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IDENTIFICATION OF OPTIMAL POLICIES

IN MARKOV DECISION PROCESSES

Karel Sladký

In this note we focus attention on identifying optimal policies and on elimination sub-
optimal policies minimizing optimality criteria in discrete-time Markov decision processes
with finite state space and compact action set. We present unified approach to value it-
eration algorithms that enables to generate lower and upper bounds on optimal values, as
well as on the current policy. Using the modified value iterations it is possible to eliminate
suboptimal actions and to identify an optimal policy or nearly optimal policies in a finite
number of steps without knowing precise values of the performance function.
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1. INTRODUCTION

Finding optimal policies for Markov decision chains may be a computationally diffi-
cult task for large-scale models. In this case it may be preferable if not necessary to
employ only simple methods that reduce the computational burden compensated by
finding either only nearly optimal policies or by identifying optimal policies without
knowing exact values of the performance criterion. The origins of such approaches
go back to early papers on Markov decision processes. See e. g. Grinold [3], Hast-
ings [4], Hastings and Mello [5, 6], MacQueen [7, 8], Odoni [9], Puterman and Shin
[10, 11], Sladký [13] and White [14]; these results are summarized in Chapter 6.7 of
Puterman’s monography [12].

Recently in a series of papers for models with compact state space it has been
possible to establish that, under suitable conditions (in particular, uniqueness of the
optimal policy), the value iteration procedure produces a sequence of policies that
converges to the optimal policy uniformly over compact sets (see e. g. [1, 2]).

In the present paper, connections between value iterations for discounted and
undiscounted models are employed and we are able to generate lower and upper
bounds on optimal values. This also helps to eliminate nonoptimal actions and to
identify optimal policy without knowing optimized values precisely.
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2. NOTATION

In this note we consider a Markov decision chain X = {Xn, n = 0, 1, . . .} with finite
state space I, and a compact set of possible decisions (actions) A(i) in state i ∈ I.
We assume that A(i) is a union of a finite number of closed (bounded) intervals,
possibly singletons, from R. Supposing that in state i ∈ I action a ∈ A(i) ⊂ R is
selected, then state j is reached in the next transition with given probability pij(a)
and one-stage (nonnegative) cost ci(a) ≥ 0 will be accrued to such transition. Both
pij(a) and ci(a) are assumed to be continuous functions of a ∈ A(i).

A (Markovian) policy controlling the chain, π = (f0, f1, . . .), is identified by a
sequence of decision vectors {fn, n = 0, 1, . . .} where fn ∈ A for every n = 0, 1, 2, . . .,
and the ith element of fn, denoted fn

i ∈ A(i), is the decision (or action) taken if
Xn = i. Policy which selects at all times the same decision rule, i. e. π ∼ (f), is
called stationary. Stationary policy π̃ is randomized if there exist decision vectors

f (1), f (2), . . . , f (m) ∈ A and on following policy π̃ we select in state i action f
(j)
i

with a given probability α
(j)
i (of course, α

(j)
i ≥ 0 with

∑N

j=1 α
(j)
i = 1 for all i ∈ I).

Given the initial state i ∈ I any policy defines the unique probability distribution
of the state-action process (Xn, fn

Xn
).

Let ξn
X0

(π) =
∑n−1

k=0 cXk
(fk

Xk
) (resp. ξβ,n

X0
(π) =

∑n−1
k=0 βk cXk

(fk
Xk

)) be the the
(random) total cost (resp. total β-discounted cost) received in the n next transitions
of the considered Markov chain X if policy π = (fn) is followed and the chain starts
in state X0. Then for the total expected cost and for the total expected discounted
cost respectively, received in the n next transitions if the chain starts in state i ∈ I
and policy π = (fn) is followed we have (E π

i is the expectation if the process starts
in state i and policy π is followed)

vn
i (π) := E [ξn

X0
(π)|X0 = i] = E

π
i

n−1
∑

k=0

cXk
(fk

Xk
), (2.1)

vβ,n
i (π) := E [ξβ,n

X0
(π)|X0 = i] = E

π
i

n−1
∑

k=0

βk cXk
(fk

Xk
) respectively. (2.2)

