On the α-migrativity of semicopulas, quasi-copulas, and copulas

R. Mesiara,b, H. Bustincec,*, J. Fernandezc

aDepartment of Mathematics and Descriptive Geometry, Slovak University of Technology, SK-813 68 Bratislava, Slovakia
bInstitute of Information Theory and Automation, Czech Academy of Sciences, CZ-182 08 Prague, Czech Republic
cDepartamento de Automática y Computación, Universidad Pública de Navarra, Campus Arrosadia s/n, P.O. Box 31006, Pamplona, Spain

Article info
Article history:
Received 17 March 2009
Received in revised form 27 November 2009
Accepted 21 January 2010

Keywords:
Semicopulas
Copulas
Quasi-copulas
Migrativity

Abstract
In this paper we address the problem of α-migrativity (for a fixed α) for semicopulas, copulas and quasi-copulas. We introduce the concept of an α-sum of semicopulas. This new concept allows us to completely characterize α-migrative semicopulas and copulas. Moreover, α-sums also provide a means to obtain a partial characterization of α-migrative quasi-copulas.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

For some image processing applications and decision-making problems, it is important to ensure that variations in the value of some functions caused by considering just a given fraction of one of the input variables is independent of the actual choice of variable. For instance, it is sometimes of interest to darken a certain part of an image. In decision-making, the ordering of inputs may be relevant, even though the result of modifying one or another evaluation by a given ratio is the same. The concept of migrativity captures this idea. In this paper we focus on the α-migrativity for some fixed α; in other words, we consider that the reduction factor is determined by a fixed factor $0 < \alpha \leq 1$.

Mathematically, the α-migrative property for a mapping $A : [0, 1] \times [0, 1] \rightarrow [0, 1]$ means that the identity

$$ A(\alpha x, y) = A(x, \alpha y) $$

holds for all $x, y \in [0, 1]$. Property (2) below extended to the class of all bivariate functions on $[0,1]$ was introduced by Durante and Sarkoci [8] and further studied by Fodor and Rudas [9], whereas the particular case of aggregation functions was considered by Beliakov and Calvo [2]. We previously investigated and characterized aggregation functions that are α-migrative for all $\alpha \in [0, 1]$ [4]; in particular, we showed that the only migrative function with neutral element 1 is the product $\Pi(x, y) = xy$.

Property (2) for some specific aggregation functions has already been considered in the literature. In particular, the following problem was posed for t-norms by Mesiar and Novák [11].

Problem. Is there any t-norm T different from

$$ T(x, y) = \begin{cases}
 cxy & \text{if } \max(x, y) < 1, \\
 \min(x, y) & \text{otherwise},
\end{cases} $$

E-mail addresses: mesiar@math.sk (R. Mesiar), bustince@unavarra.es (H. Bustince).

0020-0255/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.ins.2010.01.024
such that, for a fixed $x \in [0, 1]$
\[T(2x, y) = T(x, 2y) \quad \text{for any } x, y < 1 \] (2)

This problem was definitively solved by Budincevic and Kurilić [3]. Based on their ideas, Mesiar and colleagues proposed a t-norm T, ([10, Exp. 2.11]) studied by Smutná [14]:
\[T_*(x, y) = \left\{ \begin{array}{ll}
\sum_{n=1}^\infty \frac{1}{2^n} & \text{if } x, y \in [0, 1], \\
0 & \text{otherwise}.
\end{array} \right. \] (3)

where, if $x > 0 (y > 0)$, $(x_n)(y_n))$ is a strictly increasing sequence in \mathbb{N} such that
\[x = \sum_{n=1}^\infty \frac{1}{2^n} \quad (y = \sum_{n=1}^\infty \frac{1}{2^n}). \]

Evidently, for $x = 2^{-k}$ with $k \in \mathbb{N}$
\[2^{-k}x = \sum_{n=1}^\infty \frac{1}{2^{n-k}}, \]

and analogously for y (here and subsequently, whenever the summation bounds are omitted, the index is understood to vary from 1 to ∞). Thus, we have:
\[T_*(x, y) = T_*(x, 2y), \]

for all $x, y < 1$ (even for all $x, y \leq 1$) and for all $x = 2^{-k}$ with $k \in \mathbb{N}$.

