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1. Introduction

Since the concept of fuzzy sets [37] was introduced, it has been comprehensively investigated [11,34,36]. Fuzzy measures
and fuzzy integrals can be used for modelling problems in non-deterministic environment. Since Sugeno [32] initiated re-
search on fuzzy measures and fuzzy integrals, this area has been widely developed and a wide variety of topics have been
investigated (see, e.g., [3,4,25–28,30,34] and references therein). Fuzzy integrals (also known as Sugeno integrals) have very
interesting properties from a mathematical point of view which have been studied by many authors, including Pap [25],
Ralescu and Adams [26], Román-Flores et al. [6,27–30] and, Wang and Klir [34], among others. Ralescu and Adams [26] stud-
ied several equivalent definitions of fuzzy integrals, while Pap [25] and Wang and Klir [34] provided an overview of fuzzy
measures theory. On the other hand, fuzzy measures and Sugeno integrals have also been successfully applied to various
fields by many researchers [5,7,13,14,10,18,33,35].

The integral inequalities are useful tools in several theoretical and applied fields. For instance, integral inequalities play a
role in the development of a time scales calculus [24]. For more information on classical inequalities, we refer the reader to
the recent monograph [9]. The study of inequalities for Sugeno integral was initiated by Román-Flores et al. [6,27–30], and
then followed by the authors [1,2,16,19,20]. In [29] Román-Flores et al. studied some properties of Sugeno integral for strictly
monotone real functions, they also provided some Yong type inequalities. Based on these results, Flores-Franulič and Román-
Flores [6] provided some Chebyshev type inequalities for Sugeno integral of continuous and strictly monotone real functions
based on Lebesgue measure. Some other classical inequalities have also been generalized to Sugeno integral by them (see, for
example [28,30]). Later on, Ouyang and Fang [19] generalized the main results of [29] to the case of monotone real functions.
Based on these results, Ouyang et al. further generalized the fuzzy Chebyshev type inequalities to the case of arbitrary fuzzy
measure-based Sugeno integrals [16,20]. In fact, they proved the following result:
. All rights reserved.

esiar@math.sk (R. Mesiar), Hamzeh.Agahi@gmail.com (H. Agahi).

http://dx.doi.org/10.1016/j.ins.2010.03.018
mailto:oyy@hutc.zj.cn
mailto:mesiar@math.sk
mailto:Hamzeh.Agahi@gmail.com
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


2794 Y. Ouyang et al. / Information Sciences 180 (2010) 2793–2801
Theorem 1.1. Let f ; g 2FþðXÞ and l be an arbitrary fuzzy measure such that both ðSÞ
R

A f dl and ðSÞ
R

A g dl are finite. And let
H : ½0;1Þ2 ! ½0;1Þ be continuous and nondecreasing in both arguments and bounded from above by minimum. If f, g are
comonotone, then the inequality
ðSÞ
Z

A
f Hg dl P ðSÞ

Z
A

f dl
� �

H ðSÞ
Z

A
g dl

� �
ð1:1Þ
holds.
In view of the fact that
ðSÞ
Z

A
f Hg dl 6 ðSÞ

Z
A

f dl
� �

H ðSÞ
Z

A
g dl

� �
ð1:2Þ
holds for comonotone functions f ; g 2FþðXÞwhenever H P max (for a similar result, see [21]), it is of great interest to deter-
mine the operator w such that
ðSÞ
Z

A
f Hg dl ¼ ðSÞ

Z
A

f dl
� �

H ðSÞ
Z

A
g dl

� �
ð1:3Þ
holds for any comonotone functions f, g, and for any fuzzy measure l and any measurable set A. Ouyang et al. [23,22] proved
that there are only 18 operators such that (1.3) holds, including the four well-known operators: minimum, maximum, PF (w

is called the first projection, PF for short, if x w y = x for each pair (x, y) ) and PL (w is called the last projection, PL for short, if
x w y = y for each pair (x, y)).

The classical Minkowski inequality was published by Minkowski [17, PP.115-117] in his famous book ‘Geometrie der Zah-
len’. This inequality is an important tool for modern analysis. A proof of Minkowski’s inequality as well as several extensions,
related results, and interesting geometrical interpretations can be found in [31]. Applications of Minkowski’s inequality have
been studied by many authors, for example Özkan et al. [24] applied Minkowski’s inequality on time scales and Lu et al. [12]
used Minkowski’s inequality for fast full search in motion estimation. So it is of interest to develop its counterpart for Sugeno
integrals.