Since the state space is finite it will be convenient to introduce matrix nota-
tions. In particular, P (f) is transition probability matrix with elements pij(fi). Then

Pm(π) =
∏m−1

n=0 P (fn) (obviously, Pn+1(π) = Pn(π)P (fn))), for convenience we set
P 0(π) = I, the identity matrix. If π ∼ (f) (i. e. if π is stationary) then P m(π) =

[P (f)]m, and recall that the limit matrix P ∗(f) = limm→∞ m−1
∑m−1

n=0 [P (f)]n exists
and P ∗(f) e = e (e is reserved for a (column) unit vector). Markov chain is called
unichain if it contains a single class of recurrent states, and possibly also transient
states; hence if P (f) is unichain the rows of P ∗(f), denoted p∗(f), are identical.
Similarly, c(fn) denotes the (column) vector whose ith element equals ci(f

n
i ); vn(π)

denotes the (column) vector of expected costs whose ith element equals vn
i (π).

Then by (2.1), (2.2) if policy π = (fn) is followed we immediately have for the
vector of total costs vn(π), resp. total discounted costs vβ,n(π), in the n next
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transitions

vn(π) =

n−1
∑

k=0

k−1
∏

j=0

P (f j)c(fk), resp. vβ,n(π) =

n−1
∑

k=0

k−1
∏

j=0

βkP (f j)c(fk). (2.3)

For n → ∞ elements of vn(π) (resp. vβ,n(π)) can be typically infinite (resp. bounded
by M/(1 − β) where M = maxi maxk ci(k)). In case that π is stationary, i. e.
π ∼ (f), sometimes we replace in (2.3) vn

i (π), vn
i (π, β) by vn

i (f), vn
i (f, β) respectively.

Following stationary policy π ∼ (f) for n going to infinity there exist vectors of
average costs per transition, denoted g(f) (with elements gi(f) bounded by M)

and vector of total discounted costs, denoted vβ(f) with elements vβ
i (f) being the

discounted cost if the process starts in state i, where

g(f) := lim
n→∞

1

n
vn(f) = P ∗(f)c(f) (2.4)

vβ(f) :=
∞
∑

k=0

[β P (f)]kc(f) = [I − βP (f)]−1 c(f) = c(f) + β vβ(f). (2.5)

Let for arbitrary policy π = (fn) v̂β := infπ vβ(π), ĝ := infπ lim infn→∞
1
n
vn(π)

where v̂β
i , resp. ĝi (the ith element of v̂β , resp. of ĝ) is the minimal β-discounted

cost, resp. minimal average cost, if the process starts in state i ∈ I.

In this note we make the following general assumption.

Assumption GA. There exists state i0 ∈ I that is accessible from any state
i ∈ I for every f ∈ A, i. e. for every f ∈ A the transition probability matrix P (f)
is unichain (i. e. P (f) has no two disjoint closed sets).

Under Assumption GA for every stationary policy π ∼ (f) the vector g(f) is a
constant vector with elements ḡ(f) equal to p∗(f) c(f).

3. PRELIMINARIES

The following facts are mostly known to workers in stochastic dynamic programming
(see e. g. Puterman [12]). In particular, Fact 3.1 summarizes well-known properties
of optimal discounted and average policies that can be found in the class of stationary
policies. This can be verified by policy iteration. On the other hand deep results on
the asymptotic behavior of minimal total costs are summarized in Fact 3.2; in Fact
3.3 we show how to employ results of Fact 3.2 for effective successive approximations
of minimal average cost. Finally, in Fact 3.4 we construct simple upper and lower
bounds on optimal average and discounted costs.

