are in hand with
the findings of other authors showing only weak or no
long-range dependence in financial returns at all [8,5].

The problem seems to be in the application of DMA it-
self. The authors most likely set X(t) = r(t) for detection of
long-range dependence in returns process rðtÞ ¼ log PðtÞ
� log Pðt � 1Þ. However, the examination of deviations of
prices around their moving average by the means of
DMA is actually examination of self-similarity of the pro-
cess and potential long-range dependence in the incre-
ments of the process [22]. Therefore, to examine the

Table 3
V statistics for shuffled time series.

Lag V statistic P2.5 P97.5 V statistic P2.5 P97.5

0 DJI 1.4760 0.7979 1.8412 NASDAQ 1.9986* 0.7855 1.7867
1 1.4419 0.7870 1.8884 1.9048* 0.7868 1.8563
2 1.4481 0.7797 1.8020 1.8841* 0.8207 1.8440
3 1.4555 0.7817 1.8495 1.8685* 0.8069 1.8343
4 1.4646 0.7899 1.7973 1.8483* 0.7860 1.8433
5 1.4712 0.8084 1.8697 1.8344 0.7715 1.8887
6 1.4779 0.7754 1.7942 1.8245* 0.7846 1.8021
7 1.4848 0.8081 1.8497 1.8145 0.8005 1.8489
8 1.4913 0.7838 1.7857 1.8101 0.8073 1.8232
9 1.4974 0.7895 1.8488 1.8064 0.8005 1.8310

10 1.5020 0.7999 1.8168 1.8022* 0.7747 1.7845

0 NYSE 1.2875 0.8185 1.8162 SPX 1.4731 0.7905 1.8727
1 1.2257 0.7897 1.8899 1.4316 0.7851 1.8628
2 1.2146 0.8130 1.8508 1.4318 0.8064 1.8222
3 1.2124 0.8237 1.8506 1.4390 0.8026 1.8634
4 1.2145 0.8026 1.8131 1.4483 0.7685 1.8559
5 1.2160 0.8123 1.8019 1.4557 0.8132 1.7938
6 1.2192 0.7905 1.8189 1.4634 0.7951 1.8456
7 1.2241 0.7867 1.8025 1.4726 0.8101 1.8505
8 1.2285 0.7911 1.7938 1.4812 0.7792 1.8490
9 1.2330 0.8039 1.8814 1.4891 0.8307 1.8175

10 1.2369 0.7976 1.8197 1.4959 0.7611 1.8426

5% significance is marked with asterisk * and italics.

Table 4
V statistics for moving block bootstrapping with pre-whitening and post-blackening.

Lag V statistic P2.5 P97.5 V statistic P2.5 P97.5

0 DJI 1.4760 0.8244 1.7627 NASDAQ 1.9986 0.9017 2.0822
1 1.4419 0.7807 1.8007 1.9048 0.8386 1.9437
2 1.4481 0.8025 1.7823 1.8841 0.8585 1.9817
3 1.4555 0.7774 1.7649 1.8685 0.8541 1.9247
4 1.4646 0.7666 1.7784 1.8483 0.8356 1.9454
5 1.4712 0.7686 1.8196 1.8344 0.8083 1.9377
6 1.4779 0.7736 1.8592 1.8245 0.8358 1.8907
7 1.4848 0.7702 1.7975 1.8145 0.8190 1.8925
8 1.4913 0.8119 1.8291 1.8101 0.8113 1.8713
9 1.4974 0.7896 1.7777 1.8064 0.8066 1.8755

10 1.5020 0.7942 1.7647 1.8022 0.8046 1.8528

0 NYSE 1.2875 0.8228 1.9798 SPX 1.4731 0.7776 1.8410
1 1.2257 0.8209 1.8914 1.4316 0.8059 1.7727
2 1.2146 0.7878 1.8045 1.4318 0.7781 1.7931
3 1.2124 0.7943 1.8224 1.4390 0.7908 1.7541
4 1.2145 0.7734 1.8557 1.4483 0.7809 1.6836
5 1.2160 0.7962 1.8398 1.4557 0.7857 1.8550
6 1.2192 0.8049 1.8401 1.4634 0.7832 1.8568
7 1.2241 0.8034 1.8466 1.4726 0.7889 1.7767
8 1.2285 0.8013 1.7768 1.4812 0.8250 1.7836
9 1.2330 0.7769 1.8341 1.4891 0.7801 1.8290

10 1.2369 0.8089 1.8135 1.4959 0.7707 1.8318
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long-range dependence in the logarithmic returns r(t) of
the process, we need to set XðtÞ ¼ log PðtÞ where P(t) is
an index price at time t.1

This turns the detection of long-range dependence in
returns in [23] into examination of deviations of returns
from their moving average with increasing window length
k. However, the average of the financial returns stabilizes,
after some variation for short windows, around a constant
value (usually close to 0) so that the mean squared devia-
tions do not change or change only slightly with the
increasing window. This might be wrongly interpreted as
strong anti-persistence but is only the reflection of the fact
that returns do not scale (at all or only slightly) around
their moving average according to any power law. A fact
that the scaling of F2

DMAðkÞ vanishes for higher values of k
is visible in the Figures presented in [23].