Recently, Agahi and Yaghoobi [1] proved a Minkowski type inequality for monotone real functions and Lebesgue mea-
sure-based Sugeno integral, and then Agahi et al. [2] further generalized it to comonotone functions and arbitrary fuzzy mea-
sure-based Sugeno integrals,

Theorem 1.2. Let f ; g 2FþðXÞ and let l be an arbitrary fuzzy measure such that ðSÞ
R

A f Hg dl is finite. And let
H : ½0;1Þ2 ! ½0;1Þ be continuous and nondecreasing in both arguments and bounded from below by maximum. If f ; g are
comonotone, then the inequality
ðSÞ
Z

A
ðf HgÞs dl

� �1
s

6 ðSÞ
Z

A
f s dl

� �1
s

H ðSÞ
Z

A
gs dl

� �1
s

ð1:4Þ
holds for all s > 0.
In the present paper, we intend to prove a reverse inequality related to (1.4). As we will see, the obtained inequality can

also be seen as a generalization of Chebyshev inequality for Sugeno integrals [16]. We think that our result together with
Ineq. (1.4) will be useful for those areas in which the classical Minkowski inequality plays a role whenever the environment
is non-deterministic. After some preliminaries and summarization of some previous known results in Section 2, Section 3
presents our main results, including several examples. Finally, some conclusions and problems for further investigations
are given.

2. Preliminaries

In this section we recall some basic definitions and previous results which will be used in the sequel.
As usual we denote by R the set of real numbers. Let X be a non-empty set, F be a r-algebra of subsets of X. Let N denote

the set of all positive integers and Rþ denote ½0;þ1�. Throughout this paper, we fix the measurable space ðX;FÞ, and all con-
sidered subsets are supposed to belong to F.

Definition 2.1. [26]A set function l : F! Rþ is called a fuzzy measure if the following properties are satisfied:

(FM1) lð;Þ ¼ 0;
(FM2) A � B implies lðAÞ 6 lðBÞ;
(FM3) A1 � A2 � � � � implies l

S1
n¼1An

� �
¼ limn!1lðAnÞ; and

(FM4) A1 � A2 � � � � and lðA1Þ < þ1 imply l
T1

n¼1An
� �

¼ limn!1lðAnÞ.

When l is a fuzzy measure, the triple ðX;F;lÞ then is called a fuzzy measure space.
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Let ðX;F;lÞ be a fuzzy measure space, by FþðXÞwe denote the set of all measurable functions f : X ! ½0;1Þwith respect
to F. In what follows, all considered functions belong to FþðXÞ. Let f be a nonnegative real-valued function defined on X, we
will denote the set fx 2 Xjf ðxÞP ag by Fa for a P 0. Clearly, Fa is nonincreasing with respect to a, i.e., a 6 b implies FakFb.

Definition 2.2. [25,32,34]Let ðX;F;lÞ be a fuzzy measure space and A 2F, the Sugeno integral of f on A, with respect to the
fuzzy measure l, is defined as
ðSÞ
Z

A
f dl ¼

_
aP0

ða ^ lðA \ FaÞÞ:
When A = X, then
ðSÞ
Z

X
f dl ¼ ðSÞ

Z
f dl ¼

_
aP0

ða ^ lðFaÞÞ:
It is well known that Sugeno integral is a type of nonlinear integral [15], i.e., for general case,
ðSÞ
Z
ðaf þ bgÞdl ¼ aðSÞ

Z
f dlþ bðSÞ

Z
gdl;
does not hold. Some basic properties of Sugeno integral are summarized in [25,34], we cite some of them in the next
Theorem.

Theorem 2.3. [25,34]Let ðX;F;lÞ be a fuzzy measure space, then

(i) lðA \ FaÞP a) ðSÞ
R

A f dl P a;
(ii) lðA \ FaÞ 6 a) ðSÞ

R
A f dl 6 a;

(iii) ðSÞ
R

A f dl < a() there exists c < a suchthat lðA \ FcÞ < a;
(iv) ðSÞ

R
A f dl > a() there exists c > a suchthat lðA \ FcÞ > a;

(v) If lðAÞ <1, then lðA \ FaÞP a() ðSÞ
R

A f dl P a;
(vi) If f 6 g, then ðSÞ

R
f dl 6 ðSÞ

R
g dl.