Fact 3.1. (i) There exists decision vector f̂β ∈ A along with (column) vector v̂β =

v(f̂β), being the unique solution of

vβ(f) = min
f∈A

[

c(f) + βP (f) vβ(f)
]

. (3.1)
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In particular, for elements of v̂β , denoted v̂β
i , we can write

v̂i(β) = min
a∈A(i)

[

ci(a) + β
∑

j∈I

pij(a)v̂j(β)
]

= ci(f̂
β
i ) + β

∑

j∈I

pij(f̂
β
i )v̂j(β). (3.2)

(ii) If Assumption GA holds there exists decision vector f̂ ∈ A along with (column)

vectors ŵ = w(f̂) and ĝ = g(f̂) (constant vector with elements ḡ(f) = p∗(f̂)c(f̂))
being the solution of

w(f) + g(f) = min
f∈A

[

c(f) + P (f)w(f)
]

(3.3)

where w(f̂) is unique up to additive constant, and unique under the additional
normalizing condition

P ∗(f)w(f) = 0. (3.4)

In particular, for elements of ĝ = g(f̂), and ŵ = w(f̂), denoted ḡ and ŵi, we can
write

ŵi + ḡ = min
a∈A(i)

[

ci(a) +
∑

j∈I

pij(a)ŵj

]

= ci(f̂i) +
∑

j∈I

pij(f̂i)ŵj . (3.5)

Now consider the for a finite time horizon the “opposite time” orientation. In
particular, let Vi(n, β) be the minimum β discounted expected cost and Vi(n) be
the minimum expected cost respectively accrued in the n remaining transition if the
Markov chain X is in state i. As well known Vi(n, β) (the value iteration function)
must fulfill the following dynamic programming recursion

Vi(n + 1, β) = min
a∈A(i)

[

ci(a) + β
∑

j∈I

pij(a)Vj(n, β)
]

, (3.6)

where the initial condition Vℓ(0, β) is usually set equal to 0 for all ℓ ∈ I.

Considering the vector V (n, β) = [Vi(n, β)] of minimum expected discounted costs
then (3.6) can be written as

V (n + 1, β) = min
f∈A

[

c(f) + βP (f)V (n, β)
]

= c(f̂(n)) + βP (f̂(n))V (n, β) (3.7)

where

f̂(n) ∈ A denotes the decision vector taken if n transitions are to be left.

Similarly, for undiscounted models Vi(n) (the value iteration function) must fulfill
the following dynamic programming recursion

Vi(n + 1) = min
a∈A(i)

[

ci(a) +
∑

j∈I

pij(a)Vj(n)
]

, (3.8)

where the initial condition Vℓ(0) is usually set equal to 0 for all ℓ ∈ I.
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(3.8) can be written in matrix form as

V (n + 1) = min
f∈A

[

c(f) + P (f)V (n)
]

= c(f̂(n)) + P (f̂(n))V (n) (3.9)

where

V (n) = [Vi(n)] is a column vector

f̂(n) ∈ A denotes the decision vector taken if n transitions are to be left, and

V (0) is arbitrary (usually we set V (0) = 0).

Asymptotic properties of (3.8), (3.9) were studied in many papers. For what
follows we shall need the following deep result on asymptotic properties of V (n).

Fact 3.2. (i) For β-discounted models it holds for any i ∈ I as n → ∞

Vi(n, β) → v̂β
i independently of initial conditions Vℓ(0, β) with ℓ ∈ I. (3.10)

(ii) If Assumption GA holds, i. e. if P (f) is unichain, and moreover also aperiodic
then as n → ∞ it holds for every f ∈ A, i ∈ I

Vi(n) → nḡ + ŵi where ŵi depends on Vℓ(0) with ℓ ∈ I. (3.11)

From (3.11) we can easily conclude that as n → ∞ for any i ∈ I

Bi(n) := Vi(n + 1) − Vi(n) → ḡ (3.12)

Vi(n) − Vj(n) → ŵi − ŵj =: ŵ
(j)
i independently of all Vℓ(0)′s, (3.13)

observe that ŵ
(i)
i = 0.

In spite of convergence of the differences of expected total cost to minimal average
cost (cf. (3.12)) and to weighting coefficient being a solution to (3.3) (cf. (3.13)),
finding optimal values using the dynamic programming recursions (3.8), (3.9) may
be awkward since Vi(n) may be large (in fact, Vi(n) grows to infinity as n → ∞)
and no bounds on minimal average cost are obtained.

