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1. INTRODUCTION

In 1974, Sugeno [25] initiated researches on fuzzy measures and fuzzy integrals.
Fuzzy measure is a generalization of the notion of measure in mathematical analysis
(see, e. g., [18, 26]). Sugeno integral is analogous to Lebesgue integral which has
been studied by many authors, including Pap [18], Ralescu and Adams [19], Román–
Flores et al. [6, 20, 21, 22, 23] and, Wang and Klir [26], among others. The difference
between Sugeno integral and Lebesgue integral is that addition and multiplication in
the definition of Lebesgue integral are replaced respectively by the operations max
and min when Sugeno integral is considered. Román–Flores et al. [6, 20, 21, 22, 23],
started the studies of inequalities for Sugeno integral, and then followed by the
authors [1, 2, 11, 12, 13]. In [11], Mesiar and Ouyang proved the following Chebyshev
type inequalities for Sugeno integrals:

Theorem 1.1. Let f, g ∈ F+(X) and µ be an arbitrary fuzzy measure such that
(S)

∫

A
f dµ and (S)

∫

A
g dµ are finite. Let ⋆ : [0,∞)2 → [0,∞) be continuous and

nondecreasing in both arguments and bounded from above by minimum. If f, g are
comonotone, then the inequality

(S)

∫

A

f ⋆ g dµ ≥
(

(S)

∫

A

f dµ

)

⋆

(

(S)

∫

A

g dµ

)

(1)

holds.
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It is known that

(S)

∫

A

f ⋆ g dµ ≤
(

(S)

∫

A

f dµ

)

⋆

(

(S)

∫

A

g dµ

)

(2)

where f, g are comonotone functions whenever ⋆ ≥ max (for a similar result, see
[15]), it is of great interest to determine the operator ⋆ such that

(S)

∫

A

f ⋆ g dµ =

(

(S)

∫

A

f dµ

)

⋆

(

(S)

∫

A

g dµ

)

(3)

holds for any comonotone functions f, g, and for any fuzzy measure µ and any
measurable set A. Ouyang et al. [16, 17] proved that there are only 18 operators
such that (3) holds, including the four well-known operators: minimum, maximum,
PF (called the first projection, PF for short, if x ⋆ y = x for each pair (x, y) ) and
PL (called the last projection, PL for short, if x ⋆ y = y for each pair (x, y)).

Recently, Agahi and Yaghoobi [1] proved a Minkowski type inequality for mono-
tone functions and arbitrary fuzzy measure-based Sugeno integrals on real line, and
then Agahi et al. [2] further generalized it to comonotone functions and arbitrary
fuzzy measure-base Sugeno integrals on an arbitrary measurable space. For (1),
Agahi, Mesiar and Ouyang [3, 14] gave some strengthened versions and extensions.
In particular, in [14], Ouyang et al presented a generalization of Chebyshev inequal-
ity for Sugeno integral given in Theorem 1.2) below.

Theorem 1.2. Let f, g ∈ F+(X) and µ be an arbitrary fuzzy measure such that
both (S)

∫

A
fs dµ and (S)

∫

A
gs dµ are finite. And let ⋆ : [0,∞)2 → [0,∞) be contin-

uous and nondecreasing in both arguments and bounded from above by minimum.
If f, g are comonotone, then the inequality

(

(S)

∫

A

(f ⋆ g)s dµ

)
1

s

≥
(

(S)

∫

A

fs dµ

)
1

s

⋆

(

(S)

∫

A

gs dµ

)
1

s

(4)

holds for all 0 < s < ∞.

The aim of this paper is a deep generalization of some of the above results based
on an aggregation function H and a scale transformation ϕ.

The paper is arranged as follows. For convenience of the reader, in the next
section, we review some preliminaries and summarization of some previous known
results. In Section 3, we construct further development of Chebyshev type inequali-
ties for Sugeno integrals and relate them to T-evaluators and S-evaluators. Finally,
a conclusion is given.