In [19], Ouyang and Fang proved the following result which generalized the corresponding one in [29].

Lemma 2.4. Let m be the Lebesgue measure on R and let f : ½0;1Þ ! ½0;1Þ be a nonincreasing function. If ðSÞ
R a

0 f dm ¼ p, then
f ðp�ÞP ðSÞ
Z a

0
f dm ¼ p
for all a P 0, where f ðp�Þ ¼ limx!p� f ðxÞ.
Moreover, if p < a and f is continuous at p, then f ðp�Þ ¼ f ðpÞ ¼ p.

Notice that if m is the Lebesgue measure and f is nonincreasing, then f ðp�ÞP p implies ðSÞ
R a

0 f dm P p for any a P p. In
fact, the monotonicity of f and the fact f ðp�ÞP p imply that ½0; pÞ � Fp. Thus, mð½0; a� \ FpÞP mð½0; a� \ ½0; pÞÞ ¼ mð½0; pÞÞ ¼ p.
Now, by Theorem 2.3(i), we have ðSÞ

R a
0 f dm P p.

Based on Lemma 2.4, Ouyang et al. proved some Chebyshev type inequalities [20] and their united form [16] (i.e., Theo-
rem 1.1 in this paper). Notice that when proving these Theorems, the following lemma, which is derived from the transfor-
mation theorem for Sugeno integrals (see [34]), plays a fundamental role.

Lemma 2.5. Let ðSÞ
R

A f dl ¼ p. Then 8 r P p; ðSÞ
R

A f dl ¼ ðSÞ
R r

0 lðA \ FaÞdm, where m is the Lebesgue measure.

In this contribution, we will prove an inequality related to Chebyshev type and Minkowski type inequalities (Theorems
1.1 and 1.2 in this paper) for the Sugeno integral of comonotone functions. Recall that two functions f ; g : X ! R are said to be
comonotone if for all ðx; yÞ 2 X2; ðf ðxÞ � f ðyÞÞðgðxÞ � gðyÞÞP 0. Clearly, if f and g are comonotone, then for all non-negative
real numbers p; q either Fp � Gq or Gq � Fp. Indeed, if this assertion does not hold, then there are x 2 Fp n Gq and
y 2 Gq n Fp. That is,
f ðxÞP p; gðxÞ < q and f ðyÞ < p; gðyÞP q;
and hence ðf ðxÞ � f ðyÞÞðgðxÞ � gðyÞÞ < 0, contradicts with the comonotonicity of f and g. Notice that comonotone functions
can be defined on any abstract space.

3. Main results

The following theorem, which is related to the Minkowski type inequality for Sugeno integral [1,2] (see also Theorem 1.2),
is our main result.
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Theorem 3.1. Let f ; g 2FþðXÞ and l be an arbitrary fuzzy measure such that both ðSÞ
R

A f dl and ðSÞ
R

A g dl are finite. And let
H : ½0;1Þ2 ! ½0;1Þ be continuous and nondecreasing in both arguments and bounded from above by minimum. If f, g are
comonotone, then the inequality
ððSÞ
Z

A
ðf HgÞs dlÞ

1
s P ðSÞ

Z
A

f s dl
� �1

s

H ðSÞ
Z

A
gs dl

� �1
s

ð3:1Þ
holds for all 0 < s <1.
Proof. First of all, notice that the finiteness of ðSÞ
R

A f dl ðSÞ
R

A g dl
� �

implies that of ðSÞ
R

A f s dl ðSÞ
R

A gs dl
� �

. Put
ðSÞ
R

f s dl ¼ p and ðSÞ
R

gs dl ¼ q and r > maxfp; qg. Clearly, if p
1
s Hq

1
s ¼ 0 then In Eq. (3.1) holds readily. So we need only

to prove the conclusion for p1
s Hq1

s > 0. Since w is bounded from above by minimum, we have that 0 < p; q < r. Denote
AðaÞ ¼ lðA \ fxjf sðxÞP agÞ;BðaÞ ¼ lðA \ fxjgsðxÞP agÞ, then, by applying Lemma 2.5, it holds
ðSÞ
Z r