The following results will show how to overcome the above difficulties (cf. [4, 9,
13, 14]). To this end, let for arbitrary ℓ ∈ I

w(n) := V (n) − Vℓ(n) e, ḡ(n + 1) := [Vℓ(n + 1) − Vℓ(n)], g(n + 1) := ḡ(n + 1) e

hence Bi(n) = wi(n + 1) + ḡ(n + 1) − wi(n), wℓ(n) ≡ 0.

Fact 3.3. Using the successive approximations given by

w(n + 1) + g(n + 1) = min
f∈A

[c(f) + P (f)w(n)], n = 0, 1, . . . (3.14)

with wℓ(0) = 0 and wi(0) arbitrary for i 6= ℓ we can conclude that as n → ∞

w(n) → ŵ where ŵ is a solution to (3.3) with ŵℓ = 0 (3.15)

g(n) → ĝ (3.16)

ḡ′(n) := max
i∈I

wi(n) + ḡ(n), resp. ḡ′(n) := min
i∈I

wi(n) + ḡ(n)
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is an upper, resp. lower, bound on elements both of ĝ, g(f̂(n)), and as n → ∞

g′′(n) e → ĝ, g′(n) e → ĝ monotonously, (3.17)

i. e. {g′′(n), n = 0, 1, . . .} is nonincreasing, and {g′(n), n = 0, 1, . . .} is nondecreasing.

Fact 3.4. Moreover, for arbitrary numbers hj ’s (j ∈ I) and the accompanying
vector h = [hj ], let

Bi[h] := min
a∈A(i)

[

ci(a) +
∑

i∈I

pij(a)hj

]

− hi,

Bβ
i [h] := min

a∈A(i)

[

ci(a) + β
∑

i∈I

pij(a)hj

]

− hi.

Then

min
i∈I

Bi[h] ≤ ḡ ≤ max
i∈I

Bi[h], (3.18)

(1 − β)−1 min
i∈I

Bβ
i [h] ≤ v̂i(β) + hi ≤ (1 − β)−1 max

i∈I
Bβ

i [h]. (3.19)

To verify (3.18) recall that average cost of Markov chain with one stage cost vectors
c(f) and c(f)−(I−P (f))h must be the same if stationary policy π ∼ (f) is followed
and bounded by (3.18). Furthermore, (3.18) also follows by a direct application of
Fact 3.3 (it suffices to choose in (3.9) V (0) = h). To verify (3.19) observe that for
stationary policy π ∼ (f) by a direct calculation total discounted costs of Markov
chains with one-stage cost vectors c(f) and c(f) − (I − βP (f))h differ by h and for
the latter case total β-discounted costs are bounded in accordance of (3.19).

4. VALUE ITERATION METHODS: A UNIFIED APPROACH

In this section we discuss connections between value iteration methods for discounted
and undiscounted models. For the discounted case we rederive so-called modified
value iteration method (originally reported by MacQueen in [7]) using a simple
transformation of discounted model into the undiscounted unichain case and by
applying value iterations to the resulting undiscounted model.

To this end, for a fixed value of the discount factor β and arbitrary policy π =
(fn) let (cf. (2.3), (2.5)) vβ(π) be the vector of β-discounted costs over an infinite

time horizon (with elements vβ
i (π)). Recalling (3.1), (3.2) stationary policy π̂ ∼

(f̂) minimizing discounted costs along with the vector of minimal discounted costs

v̂β
i := vβ

i (π̂) can be found as the (unique) solution of the following set of nonlinear
equations

vβ
i = min

a∈A(i)

[

ci(a) + β
∑

j∈I

pij(a)vβ
j

]

, i ∈ I (4.1)

written in matrix notation as

vβ = min
f∈A

[c(f) + βP (f)vβ ]. (4.2)
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Lemma 4.1. If the Markov decision processes identified by one-stage cost vector
c(f) and transition probability matrix P (f) starts in state ℓ ∈ I then the minimal

total β-discounted costs v̂β
ℓ can be calculated by means of minimal average cost

of an undiscounted unichain Markov decision process identified by one-stage cost
vector c(f) and transition probability matrix P ℓ(f) = βP (f) + A(ℓ) where A(ℓ)

is a square matrix such that the ℓth column is equal to (1 − β), and elements of

the remaining columns equal zero. Moreover, observe that P ℓ(f) = [p
(ℓ)
ij (fi)] is

an aperiodic transition probability matrix with absorbing state ℓ and all remaining
states transient.