2. PRELIMINARIES

In this section, we are going to review some well known results from the theory
of fuzzy measures, Sugeno integrals and T-(S-)evaluators. For details, we refer to
[9, 19, 25, 26] and [5]. For the convenience of the reader, we provide in this section
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a summary of the mathematical notations and definitions used in this paper (see
[2, 16, 17]).

As usual we denote by R the set of real numbers. Let X be a non-empty set, F
be a σ-algebra of subsets of X and m be the Lebesgue measure on R. Let N denote
the set of all positive integers and R+ denote [0, +∞]. Throughout this paper, we
fix the measurable space (X,F), and all considered subsets are supposed to belong
to F .

Definition 2.1. (Ralescu and Adams [19]) A set function µ : F → R+ is called a
fuzzy measure if the following properties are satisfied:

(FM1) µ(∅) = 0;

(FM2) A ⊂ B implies µ(A) ≤ µ(B);

(FM3) A1 ⊂ A2 ⊂ · · · implies µ(
⋃∞

n=1 An) = limn→∞ µ(An);

(FM4) A1 ⊃ A2 ⊃ · · · , and µ(A1) < +∞ imply µ(
⋂∞

n=1 An) = limn→∞ µ(An).

When µ is a fuzzy measure, the triple (X,F , µ) then is called a fuzzy measure space.

Let (X,F , µ) be a fuzzy measure space, by F+(X) we denote the set of all
nonnegative measurable functions f : X −→ [0,∞) with respect to F . In what
follows, all considered functions belong to F+(X). Let f be a nonnegative real-
valued function defined on X , we will denote the set {x ∈ X |f(x) ≥ α} by Fα for
α ≥ 0. Clearly, Fα is nonincreasing with respect to α, i. e., α ≤ β implies Fα k Fβ .
Moreover, for any fixed k in (0,∞) denote by Fk (X) the set of all measurable
functions f : X −→ [0, k]. Observe that the system (Fk (X)) is strictly increasing
and

⋃Fk (X) $ F+(X).

Definition 2.2. (Pap [18], Sugeno [25], Wang and Klir [26]) Let (X,F , µ) be a
fuzzy measure space and A ∈ F , the Sugeno integral of f on A, with respect to the
fuzzy measure µ, is defined as

(S)

∫

A

f dµ =
∨

α≥0

(α ∧ µ(A ∩ Fα)).

When A = X , then

(S)

∫

X

f dµ = (S)

∫

f dµ =
∨

α≥0

(α ∧ µ(Fα)).

It is well known that Sugeno integral is a type of nonlinear integral [10]. I. e., for
general case,

(S)

∫

(af + bg) dµ = a(S)

∫

f dµ + b(S)

∫

g dµ

does not hold. Some basic properties of Sugeno integral are summarized in [18, 26],
we cite some of them in the next theorem.
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Theorem 2.3. (Pap [18], Wang and Klir [26]) Let (X,F , µ) be a fuzzy measure
space, then

(i) µ(A ∩ Fα) ≥ α =⇒ (S)
∫

A
f dµ ≥ α;

(ii) µ(A ∩ Fα) ≤ α =⇒ (S)
∫

A
f dµ ≤ α;

(iii) (S)
∫

A
f dµ < α ⇐⇒ there exists γ < α such that µ(A ∩ Fγ) < α;

(iv) (S)
∫

A
f dµ > α ⇐⇒ there exists γ > α such that µ(A ∩ Fγ) > α;

(v) If µ(A) < ∞, then µ(A ∩ Fα) ≥ α ⇐⇒ (S)
∫

A
f dµ ≥ α;

(vi) If f ≤ g, then (S)
∫

f dµ ≤ (S)
∫

g dµ.

In [12], Ouyang and Fang proved the following result which generalized the cor-
responding one in [22].

Lemma 2.4. Let f : [0,∞) → [0,∞) be a nonincreasing function. If (S)
∫ a

0 f dm =
p, then

f(p−) ≥ (S)

∫ a

0

f dm = p

for all a ≥ 0, where f(p−) = limx→p− f(x).
Moreover, if p < a and f is continuous at p, then f(p−) = f(p) = p.