0
AðaÞdm ¼ p and; ðSÞ

Z r

0
BðaÞdm ¼ q;
where m is the Lebesgue measure. Thus we need only to show that ðSÞ
R

Aðf HgÞs dl P p1
s Hq1

s

� �s
. For any sufficient small

e;lðA \ F
ðp�eÞ

1
s
Þ ¼ Aðp� eÞP p and l A \ G

ðq�eÞ
1
s

� �
¼ Bðq� eÞP q. By the monotonicity of w and the comonotonicity of f, g,

we have
l A \ H
ðp�eÞ

1
s Hðq�eÞ

1
s

� �
P l A \ F

ðp�eÞ
1
s
\ G

ðq�eÞ
1
s

� �
¼min l A \ F

ðp�eÞ
1
s

� �
; l A \ G

ðq�eÞ
1
s

� �� �
¼minðAðp� eÞ; Bðq� eÞÞ

P minðp; qÞP p
1
s Hq

1
s

� �s
;

where Ha ¼ fxjf ðxÞHgðxÞP ag. Notice that if we denote CðaÞ ¼ lðA \ fxjðf ðxÞHgðxÞÞs P agÞ, then
C ðp� eÞ
1
s Hðq� eÞ

1
s

� �s� �
¼ l A \ H

ðp�eÞ
1
s Hðq�eÞ

1
s

� �
P p

1
s Hq

1
s

� �s
holds for any e. Letting e! 0, by the continuity of w we obtain that Cððp1
s Hq

1
sÞs�ÞP ðp1

s Hq
1
sÞs. Thus we have

ðSÞ
R

Aðf HgÞs dl P ðp1
s Hq1

sÞs and which implies that
ðSÞ
Z

A
ðf HgÞs dl

� �1
s

P pHq ¼ ðSÞ
Z

A
f s dl

� �1
s

HððSÞ
Z

A
gs dlÞ

1
s :
This completes the proof. h
Remark 3.2. Let ðSÞ
R

A f s dl ¼ p and ðSÞ
R

A gs dl ¼ q, and let c P max p; q; p1
s ; q1

s

� �
. Then the requirement of Hj½0;c�2 6 min is

enough to ensure the validity of Theorem 3.1. If H ¼min, then In Eq. (3.1) remains true when ðSÞ
R

A f s dl and/or
ðSÞ
R

A gs dl are/is finite. Therefore In Eq. (3.1) together with the monotonicity of Sugeno integral (Theorem 2.3(vi)) imply that
ðSÞ
Z

A
ðf ^ gÞs dl

� �1
s

¼ ðSÞ
Z

A
f sdl

� �1
s

^ ðSÞ
Z

A
gs dl

� �1
s

:

This property is equivalent to the comonotone minitivity of Sugeno integral.
Example 3.3. Let X = [0,10] and the fuzzy measure l be defined as lðAÞ ¼ m2ðAÞ, where m is the Lebesgue measure. Let
f(x) = 3 and
gðxÞ ¼
x x 2 ½0;5�;
10� x x 2 ½5;10�;

�

then f, g are comonotone and h ¼ f ^ g is defined as
hðxÞ ¼
x x 2 ½0;3�;
3 x 2 ð3;7Þ;
10� x x 2 ½7;10�:

8><
>:
For any s > 0, a simple calculation reveals that
ðSÞ
Z

f s dl ¼ 3s ^ 100; ðSÞ
Z

gsdl ¼
_

a2½0;5s �
a ^ 10� 2a1

s

� �2
and
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ðSÞ
Z

hsdl ¼
_

a2½0;3s �

a ^ 10� 2a1
s

� �2
:

So,
ðSÞ
Z

f s dl
� �1

s ^
ðSÞ
Z

gs dl
� �1

s

¼ 3 ^ 100
1
s

� �^ _
a2½0;5s �

a1
s ^ 10� 2a1

s

� �2
s

0
@

1
A

and
ðSÞ
Z

hs dl
� �1

s

¼
_

a2½0; 3s �

a1
s ^ 10� 2a1

s

� �2
s
:

Noting that for any a 2 ½0;5s�; 10� 2a1
s

� �2
s
6 100

1
s , thus
ðSÞ
Z

f s dl
� �1

s ^
ðSÞ
Z

gs dl
� �1

s

¼ 3
^ _

a2½0;5s �
a1

s ^ 10� 2a1
s

� �2
s

0
@

1
A:
Now, if
W

a2½0;5s �a
1
s ^ 10� 2a1

s

� �2
s
P 3, i.e., 10� 2ð3sÞ

1
s

� �2
s
P 3, then
ðSÞ
Z

f s dl
� �1

s ^
ðSÞ
Z

gs dl
� �1

s

¼ 3 ¼ ð3sÞ
1
s
^

10� 2ð3sÞ
1
s

� �2
s ¼

_
a2½0;3s �

a1
s ^ 10� 2a1

s

� �2
s ¼ ðSÞ

Z
hsdl

� �1
s

¼ ðSÞ
Z
ðf ^ gÞsdl

� �1
s

;

if
W

a2½0;5s �a
1
s ^ 10� 2a1

s

� �2
s
< 3, i.e., 10� 2ð3sÞ

1
s

� �2
s
< 3, then
ðSÞ
Z

f s dl
� �1

s ^
ðSÞ
Z

gs dl
� �1

s

¼
_

a2½0;5s �
a1

s ^ 10� 2a1
s

� �2
s ¼

_
a2½0;3s �

a1
s ^ 10� 2a1

s

� �2
s

0
@

1
A_ _

a2ð3s ;5s �

a1
s ^ 10� 2a1

s

� �2
s

0
@

1
A

¼
_

a2½0;3s �

a1
s ^ 10� 2a1

s

� �2
s ¼ ðSÞ

Z
hsdl

� �1
s

¼ ðSÞ
Z
ðf ^ gÞsdl

� �1
s

:

Remark 3.4. Let w be continuous and nondecreasing. If Hj½0;1�2 is a triangular subnorm [8], then Ineq. (3.1) works for any
comonotone functions f, g with ðSÞ

R
A f dl 6 1 and ðSÞ

R
A g dl 6 1.
Example 3.5. Let w be the usual product and the two comonotone functions f ; g : ½0;3� ! Rþ be defined as
f ðxÞ ¼ 1

3 x; gðxÞ ¼ 1
4 ðxþ 1Þ. If the fuzzy measure l be defined as lðAÞ ¼ mðAÞ, where m denotes the Lebesgue measure on R,

then
ðSÞ
Z

f
1
2dl ¼

_
a2½0;1�

a ^ ð3� 3a2Þ ¼
ffiffiffiffiffiffi
37
p

� 1
6

; ðSÞ
Z

g
1
2 dl ¼

_
a2½0;1�

a ^ ð4� 4a2Þ ¼
ffiffiffiffiffiffi
65
p

� 1
8

and
ðSÞ
Z
ðfgÞ

1
2 dl ¼

_
a2½0;1�

a ^ 7�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 48a2
p

2
¼

ffiffiffiffiffiffiffiffiffi
577
p

� 7
22

:

Thus,
ðSÞ
Z
ðfgÞ

1
2 dl

� �2

� 0:599 > 0:559 � ðSÞ
Z

f
1
2 dl

� �2

ðSÞ
Z

g
1
2 dl

� �2
The following example shows that the comonotonicity of f, g in Theorem 3.1 is inevitable.
Example 3.6. Let X = [0, 1], f(x) = x, g(x) = 1 � x and the fuzzy measure l be defined as lðAÞ ¼ m2ðAÞ, where m denotes the
Lebesgue measure on R. Then
ðSÞ
Z

f 2 dl ¼ ðSÞ
Z

g2 dl ¼
_

a2½0;1�
a ^ 1�

ffiffiffi
a
p� �2 ¼ 1

4
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and
ðSÞ
Z
ðf ^ gÞ2 dl ¼

_
a2 0;14½ �

a ^ 1� 2
ffiffiffi
a
p� �2 ¼ 1

9
:

Hence
ðSÞ
Z
ðf ^ gÞ2 dl

� �1
2

¼ 1
3
<

1
2
¼ ðSÞ

Z
f 2 dl

� �1
2^

ðSÞ
Z

g2 dl
� �1

2

;

which violates Theorem 3.1.
The following example shows that the condition of H 6 min in Theorem 3.1 cannot be omitted.