The case of x-migrative t-norms has also been considered [6,8,9]. In the particular case of continuous t-norms, they were shown to be strict t-norms generated by an additive generator $t : [0, 1] \to [0, \infty]$ satisfying
\[t(x) = kt(x) + t(x^{-k}), \] (4)

for all $x \in [x^{k-1}, x^k], k \in \{0, 1, 2, \ldots \}$ (i.e., on $[x, 1]$ the choice of t is free).

Inspired by the results mentioned above, we investigated x-migrative semicopulas with a special focus on copulas and quasi-copulas. Observe that for associative copulas x-migrativity forces the strictness of the discussed copula and x-migrative strict copulas are generated by an additive generator t given by (4) [2], additionally satisfying the convexity property, i.e., t is convex on $[x, 1]$ and $t(1^-) \leq 2t(x^+).$ Here and in the following, for a given function $f : [0, 1] \to [0, 1]$ and for a point $x_0 \in [0, 1], f(x_0^+)$ and $f(x_0^-)$ denote the limit from the right and from the left, respectively, of f at x_0.

For convenience, we now describe some of the basic notions involved in our study.

Definition 1.1. A (bivariate) aggregation function is a mapping $A : [0, 1] \times [0, 1] \to [0, 1]$ such that

(i) $A(0, 0) = 0$ and $A(1, 1) = 1$; and
(ii) A is non-decreasing in both variables.

Definition 1.2. Let $x \in [0, 1].$ An aggregation function $A : [0, 1] \times [0, 1] \to [0, 1]$ is x-migrative if the identity
\[A(ax, y) = A(x, ay) \]

holds for all $x, y \in [0, 1].$

Definition 1.3. An aggregation function $S : [0, 1] \times [0, 1] \to [0, 1]$ is called a semicopula if 1 is its neutral element, i.e., $S(x, 1) = S(1, x) = x$ for all $x \in [0, 1].$ A 1-Lipschitz semicopula, i.e., a semicopula Q satisfying
\[|Q(x, y) - Q(x', y')| \leq |x - x'| + |y - y'|, \]

for all $x, y, x', y' \in [0, 1],$ is called a quasi-copula.

A semicopula C that is 2-increasing, that is:
\[C(x, y) + C(x', y') - C(x, y') - C(x', y) \geq 0, \]

for all $0 \leq x \leq x' \leq 1$ and $0 \leq y \leq y' \leq 1,$ is called a copula.

More details are available elsewhere [1,12]. Note that each copula is also a quasi-copula and that quasi-copulas that are not copulas are termed proper.

The remainder of the paper is organized as follows. In the next section, x-migrative semicopulas are characterized and the x-migrative sum of x-migrative semicopulas is introduced. Section 3 is devoted to the study of x-migrative copulas and quasi-copulas. In particular, we describe expression (3) for T_*. In Section 4, some final considerations are discussed.
2. \(\alpha \)-Migrative semicopulas

Throughout the remainder of the paper, \(\alpha \in [0, 1] \) is fixed. Because semicopulas possess a neutral element 1, it is evident that each \(\alpha \)-migrative semicopula \(S \) satisfies:

\[
S(\alpha, x) = S(x, \alpha) = \alpha x,
\]

and by induction

\[
S(\alpha^k, x) = S(x, \alpha^k) = \alpha^k x,
\]

for \(k = 2, 3, \ldots \) Hence, for any \(\alpha \)-migrative semicopula \(S \) the following result holds.

Lemma 2.1. Let \(S : [0, 1] \times [0, 1] \) be an \(\alpha \)-migrative semicopula. Then, for any \(x, y \in [0, 1] \) such that \(\{ x, y \} \cap \{ 1, \alpha, \alpha^2, \ldots \} \neq \emptyset \), it holds that

\[
S(x, y) = \Pi(x, y) = xy.
\]

The next result can also be obtained by induction.

Lemma 2.2. Let \(S : [0, 1] \times [0, 1] \) be an \(\alpha \)-migrative semicopula. Then, for any \(x, y \in [0, 1] \) and \(k, m, i, j \in \{ 0, 1, 2, \ldots \} \), it holds that

\[
S(\alpha^k x, \alpha^m y) = S(\alpha^k x, \alpha^j y),
\]

whenever \(k + m = i + j \).

These two lemmas have a crucial impact on the following definition. We denote \(\mathbb{N}_0 = \{ 0, 1, 2, \ldots \} \).