Notice that if f is nonincreasing, then f(p−) ≥ p implies (S)
∫ a

0
f dm ≥ p for any

a ≥ p. In fact, the monotonicity of f and the fact f(p−) ≥ p imply that [0, p) ⊂ Fp.
Thus, m([0, a]∩Fp) ≥ m([0, a]∩ [0, p)) = m([0, p)) = p. Now, by Theorem 2.3(i), we
have (S)

∫ a

0
f dm ≥ p.

Based on Lemma 2.4, Ouyang et al. proved some Chebyshev type inequalities [13]
and their united form [11] (i. e., Theorem 1.1 in this paper). Notice that when prov-
ing these theorems, the following lemma, which is derived from the transformation
theorem for Sugeno integrals (see [26]), plays a fundamental role.

Lemma 2.5. Let (S)
∫

A
f dµ = p. Then ∀ r ≥ p, (S)

∫

A
f dµ = (S)

∫ r

0 µ(A∩Fα) dm.

In this contribution, we will prove further development of Chebyshev type in-
equalities for Sugeno integrals and T-(S-)evaluators of comonotone functions. Recall
that two functions f, g : X → R are said to be comonotone if for all (x, y) ∈ X2,
(f(x) − f(y))(g(x) − g(y)) ≥ 0. Clearly, if f and g are comonotone, then for all
non-negative real numbers p, q either Fp ⊂ Gq or Gq ⊂ Fp. Indeed, if this assertion
does not hold, then there are x ∈ Fp\Gq and y ∈ Gq\Fp. That is,

f(x) ≥ p, g(x) < q and f(y) < p, g(y) ≥ q,

and hence (f(x) − f(y))(g(x) − g(y)) < 0, contradicts with the comonotonicity of f

and g. Notice that comonotone functions can be defined on any abstract space.

Now, we give the following definitions which will be used later.
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Definition 2.6. (Bodjanova and Kalina [5]) For a complete lattice (X,≤,⊥,⊤)
with the least and the greatest elements ⊥ and ⊤, respectively, a function ϕ :
X → [0, 1] is said to be an evaluator on X iff it satisfies the following properties:

(1) ϕ (⊥) = 0, ϕ (⊤) = 1.

(2) for all a, b ∈ X , if a ≤ b then ϕ (a) ≤ ϕ (b) .

Definition 2.7. (Klement et al. [9]) A binary operation T : [0, 1] × [0, 1] → [0, 1]
is said to be a t-norm iff it satisfies the following properties:

(i) for each y ∈ [0, 1] T (1, y) = y,

(ii) for all x, y ∈ [0, 1] T (x, y) = T (y, x),

(iii) for all x, y1, y2 ∈ [0, 1] if y1 ≤ y2 then T (x, y1) ≤ T (x, y2),

(iv) for all x, y, z ∈ [0, 1] T (x, T (y, z)) = T (T (x, y), z).

The four basic t-norms are:

• the minimum t-norm, TM (x, y) = min{x, y},
• the product t-norm, TP (x, y) = x.y,

• the  Lukasiewicz t-norm, TL(x, y) = max{0, x + y − 1},
• the drastic product,

TD(x, y) =

{

0 if max{x, y} < 1,

min{x, y} if max{x, y} = 1.

A function S : [0, 1] × [0, 1] → [0, 1] is called a t-conorm [9], if there is a t-norm
T such that S(x, y) = 1 − T (1 − x, 1 − y). Evidently, a t-conorm S satisfies:

(i′) S(x, 0) = S(0, x) = x, ∀x ∈ [0, 1] as well as conditions (ii), (iii) and (iv). The
basic t-conorms (dual of four basic t-norms) are:

• the maximum t-conorm, SM (x, y) = max{x, y},

• the probabilistic sum, SP (x, y) = x + y − xy,

• the  Lukasiewicz t-conorm, SL(x, y) = min{1, x + y},

• the drastic sum,

SD(x, y) =

{

1 if min{x, y} > 0,

max{x, y} if min{x, y} = 0.