Alternatively, the anti-persistence might be correctly
detected but for the second differences of the initial pro-
cess and not the returns (the first differences) them-
selves. This would indicate that the process r2nd(t)
defined as r2ndðtÞ ¼ log PðtÞ � 2 log Pðt � 1Þ þ log Pðt � 2Þ
for t = 2,3, . . . ,T is strongly anti-persistent. In financial
terms, if the return of today has increased compared to
the return of yesterday, it will most likely decrease
tomorrow compared to the return of today. However,
this only means that the process of returns is not explo-

sive and it has no additional informative value. More-
over, detrending methods might be biased for processes
with true Hurst exponent very close to zero which was
already discussed for DFA in [13] but it has not been
for DMA yet. Thus statistical inference based on DMA
might be biased for very low H. Again, Figures in [23]
which illustrate the scaling of F2

DMAðkÞ show that apart
from low scales, the scaling is practically non-present
and Hurst exponents would be estimated even closer
to zero if only the higher scales were taken into
consideration.

6. Conclusions

We reexamined the results of [23] who claimed to find
strong anti-persistence in the US stock indices – DJI, NAS-
DAQ, NYSE and SPX – with the use of detrending moving
average, detrended fluctuation analysis, generalized Hurst
exponent approach, classical rescaled range analysis and
modified rescaled range analysis. We show that there
are no signs of anti-persistence (or long-range depen-
dence in general) in the processes of returns of the exam-
ined indices. We also discuss that the spurious anti-
persistence is due to a misinterpretation and is only a
sign of incorrect implementation of detrending moving
average method.
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Table 5
V statistics for simple moving block bootstrapping.

Lag V statistic P2.5 P97.5 V statistic P2.5 P97.5

0 DJI 1.4760 0.7902 1.8323 NASDAQ 1.9986 0.9165 2.0971
1 1.4419 0.7878 1.7383 1.9048 0.8345 1.9424
2 1.4481 0.7883 1.8187 1.8841 0.8689 1.9483
3 1.4555 0.7538 1.7595 1.8685 0.8435 1.9274
4 1.4646 0.8066 1.8106 1.8483 0.8072 1.9567
5 1.4712 0.7846 1.7712 1.8344 0.8096 1.9008
6 1.4779 0.7845 1.8442 1.8245 0.8180 1.8489
7 1.4848 0.7549 1.8011 1.8145 0.8055 1.8617
8 1.4913 0.7676 1.7728 1.8101 0.8052 1.8733
9 1.4974 0.7891 1.8013 1.8064 0.8256 1.8660

10 1.5020 0.8023 1.8104 1.8022 0.7934 1.8553

0 NYSE 1.2875 0.8352 1.9541 NASDAQ 1.4731 0.8040 1.8495
1 1.2257 0.8007 1.8608 1.4316 0.7822 1.7648
2 1.2146 0.7900 1.8303 1.4318 0.7810 1.7217
3 1.2124 0.7643 1.7935 1.4390 0.7985 1.7701
4 1.2145 0.7990 1.7703 1.4483 0.7869 1.7359
5 1.2160 0.7824 1.8027 1.4557 0.7899 1.7509
6 1.2192 0.7927 1.7867 1.4634 0.7886 1.8101
7 1.2241 0.8062 1.7990 1.4726 0.7914 1.7584
8 1.2285 0.8037 1.8414 1.4812 0.7799 1.8257
9 1.2330 0.7854 1.8425 1.4891 0.8072 1.8335

10 1.2369 0.8151 1.7979 1.4959 0.8002 1.8233

1 To support our assertion of an incorrect use of the method, we
est imated Hurst exponen ts with DMA, set t ing XðtÞ ¼ rðtÞ ¼
log PðtÞ � log Pðt � 1Þ, and arrived at estimates very close to the ones of
[23], i.e. in the interval H 2 (0.06; 0.07). The fact that the estimates are not
exactly equal is most likely caused by non-identical data sets as we
obtained the data from finance.yahoo.com while a source of data is not
given in [23]. Nevertheless, such results support our claim that anti-
persistence in the US stock indices was detected by Serletis and Rosenberg
[23] due to an incorrect application of DMA method.
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