Definition 2.1. Let \((S_i)_{i \in \mathbb{N}_0} \) be a system of \(\alpha \)-migrative semicopulas. Then the function \(S : [0, 1] \times [0, 1] \to [0, 1] \) given by

\[
S(x, y) = \begin{cases}
S_i(x, y) & \text{if } (x, y) \in E_i \text{ for some } i \in \mathbb{N}_0, \\
0 & \text{otherwise},
\end{cases}
\]

where for \(i \in \mathbb{N}_0, E_i = \bigcup_{m,k \in \mathbb{N}_0, m+k=i} \alpha^{k+1} \times \alpha^m \), is called \(\alpha \)-migrative sum of \((S_i)_{i \in \mathbb{N}_0} \). This is denoted by \(S = \alpha - (S_i)_{i \in \mathbb{N}_0} \).

Proposition 2.3. The \(\alpha \)-migrative sum of semicopulas is a semicopula.

Proof. First, we consider the neutrality of 1. Clearly \(S(1, 0) = S(0, 1) = 0 \), and if \(x \in \alpha^{k+1}, \alpha^k \) for some \(k \in \mathbb{N}_0 \), then

\[
S(1, x) = S_k(1, x) = x = S_k(x, 1) = S(x, 1),
\]

The structure of the sets \(E_i \) and the \(\alpha \)-migrative sum of semicopulas is illustrated in Fig. 1.

Fig. 1. Structure of an \(\alpha \)-migrative sum of semicopulas, with \(\alpha = 0.7 \).
Proof. The fact that

\[S(x, y) \leq S(x', y) \]

when \((x', y) \in E_i, (x, y) \in E_j \) and \(j > i \) (and similarly for the other variable). Suppose \(y \in [x_{m-1}, x_m] \). Then

\[x \in [x_i^{i-m}, x_{i-m}] \quad \text{and} \quad x' \in [x_{i-m}^{i-1}, x_{i-1-m}], \]

and hence

\[S(x, y) = S_j(x, y) \leq S_j(x', y) = x'^{-m}y = S_i(y', x) = S(x', y), \]

as required. \(\square \)

Proposition 2.4. A semicopula \(S \) is \(\alpha \)-migrative if and only if there exists a system \((S_i)_{i \in \mathbb{N}_0}\) of \(\alpha \)-migrative semicopulas such that \(S \) is the \(\alpha \)-migrative sum of \(S_i \), i.e., \(S = \alpha - (S_i)_{i \in \mathbb{N}_0} \).

Proof. Necessity is obvious, as it is enough to consider the constant system \((S_i)_{i \in \mathbb{N}_0}\). To prove the sufficiency, by the previous proposition we already have that the \(\alpha \)-migrative sum \(S = \alpha - (S_i)_{i \in \mathbb{N}_0} \) is a semicopula. Now observe that if \((x, y) \in E_i\), then \((x, y) \) and \((x, xy)\) belong to \(E_{i+1}\). Thus, owing to the \(\alpha \)-migrativity of \(S_{i+1} \), it holds that:

\[S(x, y) = S(x, xy). \]

Moreover, \(xy = 0 \) if and only if \(axy = 0 \), and in this case:

\[S(x, y) = S(x, 2y) = 0. \]

Consequently, each \(\alpha \)-migrative sum is \(\alpha \)-migrative. \(\square \)

The next result follows directly from **Definition 1.2 and Lemma 2.1.**

Proposition 2.5. Let \(S \) be an \(\alpha \)-migrative semicopula. Then the mapping \(D : [0, 1] \times [0, 1] \to \mathbb{R} \) given by

\[
D(x, y) = \frac{S(x + (1 - \alpha)x, x + (1 - \alpha)y) - \alpha(1 - \alpha)(x + y) - \alpha^2}{(1 - \alpha)^2}
\]

satisfies

(i) \(D(x, 0) = D(0, x) = 0 \) for any \(x \in [0, 1] \) (i.e., \(0 \) is an annihilator of \(D \));

(ii) \(D(x, 1) = D(1, x) = x \) for any \(x \in [0, 1] \), (i.e., \(1 \) is a neutral element for \(D \)); and

(iii) \((1 - \alpha)D(x, y) + \alpha(x + y) \leq (1 - \alpha)D(x', y') + \alpha(x' + y') \) for any \(x, y, x', y' \in [0, 1] \) such that \(x \leq x' \) and \(y \leq y' \).

