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Abstract: In this note we consider Markov decision chains with finite state space in discrete-
and continuous-time setting for discounting and averaging optimality criteria. Connections
between discounted and averaging optimality along with uniformization methods are employed
for producing bounds on optimal discounted and average rewards.
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1 Introduction

In this note, we consider Markov reward processes with finite state and action spaces in discrete-
and continuous-time setting. Attention will be primarily focused on connections and similarity
between discrete- and continuous-time Markov decision chains useful for finding optimal dis-
counted and averaging control policies. According to the best of our knowledge, in the existing
literature generating lower and upper bounds in averaging and discounted optimality was stud-
ied only for discrete-time models; in the present note we show how these methods also work in
the continuous-time case. Also uniformization methods will be employed for producing bounds
on optimal discounted and average rewards.

2 Notations and Preliminaries

We consider Markov decision processes with finite state space I = {1, 2, . . . , N} both in discrete-
and continuous-time. In the discrete-time case, we consider Markov decision chain Xd =
{Xn, n = 0, 1, . . .} with finite state space I = {1, 2, . . . , N}, and finite set Ai = {1, 2, . . . , Ki}
of possible decisions (actions) in state i ∈ I. Supposing that in state i ∈ I action a ∈ Ai

is selected, then state j is reached in the next transition with a given probability pij(a) and
one-stage transition reward rij will be accrued to such transition.

In the continuous-time setting, the development of the considered Markov decision process
Xc = {X(t), t ≥ 0} (with finite state space I) over time is governed by the transition rates
q(j|i, a), for i, j ∈ I, depending on the selected action a ∈ Ai. For j 6= i q(j|i, a) is the transition
rate from state i into state j, q(i|i, a) =

∑
j∈I,j 6=i q(j|i, a) is the transition rate out of state i. As

concerns reward rates, r̃(i) denotes the rate earned in state i ∈ I, and r̃(i, j) is the transition
rate accrued to a transition from state i to state j.

A (Markovian) policy controlling the decision process is given either by a sequence of decision
at every time point (discrete-time case) or as a piecewise constant right continuous function
of time (continuous-time case). In particular, for discrete-time models policy controlling the
chain, π = (f0, f1, . . .), is identified by a sequence of decision vectors {fn, n = 0, 1, . . .} where
fn ∈ A ≡ A1 × . . . × AN for every n = 0, 1, 2, . . ., and fn

i ∈ Ai is the decision (or action)
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taken at the nth transition if the chain Xd is in state i. Policy which selects at all times the
same decision rule, i.e. π ∼ (f), is called stationary; P (f) is transition probability matrix with
elements pij(fi).

Similarly, for the continuous-time case policy controlling the chain, π = f t, is a piecewise
constant, right continuous vector function where f t ∈ A ≡ A1 × . . . × AN , and f t

i ∈ Ai is the
decision (or action) taken at time t if the process X(t) is in state i. Since π is piecewise constant,
for each π we can identify time points 0 < t1 < t2 . . . < ti < . . . at which the policy switches; we
denote by f (i) ∈ A the decision rule taken in the time interval (ti−1, ti]. Policy which selects at
all times the same decision rule, i.e. π ∼ (f), is called stationary; Q(f) is transition rate matrix
with elements q(j|i, fi).

The more detailed analysis requires to consider the discrete- and continuous-time case sep-
arately. In this note we make the following assumption.

Assumption A. There exists state i0 ∈ I that is accessible from any state i ∈ I for every
f ∈ A, i.e. for every f ∈ A the transition probability matrix P (f) or the transition rate matrix
Q(f) is unichain (i.e. P (f) or Q(f) have no two disjoint closed sets).

2.1 Discrete-Time Case

We denote by P (f) = [pij(fi)] the N × N transition matrix of the chain Xd. Recall that
the limiting matrix P ∗(f) = lim

m→∞m−1
∑m−1

n=0 Pn(f) exists; in case that the chain is aperiodic

even P ∗(f) = lim
n→∞(P (f))n. In particular, if P (f) is unichain (i.e. P (f) contains a single

class of recurrent states) the rows of P ∗(f), denoted p∗(fi), are identical. Obviously, ri(fi) =∑N
j=1 pij(fi)rij is the expected one-stage reward obtained in state i ∈ I and r(f) denotes the

corresponding N -dimensional column vector of one-stage rewards. Then [P (f)]n · r(f) is the
(column) vector of rewards accrued after n transitions; its ith entry denotes expectation of the
reward obtained at time point n if the process Xd starts in state i.

Let ξn
X0

(π) =
∑n−1

k=0 rXk
(fk

Xk
) (resp. ξβ,n

X0
(π) =

∑n−1
k=0 βk rXk

(fk
Xk

)) be the (random) total
reward (resp. total β-discounted reward) received in the n next transitions of the considered
Markov chain Xd if policy π = (fn) is followed and the chain starts in state X0. Then for the total
expected reward vn

i (π) and for the total expected discounted reward vβ,n
i (π) we have vn

i (π) =
Eπ

i

∑n−1
k=0 rXk

(fk
Xk

) and vβ,n
i (π) = Eπ

i

∑n−1
k=0 βk rXk

(fk
Xk

) respectively (Eπ
i is the expectation if the

process starts in state i and policy π is followed). Then for the vectors of total rewards vn(π)
and total discounted rewards vβ,n(π) we get

vn(π) =
n−1∑

k=0

k−1∏

j=0

P (f j)r(fk), resp. vβ,n(π) =
n−1∑

k=0

k−1∏

j=0

βk P (f j)r(fk). (1)