P r o o f . We introduce the following notations (for i, j, ℓ ∈ I):

h
(ℓ)
j (π) := vβ

j (π) − vβ
ℓ (π), ĥ

(ℓ)
j := v̂β

j − v̂β
ℓ

p
(ℓ)
ij (a) :=

{

βpij(a) for j 6= ℓ

βpij(a) + (1 − β) for j = ℓ.

(Observe that p
(ℓ)
ij (a) ≥ 0,

∑

j∈I p
(ℓ)
ij (a) = 1 for any i, ℓ ∈ I and a ∈ A(i).)

Then by (4.1) we have (recall that h
(ℓ)
ℓ (π) = ĥ

(ℓ)
ℓ = 0 for any i, j, ℓ ∈ I)

v̂β
i − v̂β

ℓ = min
a∈A(i)

[

ci(a) + β
∑

j∈I

pij(a)(v̂β
j − v̂β

ℓ )
]

− (1 − β)v̂β
ℓ (4.3)

m

v̂β
ℓ =

1

1 − β
min

a∈A(i)

[

ci(a) + β
∑

j∈I

pij(a)ĥ
(ℓ)
j + (1 − β)ĥ

(ℓ)
ℓ − ĥ

(ℓ)
i

]

(4.4)

m

v̂β
ℓ =

1

1 − β
min

a∈A(i)

[

ci(a) +
∑

j∈I

p
(ℓ)
ij (a)ĥ

(ℓ)
j − ĥ

(ℓ)
i

]

. (4.5)

Moreover, let h(ℓ)(π) = [h
(ℓ)
j (π)], ĥ(ℓ) = [ĥ

(ℓ)
j ]. Then by (4.3), (4.4) we get

ĥ(ℓ) + (1 − β)v̂β
ℓ e = min

f∈A

[

c(f) + βP (f)ĥ(ℓ)
]

+ A(ℓ)ĥ(ℓ) (4.6)

or

v̂β
ℓ e =

1

1 − β

{

min
f∈A

[

c(f) + P (ℓ)(f)ĥ(ℓ)
]

− ĥ(ℓ)
}

. (4.7)

Since ŵj ’s in (3.5) are unique up to additive constant, on comparing (3.5) and
(4.3) – (4.5) (or (3.3) and (4.6) – (4.7)) we can easily see that (4.6) or (4.7) define
minimal average cost ḡ = (1 − β)v̂ℓ of a controlled chain with unichain transi-

tion probability matrix P (ℓ)(f) = βP (f) + A(ℓ) and one-stage cost vector c(f); the

“weighting coefficients” ĥ
(ℓ)
i are unique up to additive constant. �



Identification of Optimal Policies in Markov Decision Processes 565

On finding solution of (4.4) or (4.6) by value iteration in virtue of (3.8) or (3.9),
we iterate (δij is the Kronecker symbol)

H
(ℓ)
i (n + 1) = min

a∈A(i)

{

ci(a) +
∑

j∈I

[βpij(a) + (1 − β)δℓ,j ]H
(ℓ)
j (n)

}

(4.8)

or in matrix form for H(ℓ)(n) = [H
(ℓ)
i (n)]

H(ℓ)(n + 1) = min
f∈A

{

c(f) +
[

βP (f) + (1 − β)A(ℓ)
]

H(ℓ)(n)
}

= min
f∈A

{

c(f) + P (ℓ)(f)H(ℓ)(n)
}

(4.9)

with H(ℓ)(0) arbitrary, preferably with H(ℓ)(0) = 0.

By a direct application of Fact 3.2 we get the following

Theorem 4.2.