Proof. First, note that for \((u, v) \in [x, 1] \times [x, 1]\):

\[S(u, v) = x(u + v) - \alpha^2 + (1 - \alpha)^2 D \left(\frac{u - x}{1 - \alpha}, \frac{v - x}{1 - \alpha} \right). \]

The result follows from the non-decreasing property of \(S \) and the identities \(S(x, v) = x v, S(u, x) = x u, S(1, v) = v \) and \(S(u, 1) = 1 \). \(\square \)

Definition 2.2. A function \(D : [0, 1] \times [0, 1] \to \mathbb{R} \) satisfying the properties given in **Proposition 2.5** is called an \(\alpha \)-generating function.

Note that, regardless of the value of \(\alpha \in [0, 1] \), any semicopula \(S \) is an \(\alpha \)-generating function. Moreover, we have the following two results.

Proposition 2.6. The strongest semicopula \(M(x, y) = \min(x, y) \) is also the strongest \(\alpha \)-generating function. That is, \(M \) is an \(\alpha \)-generating function and, for any other \(\alpha \)-generating function \(D \), the inequality

\[D(x, y) \leq M(x, y) \]

holds for all \(x, y \in [0, 1] \).

Proof. The fact that \(M(x, y) = \min(x, y) \) is an \(\alpha \)-generating function follows from easy calculations. To prove that for any other \(\alpha \)-generating function \(D \) the inequality \(D(x, y) \leq M(x, y) \) holds, just observe that \(D(x, y) \leq D(1, y) = y \) and \(D(x, y) \leq D(x, 1) = x \) for all \(x, y \in [0, 1] \). \(\square \)

Proposition 2.7. The weakest \(\alpha \)-generating function \(D^{(\alpha)} \) is given by

\[
D^{(\alpha)}(x, y) = \begin{cases} \frac{1}{1 - \alpha} \min(x, y) & \text{if } \max(x, y) < 1, \\ \min(x, y) & \text{otherwise.} \end{cases}
\]
Proof. Let D be an α-generating function. From (ii) and (iii) in Proposition 2.5 it follows that, for any $x, y \in [0, 1]$

$$ax = (1 - \alpha)D(x, 0) + ax \leq (1 - \alpha)D(x, y) + \alpha(x + y),$$

and

$$ay = (1 - \alpha)D(0, y) + ay \leq (1 - \alpha)D(x, y) + \alpha(x + y),$$

so we have that

$$D(x, y) \geq \max \left(-\frac{\alpha}{1 - \alpha} x, -\frac{\alpha}{1 - \alpha} y \right) = -\frac{\alpha}{1 - \alpha} \min(x, y),$$

as required. □

Now we are ready to give a complete characterization of α-migrative semicopulas.

Theorem 2.8. Let S be a bivariate function. Then S is an α-migrative semicopula if and only if there exists a system $(D_i)_{i \in \mathbb{N}_0}$ of α-generating functions such that

$$S(x, y) = \left\{ \begin{array}{ll}
\alpha^{m+1}x + \alpha^k y - \alpha^{k+m+2} + (1 - \alpha)^2 \alpha^{k+m} D_{k,m} \left(\frac{x - \alpha^k}{\alpha^k - \alpha^{k+1}}, \frac{y - \alpha^{m+1}}{\alpha^m - \alpha^{m+1}} \right), & \text{if } (x, y) \in [\alpha^{k+1}, \alpha^k] \times [\alpha^{m+1}, \alpha^m], \\
0, & \text{otherwise.}
\end{array} \right. \tag{6}$$

Proof. To see the necessity, observe that, as S is non-decreasing, from Proposition 2.4, it follows that S can be written as an α-migrative sum $(S_i)_{i \in \mathbb{N}_0}$. However, from Eq. (5) in Proposition 2.5, each of the terms S_i can be written in terms of an α-generating function $D_{k,m}$ for $(x, y) \in [\alpha^{k+1}, \alpha^k] \times [\alpha^{m+1}, \alpha^m]$, with $k, m \in \mathbb{N}_0$ as follows:

$$S_i(x, y) = \alpha^{m+1}x + \alpha^k y - \alpha^{k+m+2} + (1 - \alpha)^2 \alpha^{k+m} D_{k,m} \left(\frac{x - \alpha^k}{\alpha^k - \alpha^{k+1}}, \frac{y - \alpha^{m+1}}{\alpha^m - \alpha^{m+1}} \right).$$

Moreover, from Proposition 2.4 it also holds that $D_{k,m} = D_{k',m'}$ whenever $k + m = k' + m'$. Thus, the condition is necessary.

