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3.2 DFA

DFA-1 was already shown to estimate Hurst exponent with expected value close to 0.5
for random normal series (Weron 2002; Grech and Mazur 2005) so that there is no need
for similar procedure as for rescaled range presented before. We present the results of
simulations for DFA-1 with minimum scale of 16 observations and maximum scale of
one quarter of the time series length as was the case for R/S.

Table 2. Monte Carlo simulations descriptive statistics (DFA)

512 1024 2048 4096 8192 16384 32768 65536 131072

Mean 0.5079 0.5062 0.504 0.5031 0.5025 0.5022 0.502 0.5015 0.5013
SD 0.0687 0.0500 0.0386 0.0304 0.0247 0.0202 0.0173 0.0149 0.0126
Skewness 0.1189 0.0630 0.0430 —0.0069 0.0053 —0.0258 —0.0398 —0.0227 —0.0323
Kurtosis ~ —0.0205 —0.0512 —0.0796 —0.0711 —0.0795 —0.0739 —0.0051  0.0109 —0.0919
Jarque-Bera 23.741 7.7276 5.7584 22171 2.7205 3.4246 2.658 0.899 5.3017
P-value 0.0000 0.0210 0.0562 0.3300 0.2566 0.1804 0.2647 0.6379 0.0706
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Figure 4. Histogram of Monte Carlo simulations (DFA)

Figure 4 and Table 2 show that expected values for DFA-1 are very close to the
asymptotic limit of 0.5 even for short time series. Normal distribution of the simulated
Hurst exponents cannot be rejected with exception for two lowest scales. Therefore,
we stick to the use of standard deviations for estimation of confidence intervals. The
standard deviation can be modeled as

X 0.3912
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Figure 5. Standard deviations based on Monte Carlo simulations (DFA)
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Figure 6. Confidence intervals for DFA

The evolution of standard deviation for different time series lengths together with
the fit are shown in Figure 5. The fit is again reliable with R? equal to 98.44%. Note
that power values in both (9) and (10) are equal to 0.3 which might be the case of future
research. The estimates for the expected value of Hurst exponent are close to 0.5 so that
we do not present any approximation for different time series lengths. Therefore, we
propose to use 0.5 as the expected values and our approximation of standard deviation
for construction of confidence intervals for different time series lengths than the ones
we present.
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Even though the expected values are in hand with asymptotic limit, the constructed
confidence intervals are still rather wide (Figure 6) and rejection of hypothesis for short
time series might be again quite problematic. Nevertheless, the confidence intervals are
quite narrow for long time series. However, the most interesting results come if, for a
single time series, we estimate Hurst exponent with both R/S and DFA-1 and compare
the results. We present the results in detail in the following section.

4. Simultaneous finite sample properties

We again simulated 10,000 random standardized normally distributed N (0, 1) time
series for each set length. This time, we estimated Hurst exponent based on both R/S
and DFA-1 on each time series while estimating the results for the lengths from 256 to
131,072 observations. Descriptive statistics for differences between estimates of R/S
and DFA-1 are summed in Table 3. The results show that R/S on average overestimates
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Figure 7. Comparison of R/S and DFA-1 estimates
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Table 3. Descriptive statistics of differences between R/S and DFA estimates

256 512 1024 2048 4096 8192 16384 32768 65536 131072

Mean 0.0783 0.0687 0.0598 0.0525 0.0458 0.0406 0.0358 0.0321 0.0285 0.0256
SD 0.0573 0.0351 0.0239 0.0174 0.0136 0.0110 0.0089 0.0075 0.0063 0.0054
Max 0.3159 0.2130 0.152 0.1130 0.0989 0.0861 0.0750 0.0624 0.0600 0.0477
Min  —0.1143 —0.0726 —0.032 —0.0073 —0.0057 —0.0059 0.0035 0.0081 0.0059 0.0052
Py; 5 0.1933 0.1394 0.1074  0.087 0.0734 0.0626 0.0541 0.0472 0.0410 0.0366
P s —0.0320 0.0012 0.014 0.0193 0.0202 0.0195 0.0189 0.0177 0.0167 0.0151
Skew.  0.1114 0.0832 0.0962 0.0944 0.1539 0.0849 0.1523 0.1217 0.1263 0.1177
Kurt. 0.1187 0.0829 0.0192 —0.0332 0.0992 0.0947 0.1030 0.0252 0.0417 0.1214
J.-B. 26.565 14.394 15.584 15.319 43.585 15.737 43.064 24.955 27.292 29.221
P-value 0.0000 0.0007 0.0004 0.0005 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000
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Figure 8. Comparison of R/S and DFA-1 estimates and corresponding correlations

Hurst exponent when compared to DFA-1 while the overestimation decreases with
growing time series length. For illustration, we present Figure 7 which shows the
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estimates for both techniques for the time series lengths of 512 and 131,072.