H
(ℓ)
i (n) → n (1 − β)v̂ℓ + ĥ

(ℓ)
i where ĥ

(ℓ)
i depends on Hℓ(0), (4.10)

hence for any i ∈ I

B
(ℓ)
i (n) := H

(ℓ)
i (n + 1) − H

(ℓ)
i (n) → (1 − β)v̂β

ℓ (4.11)

H
(ℓ)
i (n) − H

(ℓ)
j (n) → ĥ

(ℓ)
i − ĥ

(ℓ)
j = v̂i − v̂j (4.12)

independently of all Hℓ(0), observe that ĥ
(ℓ)
ℓ = 0.

In virtue of (4.10) H
(ℓ)
i (n) grows to infinity as n → ∞. However, elements of

h(ℓ)(n) := H(ℓ)(n) − H
(ℓ)
ℓ (n) e (observe that h

(ℓ)
ℓ (n) ≡ 0),

as well as

ṽℓ(n + 1) := H
(ℓ)
ℓ (n + 1) − H

(ℓ)
ℓ (n),

are bounded. Moreover, since for any real number k(n)

H
(ℓ)
i (n + 1) − H

(ℓ)
i (n) = min

f∈A

[

c(f) + (P (ℓ)(f) − I)(H(ℓ)(n) + k(n) e)
]

we conclude that

B
(ℓ)
i (n) = h

(ℓ)
i (n + 1) + ṽβ

ℓ (n + 1) − h
(ℓ)
i (n) = H

(ℓ)
i (n + 1) − H

(ℓ)
i (n). (4.13)

In virtue of (4.9), (4.13) h
(ℓ)
i (n) can be calculated using the following dynamic pro-

gramming recursions (this well corresponds to the modified value iteration algorithm
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reported by MacQueen in [7])

h
(ℓ)
i (n + 1) + ṽℓ(n + 1) = min

a∈A(i)

[

ci(a) +
∑

j∈I\{ℓ}

p
(ℓ)
ij (a)h

(ℓ)
j (n)

]

= min
a∈A(i)

[

ci(a) + β
∑

j∈I\{ℓ}

pij(a)h
(ℓ)
j (n)

]

(4.14)

ṽβ
ℓ (n + 1) = min

a∈A(ℓ)

[

cℓ(a) +
∑

j∈I\{ℓ}

p
(ℓ)
ℓj (a)h

(ℓ)
j (n)

]

= min
a∈A(ℓ)

[

cℓ(a) + β
∑

j∈I\{ℓ}

pℓj(a)h
(ℓ)
j (n)

]

, (4.15)

written in matrix form as

h(ℓ)(n + 1) + ṽβ
ℓ (n + 1) e = min

f∈A

[

c(f) + P (ℓ)(f)h(ℓ)(n)
]

= c(f̂(n)) + P (ℓ)(f̂(n))h(ℓ)(n). (4.16)

In analogy to Fact 3.3 we arrive at

Lemma 4.3. Using the successive approximations given by (4.14) – (4.15), or in a
more compact form by (4.16), we can conclude that as n → ∞

h(ℓ)(n) → ĥ(ℓ) where ĥ(ℓ) is a solution to (4.6) with ĥ
(ℓ)
ℓ = 0 (4.17)

ṽℓ(n) → (1 − β) v̂ℓ. (4.18)

In addition,

v′′ℓ (n) :=
1

1 − β
max
i∈I

B
(ℓ)
i (n), resp. v′ℓ(n) :=

1

1 − β
min
i∈I

B
(ℓ)
i (n) (4.19)

is an upper, resp. lower, bound on both of v̂β
ℓ , vβ

ℓ (f̂(n)), and as n → ∞

v′′ℓ (n) → v̂β
ℓ , v′ℓ(n) → v̂β

ℓ monotonously, (4.20)

i. e. {v′′ℓ (n), n = 0, 1, . . .} is nonincreasing, and {v′ℓ(n), n = 0, 1, . . .} is nondecreasing.