To prove the sufficiency, observe that, if $(x, y) \in [\alpha^{k+1}, \alpha^k] \times [\alpha^{m+1}, \alpha^m]$, then

$$S(ax, ay) = \alpha^{m+1}ax + \alpha^k ay - \alpha^{k+m+3} + (1 - \alpha)^2 \alpha^{k+m+1} D_{k,m+1} \left(\frac{ax - \alpha^k}{\alpha^k - \alpha^{k+1}}, \frac{ay - \alpha^{m+1}}{\alpha^m - \alpha^{m+1}} \right),$$

wheras

$$S(x, y) = \alpha^{m+1}x + \alpha^k y - \alpha^{k+m+3} + (1 - \alpha)^2 \alpha^{k+m+1} D_{k,m+1} \left(\frac{x - \alpha^k}{\alpha^k - \alpha^{k+1}}, \frac{y - \alpha^{m+1}}{\alpha^m - \alpha^{m+1}} \right).$$

Evidently, $S(ax, ay) = S(x, y)$, ensuring the α-migrativity of S. To prove the monotonicity, we can use arguments similar to those for the proof of Proposition 2.4. Finally, the fact that $S(0, 0) = 0$ is obvious from the definition of S, whereas

$$S(x, 1) = S(1, x) = 1 \text{ for all } x \in [0, 1]$$

follows from property (ii) in Proposition 2.5. □

Definition 2.3. Let D be an α-generating function. For the constant system $(D_i)_{i \in \mathbb{N}_0}$, the α-migrative copula given by (6) is denoted as $S_{(D, \alpha)}$.

The next result is an easy corollary of Proposition 2.4.

Corollary 2.9. A semicopula S is α-migrative if and only if S is the α-migrative sum $S = \alpha - (S_{(D, \alpha)})_{i \in \mathbb{N}_0}$, where $(D_i)_{i \in \mathbb{N}_0}$ is a system of α-generating functions.

Remark 1.

(i) In Theorem 2.8 and Corollary 2.9, the choice of the system $(D_i)_{i \in \mathbb{N}_0}$ of α-generating functions has no restriction and it is evident that different systems generate different α-migrative semicopulas.

(ii) The symmetry of an α-migrative semicopula S is equivalent to the symmetry of each α-generating function D_i in representation (6).

(iii) Owing to Corollary 2.9, a prominent role in the study of α-migrative semicopulas is played by those generated by a single generating function.

Example 1.

(i) The strongest α-migrative semicopula is:

$$S_{(M, \alpha)} : [0, 1] \times [0, 1] \to [0, 1]$$
given, for \((x, y) \in [x^{k+1}, x^k] \times [x^{m+1}, x^m]\), by
\[
S_{(M, a)}(x, y) = x^{m+1}x + x^{k+1}y - x^{k+m+2}x + (1 - x) \min(x^{m}x - x^{m+1}, x^{k}y - x^{k+m+1})
\]
\[
= x^{m+1}x + x^{k+1}y - x^{k+m+1} + (1 - x) \min(x^{m}x, x^{k}y).
\]

Its support is depicted in Fig. 2 for \(x = 0.7\). Remember that the support of a semicopula \(S\), by analogy with that of a copula, is its support when considered as a probability distribution function on \([0, 1]^2\); that is, the complement of the union of all open sets in \([0, 1]^2\) with \(S\)-measure zero [12]. Observe also that \(S_{(M, a)}\) is a singular copula (i.e., a copula with support having zero Lebesgue measure).

(ii) The weakest \(x\)-migrative semicopula is
\[
S_{(D, \alpha^2)} : [0, 1] \times [0, 1] \rightarrow [0, 1]
\]
given, for \((x, y) \in [x^{k+1}, x^k] \times [x^{m+1}, x^m]\), by
\[
S_{(D, \alpha^2)}(x, y) = \max(x^{m+1}x, x^{k+1}y),
\]
whereas, if \((x, y) \cap \{0, 1\} \neq \emptyset\)
\[
S_{(D, \alpha^2)}(x, y) = \min(x, y).
\]

(iii) For the product \(II\), it holds that \(II = S_{(H, \alpha)}\).