Definition 2.8. (Bodjanova and Kalina [5]) Consider a complete lattice
(X,≤,⊥,⊤), a t-norm T and a t-conorm S. An evaluator on X is called a T -
evaluator iff for all a, b ∈ X

T (ϕ (a) , ϕ (b)) ≤ ϕ (a ∧ b) ,

and it is called an S-evaluator iff

S (ϕ (a) , ϕ (b)) ≥ ϕ (a ∨ b) .
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3. MAIN RESULTS

The aim of this paper is to give the following results.

Theorem 3.1. Let k ∈ (0,∞) be fixed. For any continuous and non-decreasing
ϕ : [0, k] → [0, k] satisfying ϕ (x) ≤ x for all x ∈ [0, k] and any non-decreasing n-
place function H : [0,∞)n → [0,∞) such that H is continuous and bounded from
above by minimum and any comonotone system f1, f2, . . . , fn from Fk (X) and any
fuzzy measure µ it holds

(S)

∫

A

H (ϕ (f1) , ϕ (f2) . . . , ϕ (fn)) dµ

≥ H

(

ϕ

(

(S)

∫

A

f1 dµ

)

, ϕ

(

(S)

∫

A

f2 dµ

)

. . . , ϕ

(

(S)

∫

A

fn dµ

))

. (5)

P r o o f . Let (S)
∫

A
fi dµ = pi, i = 1, 2, . . . , n. Theorem 2.3(v) implies that

(S)

∫

A

fi dµ = pi =⇒ µ (A ∩ {x|fi (x) ≥ pi}) ≥ pi.

Then
µ (A ∩ {x|ϕ (fi) (x) ≥ ϕ (pi)}) ≥ pi.

Since ϕ (x) ≤ x for all x ∈ [0, k] and H : [0,∞)n → [0,∞) is continuous and bounded
from above by minimum there holds

H (ϕ (p1) , ϕ (p2) . . . , ϕ (pn)) ≤ min (ϕ (p1) , ϕ (p2) , . . . , ϕ (pn)) ≤ min (p1, p2 . . . , pn) .

Therefore

µ (A ∩ {x|H (ϕ (f1) , ϕ (f2) . . . , ϕ (fn)) ≥ H (ϕ (p1) , ϕ (p2) . . . , ϕ (pn))})

≥ µ

(

A ∩ {x|ϕ (f1) (x) ≥ ϕ (p1)}
∩ {x|ϕ (f2) (x) ≥ ϕ (p2)} ∩ . . . ∩ {x|ϕ (fn) (x) ≥ ϕ (pn)}

)

= min (µ (A ∩ {x|ϕ (f1) (x) ≥ ϕ (p1)}) , . . . , µ (A ∩ {x|ϕ (fn) (x) ≥ ϕ (pn)}))

≥ min (p1, p2, . . . , pn) ≥ H (ϕ (p1) , ϕ (p2) , . . . , ϕ (pn)) ,

and, consequently, from Theorem 2.3(i) we obtain:

(S)

∫

A

H (ϕ (f1) , . . . , ϕ (fn)) dµ ≥ H

(

ϕ

(

(S)

∫

A

f1 dµ

)

, . . . , ϕ

(

(S)

∫

A

fn dµ

))

.

This completes the proof. �

Remark 3.2. If H(k, . . . , k) = k, then the function H required in Theorem 3.1
is a conjunctive (continuous) aggregation function on [0, k], compare [7]. Typical
examples of such functions on [0, 1] interval, i. e., if k = 1, are (continuous) t-norms,
copulas, quasi-copulas, etc. Note also that the function ϕ required in Theorem 3.1
can be seen as a (contracting) transformation of the scale [0, k].
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Corollary 3.3. Let (X,F , µ) be a fuzzy measure space and f, g : X → [0, 1] two
comonotone measurable functions. If T is a continuous t-norm and ϕ is continuous
T -evaluator on X such that ϕ (x) ≤ x, then the inequality

(S)

∫

A

T (ϕ (f) , ϕ (g)) dµ ≥ T

(

ϕ

(

(S)

∫

A

f dµ

)

, ϕ

(

(S)

∫

A

g dµ

))

(6)

holds for any A ∈ F .