Up to now we have constructed at the nth iteration of the modified dynamic
programming recursion only lower and upper bounds v′ℓ(n), v′′ℓ (n) on v̂β

ℓ by (4.19).
Since by (4.14) – (4.16) formulas for different ℓ’s differ only in last term on the RHS,
on employing v′ℓ(n), v′′ℓ (n) along with h(ℓ)(n) we can construct the corresponding

bounds on each v̂β
i .

Lemma 4.4. If we calculate lower and upper bounds on v̂β
ℓ using the dynamic

programming recursions (4.14) – (4.16) we can construct lower and upper bounds on

all v̂β
k ’s (k ∈ I) converging monotonously to v̂β

k using the formulas

v′k(n) := v′ℓ(n) + h
(ℓ)
k (n) ≤ v̂β

k ≤ v′′k (n) := v′′ℓ (n) + h
(ℓ)
k (n). (4.21)
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P r o o f . Since for any k, ℓ ∈ I

v′ℓ(n) =
1

1 − β
min
i∈I

Bi[h
(ℓ)(n)], v′k(n) =

1

1 − β
min
i∈I

Bi[h
(k)(n)],

v′′ℓ (n) =
1

1 − β
max
i∈I

Bi[h
(ℓ)(n)], v′′k (n) =

1

1 − β
max
i∈I

Bi[h
(k)(n)]

it suffices to verify that for h(ℓ) := h(ℓ)(n), h(k) := h(k)(n) (cf. Fact 3.4)

Bi[h
(ℓ)] = min

a∈A(i)

[

ci(a) + β
∑

j∈I

pij(a)h
(ℓ)
j

]

− h
(ℓ)
i

= min
a∈A(i)

[

ci(a) + β
∑

j∈I

pij(a)(h
(ℓ)
j − h

(ℓ)
k )

]

− [h
(ℓ)
i − h

(ℓ)
k ] − (1 − β)h

(ℓ)
k

= Bi[h
(k)] − (1 − β)h

(ℓ)
k . (4.22)

(4.21) follows then immediately if we take in (4.22) minima and maxima over i. �

Summarizing we have arrived at

Theorem 4.5. Using the successive approximations given by (4.14) – (4.15), or in
a more compact form by (4.16), then v′i(n), v′′i (n) given by (4.19) for i = ℓ and by

(4.21) for i 6= ℓ is is an upper, resp. lower, bound on both of v̂β
ℓ , vβ

ℓ (f̂(n)), and

v′i(n) → v̂β
i , v′′i (n) → v̂β

i monotonously as n → ∞. Moreover, for arbitrary numbers

hj ’s (j ∈ I) we can generate upper and lower bounds on v̂β
ℓ using (3.19).

5. IDENTIFICATION OF OPTIMAL POLICIES

In this section we employ bounds on discounted costs for eliminating suboptimal
actions and identification of optimal policies without knowing its precise value. Fi-
nally, we indicate how under some additional condition this elimination procedure
can also work for non-discounted models. The obtained results slightly extend the
original results reported in [8].

To begin with, let us consider the most natural (0-order) bounds obtained by
selecting in every state i ∈ I actions minimizing one-stage costs. In particular, let

c′(i) := ci(a
′
i) = mina∈A(i) c(i; a), m′ := mini∈I c′(i), M ′ := maxi∈I c′(i)

be the minimum one-stage cost in state i ∈ I and the minimum and maximum value
of all minimum one-stage costs respectively.

Then following policy that selects action a′
i in state i ∈ I, total β-discounted cost

over an infinite time horizon must be nonsmaller then v′ := (1 − β)−1 m′ and non-
greater than v′′ := (1 − β)−1 M ′. Moreover, keeping such policy total β-discounted
costs generated from the first transition cannot exceed the value β (1 − β)−1 M ′, in
general, total β-discounted costs generated from the nth transition cannot exceed
the value βn (1 − β)−1 M ′. Hence we have arrived at
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Lemma 5.1. β-optimal policy cannot select in state i ∈ I any action a ∈ A(i) such
that
ci(a) > (1−β)−1 M ′ =: v′′ or ci(a)+β (1−β)−1 m′ > c′(i)+β (1−β)−1 M ′ =: v′′i .