(iv) The \((1/2)\)-migrative t-norm \(T_{\alpha}\), introduced in Section 1, satisfies \(T_{\alpha} = S_{(D, 1/2)}\), where the \((1/2)\)-generating function \(D\) is given by
\[
D(x, y) = \begin{cases}
2T_{\alpha}(x, y) - x - y + 1 & \text{if } \min(x, y) > 0, \\
0 & \text{otherwise}.
\end{cases}
\]

3. \(x\)-Migrative copulas and quasi-copulas

As observed in Example 1, an \(x\)-migrative semicopula \(S_{(D, \alpha)}\) can be generated by an \(x\)-generating function \(D\) that is not a semicopula, as the non-decreasing property of \(D\) may be violated. By contrast, for any semicopula \(H, S_{(H, \alpha)}\) is again an \((x\)-migrative\) semicopula. In the case of t-norms (associative and symmetric semicopulas), we have all possible situations. As shown in Example 1 (iv), there are t-norms generated by non-associative and non-monotonic \(x\)-generating functions. By contrast, there are t-norms of the form \(S_{(T, \alpha)}\), where \(T\) is a t-norm. For example, for the Lukasiewicz t-norm \(T_{\alpha}(x, y) = \max(x + y - 1, 0)\), the corresponding \(x\)-migrative semicopula \(S_{(T, \alpha)}\) is the weakest \(x\)-migrative 1-Lipschitz t-norm and its additive generator \(r : [0, 1] \rightarrow [0, \infty]\) is a piecewise linear function determined by points \((\alpha^i, i), i \in \mathbb{N}_0\) (cf. Ref. [2]). The support of \(S_{(T, \alpha)}\) (for \(x = 0.7\)) is depicted in Fig. 3. Example 1 (i) shows that not every t-norm \(T\) generates an \(x\)-migrative t-norm (associativity of \(S_{(M, \alpha)}\) is violated). A different situation occurs for the class of copulas and quasi-copulas.

![Fig. 2. Support of \(S_{(M, \alpha)}\) (for \(x = 0.7\)).](image-url)
Corollary 3.2. Let D be a quasi-copula. It is a proper quasi-copula whenever there is at least one proper quasi-copula in the system
\[k \]
only if D is a copula.

Proof. Observe that the 2-increasing property of a function $C : [0, 1] \times [0, 1] \to [0, 1]$, together with 0 being the annihilator of C and 1 being the neutral element of C, ensures that C is a copula. Moreover, it is not difficult to check that the 2-increasing property of C over $[0, 1] \times [0, 1]$ is equivalent to the 2-increasing property of C over all rectangles $[x^{k+1}, x^k] \times [y^m, y^{m+1}]$, for $k, m \in \mathbb{N}_0$. These facts, together with Proposition 2.5 and Theorem 2.8, prove the result. \[\square \]

Theorem 3.1. A semicopula S is an α-migrative copula if and only if there exists a system $(C_i)_{i \in \mathbb{N}_0}$ of copulas generating S by means of (6).

Proof. Observe that the 2-increasing property of a function $C : [0, 1] \times [0, 1] \to [0, 1]$, together with 0 being the annihilator of C and 1 being the neutral element of C, ensures that C is a copula. Moreover, it is not difficult to check that the 2-increasing property of C over $[0, 1] \times [0, 1]$ is equivalent to the 2-increasing property of C over all rectangles $[x^{k+1}, x^k] \times [y^m, y^{m+1}]$, for $k, m \in \mathbb{N}_0$. These facts, together with Proposition 2.5 and Theorem 2.8, prove the result. \[\square \]

Corollary 3.2. Let $D : [0, 1] \times [0, 1] \to \mathbb{R}$ be an α-generating function. Then the α-migrative semicopula $S_{(D, \alpha)}$ is a copula if and only if D is a copula.

It is evident that the strongest α-migrative copula is $S_{(M, \alpha)}$. As already mentioned, it is a singular copula for which the support is depicted in Fig. 3. More details on singular copulas are available elsewhere [12].