The following example shows that ϕ (x) ≤ x for all x ∈ [0, k] in Theorem 3.1 is
inevitable.

Example 3.4. Let X ∈ [0, 1
2 ], f1(x) = x, f2 (x) = 1

2 , ϕ (x) =
√

x and H(x, y) = x.y.

Then

(S)

∫

(ϕ (f1) × ϕ (f2)) dµ = 0. 309 02 , ϕ

(

(S)

∫

f1 dµ

)

=
1

2

and

ϕ

(

(S)

∫

f2 dµ

)

=

√

1

2
,

but

0. 309 02 = (S)

∫

H (ϕ (f1) , ϕ (f2)) dµ < H

(

ϕ

(

(S)

∫

f1 dµ

)

, ϕ

(

(S)

∫

f2 dµ

))

= 0. 353 55,

which violates Theorem 3.1.

The following example shows that the comonotonicity of f1, f2, . . . , fn in Theorem
3.1 cannot be omitted.

Example 3.5. Let X = [0, 1], f1(x) =
√

x, f2(x) =
√

1 − x, H(x, y) = min {x, y} ,

ϕ (x) = x2 and the fuzzy measure µ be defined as µ(A) = m(A). Then

(S)

∫

f1 dµ = (S)

∫

f2 dµ =
∨

α∈[0,1]

[

α ∧ (1 − α2)
]

= 0. 618 03,

and

(S)

∫

(f2
1 ∧ f2

2 ) dµ =
∨

α∈[0, 1

2
]

α ∧ (1 − 2α) = 0. 333 33.

Hence

(S)

∫

(ϕ (f1) ∧ ϕ (f2)) dµ = 0. 333 33 < 0. 381 96

= ϕ

(

(S)

∫

f1 dµ

)

∧

ϕ

(

(S)

∫

f2 dµ

)

,

which violates Theorem 3.1.
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The following results are easy to obtain.

Corollary 3.6. Let (X,F , µ) be a fuzzy measure space and f, g : X → [0, 1] two
comonotone measurable functions. Let ⋆ : [0, 1]2 → [0, 1] be continuous and nonde-
creasing in both arguments and bounded from above by minimum. Then

(S)

∫

A

f ⋆ g dµ ≥
(

(S)

∫

A

f dµ

)

⋆

(

(S)

∫

A

g dµ

)

(7)

for any A ∈ F .

Corollary 3.7. Let f1, f2, . . . , fn be such that any two of them are comonotone and
be as in Corollary 3.3. Then

(

(S)

∫

A

ϕ (T (. . . (T (T (f1, f2)) , f3) . . .) , fn) dµ

)

≥ T

(

T
(

. . .
(

T
(

ϕ
(

(S)
∫

A
f1 dµ

))

,
(

ϕ
(

(S)
∫

A
f2 dµ

)))

, . . .

. . . ,
(

ϕ
(

(S)
∫

A
fn dµ

))

)

.

Now, by using the Lemma 2.4 and 2.5 we obtain the following result.

Theorem 3.8. Let k ∈ (0,∞) be fixed. For any continuous and non-decreasing
ϕ : [0, k] → [0, k] satisfying ϕ (x) ≥ x for all x ∈ [0, k] and any non-decreasing n-
place function H : [0,∞)n → [0,∞) such that H is continuous and bounded from
below by maximum and any comonotone system f1, f2, . . . , fn from Fk (X) and any
fuzzy measure µ it holds

(S)

∫

A

H (ϕ (f1) , ϕ (f2) . . . , ϕ (fn)) dµ

≤ H

(

ϕ

(

(S)

∫

A

f1 dµ

)

, ϕ

(

(S)

∫

A

f2 dµ

)

. . . , ϕ

(

(S)

∫

A

fn dµ

))

. (8)

P r o o f . Let (S)
∫

A
H (ϕ (f1) , ϕ (f2) . . . , ϕ (fn)) dµ = r ≤ v < ∞ . Theorem 2.3(v)

implies that:
µ(A ∩ {x|H (ϕ (f1) , ϕ (f2) . . . , ϕ (fn)) ≥ r}) ≥ r.