Moreover, let A(1)(i) ⊂ A(0)(i) ⊂ A(i) be such that

ci(a) ≤
1

1 − β
M ′ for any a ∈ A(0)(i) (5.1)

ci(a) ≤ c′(i) +
β

1 − β
(M ′ − m′) for any a ∈ A(1)(i). (5.2)

Then actions yielding minimal β-discounted expected costs in state i ∈ I can be
selected only from the set A(1)(i).

Up to now we haven’t employ finer lower and upper bounds on total expected
β-discounted costs from the starting state i ∈ I, denoted v′i, v′′i . Recall that the
modified value iteration method can generate the lower and upper bounds on every
v̂β

i , i ∈ I in each iteration step, denoted by v′i(n) and v′′i (n) respectively.

Supposing that the n steps of the modified value iteration procedure have been
performed (cf. (4.14) – (4.17)) in virtue of (4.19), (4.21) we are able to generate lower

and upper bounds on each v̂β
i , denoted v′i(n) and v′′i (n) respectively. To eliminate

suboptimal actions, starting with actions sets A(0)(i) selecting actions given by (5.1)
we define recursively action sets A(n)(i) by (obviously, A(1)(i) is given also by (5.4)

A(n)(i) :=
{

a ∈ A(n−1)(i) : ci(a) + β
∑

j∈I

pij(a)v′j(n) ≤ v′′i (n + 1)
}

. (5.3)

To verify elimination of suboptimal actions, if for some action, say a′ ∈ A(n−1)(i)
it happens that v′′i (n + 1) < ci(a

′) + β
∑

j∈I pij(a
′)v′j(n) then it must also hold

v̂β
i < ci(a

′) + β
∑

j∈I pij(a
′)v̂β

j that contradicts (4.1).

Hence we have arrived at

Theorem 5.2. At the nth step of the value iteration β-optimal policy can select in
state i ∈ I only actions from the action set A(n)(i) such that A(n+1)(i) ⊂ A(n)(i)
with A(0)(i) given by (5.1) and A(n)(i) for n = 0, 1, . . . defined recursively by (5.4).
Moreover, on conditions that there exists a single optimal policy f∗ and the action

set is finite, the elimination procedure exclude nonoptimal policies in a finite number
of steps.

Lemma 4.1 indicates that the discounted costs can be calculated as average costs
after suitable transformation of transition probabilities. Observe that lower and up-
per bounds on discounted costs are constructed by means of estimates of discounted
costs; in contrast to upper and lower bounds on optimal average cost that are cal-
culated using some weighting coefficients. In the rest of this section we indicate
how the above elimination of nonoptimal actions used for discounted model can be
employed also for average cost case.
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This end we make the following condition.

There exists state ℓ ∈ I such that
∑

j∈I\(ℓ)

pij(a) ≤ β < 1 for all a ∈ A(i). (5.4)

Observe that condition (5.4) guarantees fulfilment of Assumption GA and if As-
sumption GA holds then (5.4) is fulfilled if transition probability matrices are re-
placed by a suitable product of transition probability matrices P (f) with f ∈ A.

Under (5.4), let P (f) = P̃ (f) + A(ℓ) where A(ℓ) is a square matrix such that
the ℓth column is equal to (1−β) and elements of the remaining columns equal zero.
Obviously, for elements of P̃ (f) = [p̃ij(fi)] it holds

p̃ij(a) :=

{

pij(a) for j 6= ℓ

pij(a) − (1 − β) for j = ℓ.

Hence P̃ (f) e = βe, and the average cost problem with average cost ḡ(f) for any
f ∈ A and minimal average cost ḡ can be treated as a discounted cost model where for
the β-discounted cost in state ℓ we have vβ

ℓ (f) = (1−β)−1 ḡ(f) and v̂β
ℓ = (1−β)−1 ḡ.

Remark 5.3. Observe that the above suboptimal action elimination is not re-
stricted to successive approximation, it can be also employed at each step of policy
iteration methods.
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