Similarly, the weakest α-migrative copula is $S_{(I, \alpha)}$, which is indeed a t-norm, and its additive generator (unique up to a positive multiplicative constant) $\{T_{(I, \alpha)}\} : [0, 1] \to [0, \infty]$ is given by

\[T_{(I, \alpha)}(x) = k(1 - x) + \left(1 - \frac{x}{\alpha^k}\right) \quad \text{if } x \in [x^{k+1}, x^k]. \]

In this case we also have a singular copula with support as shown in Fig. 3.

For α-migrative quasi-copulas we have only a sufficient condition.

Proposition 3.3. Let $(Q_i)_{i \in \mathbb{N}_0}$ be a system of quasi-copulas. Then the α-migrative semicopula S generated by this system as in (6) is a quasi-copula. It is a proper quasi-copula whenever there is at least one proper quasi-copula in the system $(Q_i)_{i \in \mathbb{N}_0}$.

Proof. The monotonicity and 1-Lipschitz property of Q_i ensure the same properties for S on the closure of E_i, It is evident that S is a continuous α-migrative semicopula and thus 1-Lipschitzianity of S on the closures of all E_i ensures the 1-Lipschitz property of S on the whole domain $[0, 1] \times [0, 1] = \cup E_i$. To prove this, observe that if $x \in [x^{k+1}, x^k]$ and $y \in [x^{k-2}, x^{k+1}]$ for some $k \in \mathbb{N}_0$, then we have that $Q(x, z) \geq Q(y, z)$ for all $z \in [0, 1]$. Thus, in particular

\[|Q(x, z) - Q(y, z)| = Q_i(x, z) - Q_i(z^{k+1}, z) + Q_i(x^{k+1}, z) - Q_i(y, z). \]

However, owing to the continuity of Q in the closure of E_i and E_{i+1}, $Q_i(x^{k+1}, z) = Q_i(z^{k+1}, z)$. As $Q_i(Q_{i+1})$ is 1-Lipschitz in $E_i(E_{i+1})$, we arrive at the inequality

\[|Q(x, z) - Q(y, z)| \leq (x - x^{k+1}) + (x^{k+1} - y) = x - y = |x - y|. \]
Since any two points in \(\cup E_i \) can be connected by a finite number of steps, like this one, (perhaps also considering the other variable), the 1-Lipschitz property follows. The last claim in the statement of the Proposition is evident. \(\square \)

Example 2. There are \(\alpha \)-migrative quasi-copulas \(S_{\{0, \alpha\}} \) generated by \(\alpha \)-generating functions that are not quasi-copulas. As an example, take \(D : [0, 1] \times [0, 1] \rightarrow \mathbb{R} \) given by

\[
D(x, y) = \begin{cases}
- \min(x, y) & \text{if } x, y \in [0, 1/3] \\
x + y - 1 & \text{if } x, y \in [1/3, 1] \\
3xy - 2 \min(x, y) & \text{otherwise.}
\end{cases}
\]

Then \(D \) is a 1/2-generating function. Moreover, it is easy to see that \(D \) is also a continuous and 1-Lipschitz function. If we consider the 1/2-migrative semicopula \(S_{\{0, 1/2\}} \), we have that

\[
S_{\{0, 1/2\}}(x, y) = \begin{cases}
\frac{\max(2^x, 2^y)}{2^x + 2^y} & \text{if } (x, y) \in J_{k, m}, \\
\frac{2^x - 2^y}{2^x + 2^y} & \text{if } (x, y) \in L_{k, m}, \\
\frac{1 - 2^x - 2^y - \min(2^x, 2^y)}{2^x + 2^y} + 3xy & \text{if } (x, y) \in I_{k, m}/(J_{k, m} \cup L_{k, m}), \\
0 & \text{otherwise.}
\end{cases}
\]

where \(J_{k, m} = [\frac{1}{2^k}, \frac{1}{2^k} \times [\frac{1}{2^k}, \frac{1}{2^k}] \times [\frac{1}{2^k}, \frac{1}{2^k}], \frac{1}{2^k}] \) and \(L_{k, m} = [\frac{1}{2^k}, \frac{1}{2^k} \times [\frac{1}{2^k}, \frac{1}{2^k}] \times [\frac{1}{2^k}, \frac{1}{2^k}], \frac{1}{2^k}] \) for \(k, m \in \mathbb{N}_0 \). This function is 1-Lipschitz, since \(D \) is. Thus, \(S_{\{0, 1/2\}} \) is a \((1/2) \)-migrative quasi-copula. However, it is clear that \(D \) is not a quasi-copula and not even an aggregation function since it is not greater than or equal to zero in its whole domain.