Example 3.7. Let X = [0,5], and f ðxÞ ¼ gðxÞ � 2. Then
ðSÞ
Z

f 2 dm ¼ ðSÞ
Z

g2 dm ¼ 4; ðSÞ
Z
ðfgÞ2 dm ¼ 5;
where m denotes the Lebesgue measure on R. Thus,
ðSÞ
Z
ðfgÞ2 dm

� �1
2

¼
ffiffiffi
5
p

< 4 ¼ ðSÞ
Z

f 2 dm
� �1

2

ðSÞ
Z

g2 dm
� �1

2

;

which violates Theorem 3.1.
We close this section with the following two results.

Corollary 3.8. Let f1; f2; . . . ; fn be such that any two of them are comonotone and w be as in Theorem 3.1 . Then
ðSÞ
Z

A
ðð� � � ððf1Hf2ÞHf3ÞH � � �ÞHfnÞs dl

� �1
s

P � � � ðSÞ
Z

A
f s
1dl

� �1
s

H ðSÞ
Z

A
f s
2 dl

� � !1
s

0
@

1
AH � � �

0
@

1
AH ðSÞ

Z
A

f s
n dl

� �1
s

:

Proof. Since f1; f2 are comonotone, then by Theorem 3.1 we have
ðSÞ
Z
ðf1Hf2Þs dl

� �1
s

P ðSÞ
Z

f s
1 dl

� �1
s

H ðSÞ
Z

f s
2 dl

� �1
s

:

Moreover, the comonotonicity of f1Hf2 and f3 (see the proof of Corollary 3.8 in [16]) implies that
ðSÞ
Z
ððf1Hf2ÞHf3Þs

� �
dlÞ

1
s P ðSÞ

Z
ðf1Hf2Þs dl

� �1
s

HððSÞ
Z

f s
3 dlÞ

1
s

P ðSÞ
Z

f s
1 dl

� �1
s

H ðSÞ
Z

f s
2 dl

� �1
s

 !
H ðSÞ

Z
f s
3 dl

� �1
s

:

Thus we can prove the conclusion by induction. h

Let s ¼ 1, we then get the Chebyshev type inequality:

Corollary 3.9 [16]. Let f ; g 2FþðXÞ and l be an arbitrary fuzzy measure such that both ðSÞ
R

A f dl and ðSÞ
R

A g dl are finite. And
let H : ½0;1Þ2 ! ½0;1Þ be continuous and nondecreasing in both arguments and bounded from above by minimum. If f,g are
comonotone, then the inequality
ðSÞ
Z

A
f Hg dl P ðSÞ

Z
A

f dl
� �

H ðSÞ
Z

A
g dl

� �
ð1:2Þ
holds.
4. Further discussions

Combining (1.4) and (3.1), one will find it is of interest to examine the operations w such that
ðSÞ
Z

A
ðf HgÞs dl

� �1
s

¼ ðSÞ
Z

A
f s dl

� �1
s

H ðSÞ
Z

A
gs dl

� �1
s

ð4:1Þ
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for any fuzzy measure space ðX;F;lÞ and any measurable set A, and for any comonotone functions f ; g : X ! ½0;1Þ: We have
the following result:

Theorem 4.1. Eq. (4.1) holds for any fuzzy measure space ðX;F;lÞ and any measurable set A, and for any comonotone functions
f ; g : X ! ½0;1Þ if and only if w belongs to one of the 18 operators in [22].
Proof. In [22], the equality (4.1) for fixed power s = 1 was solved. Thus there are at most 18 operations w described in [22]
which can satisfy (4.1). We sketch how to prove that all of them are solutions of (4.1). For H 2 fmin;max; PF; PLg, it suffices to
note that ðf HgÞt ¼ f t

Hgt holds for any t > 0, then (4.1) can be proven by using (1.3). For other 14 operators, the proofs are
similar to those in [22]. Here we give in detail the proof for one of these special operations w, the case examplified in Fig. 1.

Let ðX;F;lÞ be an arbitrary fuzzy measure space and A an arbitrary measurable set. Let f ; g 2FþðXÞ be two arbitrary
comonotone functions. Suppose ðSÞ

R
A f s dl ¼ as and ðSÞ

R
A gs dl ¼ bs. Thus, for any n;lðA \ Fa�1

n
ÞP as and lðA \ Gb�1

n
ÞP bs.