Denote A1(α) = µ(A∩{x|f1 (x) ≥ α}), A2(α) = µ(A∩{x|f2 (x) ≥ α}), . . . , An(α) =
µ(A ∩ {x|f2 (x) ≥ α}) and C(α) = µ(A ∩ {x|H (ϕ (f1) , ϕ (f2) . . . , ϕ (fn)) ≥ α). By
Lemma 2.5 we have

(S)

∫

A

H (ϕ (f1) , ϕ (f2) . . . , ϕ (fn)) dµ = (S)

∫ v

0

C(α)m ( dα) .

Therefore, it is suffices to prove

(S)

∫ v

0

C(α)m ( dα) ≤ H











ϕ

(

(S)

∫ v

0

A1(α)m ( dα)

)

, ϕ

(

(S)

∫ v

0

A2(α)m ( dα)

)

,

. . . , ϕ

(

(S)

∫ v

0

An(α)m ( dα)

)











.



Further Development of Chebyshev Type Inequalities for Sugeno Integrals . . . 91

Let p1 = (S)
∫ v

0
A1(α)m (dα) , p2 = (S)

∫ v

0
A2(α)m (dα) , . . . , pn = (S)

∫ v

0
An(α)m (dα) .

Without loss of generality, let p1, p2, . . . , pn < v . Since A1(α), A2(α), . . . , An(α)
are non- increasing with respect to α, by Lemma 2.4 (moreover part), we have the
following equalities:

A1(p1−) = p1, A2(p2−) = p2, . . . , An(pn−) = pn.

Since ϕ (x) ≥ x for all x ∈ [0, k] and H : [0,∞)n → [0,∞) is continuous and bounded
from below by maximum there holds

H (ϕ (p1) , ϕ (p2) , . . . , ϕ (pn)) ≥ max (ϕ (p1) , ϕ (p2) , . . . , ϕ (pn)) ≥ max (p1, p2 . . . , pn) .

Now, on the contrary suppose

r > H (ϕ (p1) , ϕ (p2) , . . . , ϕ (pn)) . (9)

Then

µ(A ∩ {x|H (ϕ (f1) , ϕ (f2) , . . . , ϕ (fn)) ≥ r})

≤ µ (A ∩ {x|H (ϕ (f1) , ϕ (f2) , . . . , ϕ (fn)) > H (ϕ (p1) , ϕ (p2) , . . . , ϕ (pn))})

≤ µ

(

A ∩
(

{x|ϕ (f1) (x) > ϕ (p1)} ∪ {x|ϕ (f2) (x) > ϕ (p2)}
∪ . . . ∪ {x|ϕ (fn) (x) > ϕ (pn)}

))

≤ µ (A ∩ ({x|f1 (x) > p1} ∪ {x|f2 (x) > p2} ∪ . . . ∪ {x|fn (x) > pn})) .

Therefore for sufficiently small ε > 0, we have

µ(A ∩ {x|H (ϕ (f1) , ϕ (f2) , . . . , ϕ (fn)) ≥ r})

≤ µ

(

A ∩
(

{x|f1 (x) ≥ p1 − ε} ∪ {x|f2 (x) ≥ p2 − ε}
∪ . . . ∪ {x|fn (x) ≥ pn − ε}

))

.

Letting ε → 0, then we have

r ≤ lim
ε→0

µ(A ∩ {x|H (ϕ (f1) , ϕ (f2) , . . . , ϕ (fn)) ≥ r})

≤ lim
ε→0

(max(A1(p1 − ε), A2(p2 − ε), . . . , An(pn − ε)))

= max (p1, p2 . . . , pn) ≤ H (ϕ (p1) , ϕ (p2) . . . , ϕ (pn)) ,

which is a contradiction to (9). Hence r ≤ H (ϕ (p1) , ϕ (p2) , . . . , ϕ (pn)) and the
proof is completed. �

Observe that if H(0, .., 0) for a function H required in Theorem 3.8 holds, then H

is a disjunctive (continuous) aggregation function on [0, k], see [7]. Typical examples
in the case k = 1 of such aggregation functions are continuous t-conorms, cocopulas,
etc.