From the figure, we can see that estimates are both strongly correlated and also
that the relationship between both estimates is rather linear and not related in more
complicated way. Moreover, the overestimation of Hurst exponent by R/S is evidently
decreasing with the time series length. The proportion of estimates which are higher
for R/S than for DFA-1 is illustrated in Figure 8a. From the time series of length 4,096
onwards, all of the estimates are higher for R/S. Figure 8b shows the evolution of corre-
lations between the estimates of the used methods for different time series lengths. We
can see that the correlations are quite high even for short time series and convergence
above the value of 0.9 for the time series with more than 2,048 observations.
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Figure 9. Comparison of R/S and DFA-1 percentiles and maximum differences

Different aspects are shown in Figure 9. Percentiles (97.5% and 2.5%) show that
the estimates can differ significantly for low scales. The difference can be as high as
0.32 for time series length of 256 observations. Nevertheless, the difference narrows
significantly for longer time series. The statistics are summed in Table 4.
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Table 4. Further statistics

256 512 1024 2048 4096 8192 16384 32768 65536 131072

Correlation 0.8255 0.8611 0.8825 0.8960 0.9017 0.9043 0.9086 0.9059 0.9089 0.9101
R/S > DFA (%) 0.8362 0.9536 0.9918 0.9984 0.9996 0.9998 1.0000 1.0000 1.0000 1.0000
Max. difference 0.3159 0.2130 0.1520 0.1130 0.0989 0.0861 0.0750 0.0624 0.0600 0.0477

However, the most important findings, which contradict results in Weron (2002),
are based on results of estimated standard deviations of Hurst exponents. R/S is ge-
nerally considered as the less efficient method and is replaced by DFA in majority of
recent applied papers (Grech and Mazur 2004; Czarnecki et al. 2008; Alvarez-Ramirez
et al. 2008). Reasons for such replacement are usually stated as bias for non-stationary
data and general overestimation of Hurst exponent of R/S. However, we have already
shown that the overestimation is built in the procedure for finite samples (as was al-
ready shown in Weron 2002, Couillard and Davison 2005, Peters 1994). Moreover,
non-stationarity is usually not the case for the financial time series while the statement
is more valid for daily data which are mostly examined (Cont 2001). Further, as we
show in Figure 10, the standard deviations are lower for R/S than for DFA-1 for all exa-
mined time series lengths. Therefore, also confidence intervals are narrower for R/S
which makes the long-term dependence better testable by this procedure. The values of
the standard deviations are more important than expected values of the Hurst exponent
for the hypothesis testing. Nevertheless, we need to keep in mind that expected values
for Hurst exponent based on R/S for finite samples are far from the asymptotic limit.
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Figure 10. Comparison of standard deviations of R/S and DFA-1
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5. Conclusions and discussion

We have shown that rescaled range analysis can still stand the test against new methods.
Our comparison with detrended fluctuation analysis has supported the known fact that
R/S overestimates Hurst exponent. However, the overestimation is in hand with esti-
mates of Anis and Lloyd (1976) and thus is not unexpected. Importantly, the standard
deviations of R/S are lower than those of DFA-1 which is crucial for the construction
of confidence intervals for hypothesis testing. The results are different from the ones of
Weron (2002) who asserts that DFA-1 is a clear winner when compared to R/S. Such
difference is caused by different choice of minimum and maximum scales for Hurst ex-
ponent estimation. Our results are based on recommendations of several other authors
(Peters 1994; Grech and Mazur 2004; Matos et al. 2008; Alvarez-Ramirez et al. 2005;
Einstein et al. 2001) so that we use minimum scale of 16 observations with maximum
scale equal to a quarter of time series length. The choice of scales is thus crucial for
final results and its research should be of future interest.

Nevertheless, we show that both methods show similar results which become closer
as the time series becomes longer. We show that testing the hypothesis of no long-
range dependence for short time series, especially with 256 and 512 observations, can
be complicated as the confidence intervals are very broad.
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