4. Concluding remarks

For a fixed \(\alpha \in [0, 1] \), we have completely characterized \(\alpha \)-migrative semicopulas and \(\alpha \)-migrative copulas. As a by-product, a new construction method for copulas was obtained. This assigns to a given copula \(C \) an \(\alpha \)-migrative copula \(S_{\{\alpha\}, \alpha} \). This new construction method raises a problem: is there a copula \(C \) different from the product \(P \) such that \(C = S_{\{\alpha\}, \alpha} \)? Other related problems for further investigations arise. For example, if a copula \(C \) is \(\beta \)-migrative, what can we say about the \(\alpha \)-migrative copula \(S_{\{\alpha\}, \alpha} \)?

Recall that Siburg and Stömenov recently introduced a gluing construction method for copulas [13]. For \(p \in [0, 1] \) and two copulas \(C_1 \) and \(C_2 \), the function \(C = \text{vg} - (\langle 0, p, C_1 \rangle, \langle 1, p, C_2 \rangle) : [0, 1] \times [0, 1] \rightarrow [0, 1] \) (where \(\text{vg} \) denotes vertical gluing), given by

\[
C(x, y) = \begin{cases}
pC_1 \left(\frac{y}{p} \right) & \text{if } x \in [0, p] \\
p + (1 - p) C_2 \left(\frac{y - p}{1 - p} \right) & \text{otherwise.}
\end{cases}
\]

is a copula. Similarly, horizontal gluing \(C = \text{hg} - (\langle 0, p, C_1 \rangle, \langle p, 1, C_2 \rangle) \) is given by

\[
C(x, y) = \begin{cases}
pC_1 \left(\frac{x}{p} \right) & \text{if } y \in [0, p] \\
p + (1 - p) C_2 \left(\frac{x - p}{1 - p} \right) & \text{otherwise.}
\end{cases}
\]

The next result is also of interest for further research.

Proposition 4.1. Let \(D : [0, 1] \times [0, 1] \rightarrow [0, 1] \) be an \(\alpha \)-generating function. Then the following are equivalent.

(i) \(S_{\{\alpha, \alpha\}} \) is an \(\sqrt{\alpha} \)-migrative copula.

(ii) There is a copula \(C \) such that \(D = \text{vg} - (\langle 0, p, C \rangle, \langle 0, p, C \rangle) \), where \(p = \frac{\sqrt{\alpha}}{1 + \sqrt{\alpha}} \).

Note that the roles of horizontal and vertical gluing in the above proposition can be exchanged. Moreover, owing to the above proposition, any copula of type \(S_{\{\alpha\}, \alpha} \) can be considered as a fractal structure. Indeed, the following hold:

(i) \(S_{\{\alpha\}, \alpha}(x, y) = \alpha^{-k} S_{\{\alpha\}, \alpha}(\alpha^k x, \alpha^k y) \) for all \(k \in \mathbb{N}_0 \) and \(x, y \in [0, 1] \);

(ii) \(S_{\{\alpha\}, \alpha} = \text{vg} - (\langle \alpha x^k, \alpha^k C_1 \rangle) \), with \(k \in \mathbb{N}_0 \), and where \(C_1 = \text{hg} - (\langle \alpha x^k, \alpha^k C \rangle, \langle \alpha x^k, \alpha^k C \rangle) \) and\(\langle \alpha x^k, \alpha^k C \rangle \) are the \(k \)-th \(\alpha \)-migrative copulas generated by \(\alpha \)-generating functions.

As an example, recall \(S_{M, \alpha} \) [see Example 1 (i) and Fig. 3] for which the support of the corresponding copulas \(C_1 \) and \(C_2 \) is depicted in Figs. 3 and 4, respectively, for \(\alpha = 0.7 \). (See Fig. 5)

Note finally that \(\alpha \)-migrative copulas can be viewed as a special type of rectangular patchwork based on the product copula; compare Refs. [7, 5].
Acknowledgements

This research was partially supported by the grants TIN2007-65981, APVV-0012-07, VEGA 1/4209/07 and GACR 402/08/0618.

References