Corollary 3.9. Let (X,F , µ) be a fuzzy measure space and f, g : X → [0, 1] two
comonotone measurable functions. If S is a continuous t-conorm and ϕ is continuous
S -evaluator on X such that ϕ (x) ≥ x, then the inequality

(S)

∫

A

S (ϕ (f) , ϕ (g)) dµ ≤ S

(

ϕ

(

(S)

∫

A

f dµ

)

, ϕ

(

(S)

∫

A

g dµ

))

(10)

holds for any A ∈ F .



92 H. AGAHI, R. MESIAR AND Y. OUYANG

The following example shows that ϕ (x) ≥ x for all x ∈ [0, k] in Theorem 3.8 is
inevitable.

Example 3.10. Let X = [0, 1], f1(x) = f2 (x) = x, ϕ (x) = x2 and H(x, y) =
min{1, x + y} and the fuzzy measure µ be defined as µ(A) = m2(A). Then

(S)

∫ 1

0

H (ϕ (f1) , ϕ (f2)) dµ =
∨

α∈[0,1]

(

α ∧
(

1 −
√

2α

2

))

= 6 − 4
√

2 = 0. 343 15

but

ϕ

(

(S)

∫ 1

0

f1 dµ

)

= ϕ

(

(S)

∫ 1

0

f2 dµ

)

=

(

3 −
√

5

2

)2

= 0. 145 9.

Then

(S)

∫ 1

0

H (ϕ (f1) , ϕ (f2)) dµ = 0. 343 15 > H

(

ϕ

(

(S)

∫ 1

0

f1 dµ

)

, ϕ

(

(S)

∫ 1

0

f2 dµ

))

= 0. 291 8,

which violates Theorem 3.8.

The following example shows that the comonotonicity of f1, f2, . . . , fn in Theorem
3.8 cannot be omitted.

Example 3.11. Let X = [0, 1], f1(x) = x, f2(x) = (1 − x) , H(x, y) = min{1, x +
y}, ϕ (x) = x and the fuzzy measure µ be defined as µ(A) = m2(A). Then

(S)

∫

f1 dµ = (S)

∫

f2 dµ =
∨

α∈[0,1]

[

α ∧ (1 − α)2
]

= 0. 381 97

and

(S)

∫

H (x, 1 − x) dµ = 1.

Hence

(S)

∫

H (ϕ (f1) , ϕ (f2)) dµ = 1 > H

(

ϕ

(

(S)

∫

f1 dµ

)

, ϕ

(

(S)

∫

f2 dµ

))

= 0. 763 94,

which violates Theorem 3.8.

The following results are easy to obtain.
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Corollary 3.12. Let (X,F , µ) be a fuzzy measure space and f, g : X → [0, 1] two
comonotone measurable functions. Let ⋆ : [0, 1]2 → [0, 1] be continuous and nonde-
creasing in both arguments and bounded from below by maximum. Then

(S)

∫

A

f ⋆ g dµ ≤
(

(S)

∫

A

f dµ

)

⋆

(

(S)

∫

A

g dµ

)

(11)

for any A ∈ F .

Corollary 3.13. Let f1, f2, . . . , fn be such that any two of them are comonotone
and be as in Corollary 3.9. Then

(

(S)

∫

A

ϕ (S (. . . (S (S (f1, f2)) , f3) . . .) , fn) dµ

)

≤ S

(

S
(

. . .
(

S
(

ϕ
(

(S)
∫

A
f1 dµ

))

,
(

ϕ
(

(S)
∫

A
f2 dµ

)))

, . . .

. . . ,
(

ϕ
(

(S)
∫

A
fn dµ

))

)

.

4. CONCLUSION

In this paper, we have investigated further development of Chebyshev type inequali-
ties for Sugeno integrals and we have related them to T-evaluators and S-evaluators.
As an interesting open problem for further investigation we pose the generalization
of equality (3) for n-ary case. To be more precise, it is worth studying the case
when the inequalities (5) and/or (8) became equalities, independently of incoming
functions f1, . . . , fn.
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