Moreover, for any c > a;lðA \ FcÞ 6 as and for any c > b;lðA \ GcÞ 6 bs. We distinguish the following two possible cases:

Case 1: a ^ b P r. In this case we have a w b = r. To show (1.3), we need only to show ðSÞ
R

A ðf HgÞs dl ¼ rs. For each n we

have l A \ Fr�1
n

� �
P l A \ Fa�1

n

� �
P as P rs and l A \ Gr�1

n

� �
P l A \ Gb�1

n

� �
P bs P rs. By the fact of Hr�1

n
� Fr�1

n
\ Gr�1

n
as

well as the comonotonicity of f, g, we have that l A \ Hr�1
n

� �
P l A \ Fr�1

n

� �
^ l A \ Gr�1

n

� �
P rs, where

Ha ¼ fx 2 Xjf ðxÞHgðxÞP ag. Thus ðSÞ
R

A ðf HgÞs dl P rs. On the other hand, for any x 2 X; f ðxÞHgðxÞ 6 r, so
ðSÞ
R

A ðf HgÞs dl 6 rs. Hence ðSÞ
R

A ðf HgÞs dl ¼ rs.
Case 2: a ^ b < r. We suppose a ^ b ¼ b < r, the case of a ^ b ¼ a < r can be shown analogously. This case can be further
divided into three subcases:

2(i): r > b P r01. For each n; Fa�1
n
\ Gb�1

n
� Hb�1

n
, and thus the comonotonicity of f, g implies

l A \ Hb�1
n

� �
P l A \ Fa�1

n

� �
^ l A \ Gb�1

n

� �
P as ^ bs ¼ bs. Whence ðSÞ

R
A ðf HgÞs dl P bs. Furthermore, for any

c > b;Hc � Gc. Hence lðA \ HcÞ 6 lðA \ GcÞ 6 bs, which implies that ðSÞ
R

A ðf HgÞs dl 6 bs. Therefore
Fig. 1. One of the solutions of (4.1).
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ðSÞ
Z

A
ðf HgÞs dl

� �1
s

¼ b ¼ aHb ¼ ðSÞ
Z

A
f s dl

� �1
s

HððSÞ
Z

A
gs dlÞ

1
s ;

i.e., (4.1) holds.
2(ii): b < r01 < a. Since Hr01
� Fr01

, we have l A \ Hr01

� �
P l A \ Fr01

� �
P as > r01

� �s. Thus ðSÞ
R

A ðf HgÞs dl P r01
� �s. On the

other hand, for any c > r01 > b;Hc � Gc . Hence lðA \ HcÞ 6 l A \ Gcð Þ 6 bs
< r01
� �s, and which implies that

ðSÞ
R

A ðf HgÞs dl 6 r01
� �s. Thus
ðSÞ
Z

A
ðf HgÞs dl

� �1
s

¼ r01 ¼ aHb ¼ ðSÞ
Z

A
f s dl

� �1
s

H ðSÞ
Z

A
gs dl

� �1
s

;

i.e., (4.1) holds.
2(iii): a 6 r01. From the facts that Ha�1
n
� Fa�1

n
;8 n and Hc � Fc [ Gc;8 c > a as well as the comonotonicity of f, g, we con-

clude that ðSÞ
R

A ðf HgÞs dl
� �1

s ¼ a ¼ aHb ¼ ðSÞ
R

A f s dl
� �1

s
H ðSÞ

R
gs dl

� �1
s , again (4.1) holds. h

5. Conclusions and problems for further investigation

We have proved an inequality for the Sugeno integral on an abstract fuzzy measure space ðX;F;lÞ based on a product-
like operation w. As we have seen, this inequality is related to Minkowski type one and Chebyshev type one. Moreover, we
have shown all cases for w yielding the commuting (for comonotone functions) with ‘‘power-root” Sugeno integral.

On the other hand, there are numerous applications of Choquet integral, and thus the study of Minkowski, Chebyshev and
similar inequalities for Choquet integral is an important and interesting topic for the further research. Moreover, both Su-
geno and Choquet integrals when restricted to [0,1] can be seen as copula-based fuzzy integrals, and then Minkowski-like
inequalities is a challenging topic also in this rather general situation.
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