For n → ∞ elements of vn(π) (resp. vβ,n(π)) can be typically infinite (resp. bounded by
M/(1 − β) where M = maxi maxk ri(k)). Following stationary policy π ∼ (f) for n tending
to infinity there exist vectors of average rewards per transition, denoted g(f) (with elements
gi(f) bounded by M), and vector of total discounted rewards, denoted vβ(f) with elements
vβ
i (f) being the discounted reward if the process starts in state i, where (I denotes the identity

matrix)

g(f) := lim
n→∞

1
n

vn(f) = P ∗(π)r(f) (2)

vβ(f) :=
∞∑

k=0

[β P (f)]kr(f) = [ I − β P (f)]−1 r(f) = r(f) + β vβ(π). (3)
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Let for arbitrary policy π = (fn) v̂β := sup
π

vβ(π), ĝ := sup
π

lim inf
n→∞

1
n vn(π) where v̂β

i , resp. ĝi

(the ith element of v̂β, resp. of ĝ) is the maximal β-discounted reward, resp. maximal average
reward, if the process starts in state i ∈ I. Moreover, under Assumption A for every stationary
policy π ∼ (f) the vector g(f) is a constant vector with elements ḡ(f) equal to p∗(π) r(f).

The following facts are well-known to workers in stochastic dynamic programming (see e.g.
[1, 4, 8, 9, 13]).

Fact 1. (i) There exists decision vector f̂β ∈ A along with (column) vector v̂β = vβ(f̂β), being
the unique solution of

vβ(f) = max
f∈A

[
r(f) + β P (f) vβ(f)

]
. (4)

In particular, for elements of v̂β, denoted v̂β
i , we can write

v̂β
i = max

a∈A(i)

[
ri(a) + β

∑

j∈I
pij(a)v̂β

j

]
= ri(f̂

β
i ) + β

∑

j∈I
pij(f̂

β
i ) v̂β

j . (5)

(ii) If Assumption A holds there exists decision vector f̂ ∈ A along with (column) vectors
ŵ = w(f̂) and ĝ = g(f̂) (constant vector with elements ḡ(f) = p∗(f̂)r(f̂)) being the solution of

w(f) + g(f) = max
f∈A

[
r(f) + P (f) · w(f)

]
(6)

where w(f̂) is unique up to an additive constant, and unique under the additional normalizing
condition P ∗(f) w(f) = 0. In particular, for elements of ĝ = g(f̂), and ŵ = w(f̂), denoted ḡ
and ŵi, we can write

ŵi + ḡ = max
a∈A(i)

[
ri(a) +

∑

j∈I
pij(a)ŵj

]
= ri(f̂i) +

∑

j∈I
pij(f̂i)ŵj . (7)

2.2 Continuous-Time Case

Let for f ∈ F Q(f) = [qij(fi)] be the N×N matrix whose ijth element qij(fi) = q(j|i, fi) for i 6= j
and for the iith element we set qii(fi) = −q(i|i, fi). The sojourn time of the considered process
Xc in state i ∈ I is exponentially distributed with mean value q(i|i, fi). Hence the expected value
of the reward rate obtained in state i ∈ I equals ri(fi) = q(i|i, fi) r̃(i)+

∑
j∈I,j 6=i q(j|i, fi) r̃(i, j)

and r(f) is the (column) vector of reward rates at time t.
For any policy π = (f t) the accompanying set of transition rate matrices {Q(f t), t ≥ 0}

determines a continuous-time (in general, nonstationary) Markov process.
Let P (·, ·, π) be the N ×N matrix of transition functions associated with Markov chain Xc,

i.e., for each 0 ≤ s ≤ t the ijth element of P (s, t, π), denoted Pij(s, t, π), is the probability
that the chain is in state j at time t given it was in state i at time s and policy π is followed.
Obviously, P (s, t, π) = P (s, u, π) P (u, t, π) for each 0 ≤ s ≤ u ≤ t. The values P (s, t, π) are
absolutely continuous in t and satisfy the system of differential equations (except possibly where
the piecewise constant policy switches)

∂P (s, t, π)
∂t

= P (s, t, π) Q(f t),
∂P (s, t, π)

∂s
= −Q(fs)P (s, t, π) (8)

where P (s, s, π) = I (I is an N ×N unit matrix). In what follows it will be often convenient to
let P (t, π) = P (0, t, π). By (8) we then immediately get for any t ≥ 0

dP (t, π)
dt

= P (t, π) Q(f t) ⇐⇒ P (t, π) = I +
∫ t

0
P (u, π)Q(fu)du. (9)
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In particular, for π ∼ (f) we have

P (t, π) = exp[Q(f) t] =
∞∑

k=0

1
k!

(Q(f) t)k. (10)

It is well known that for any stationary policy π ∼ (f) there exists limt→∞ P (t, π) = P ∗(π) and,
moreover, that for any t ≥ 0 it holds P (t, π) P ∗(π) = P ∗(π) P (t, π) = P ∗(π) P ∗(π) = P ∗(π),
Q(f) P ∗(π) = P ∗(π) Q(f) = 0.

If policy π = (f t) is followed then for the vector of total rewards and ρ-discounted rewards
V t,ρ(π) (with discount factor ρ > 0) obtained up to time T we get

V T (π) =
∫ T

0
P (t, π) r(f t)dt, V T,ρ(π) =

∫ T

0
e−ρtP (t, π) r(f t)dt (11)

(the ith element of V T,ρ(π) denoted V T,ρ
i (π) is the reward is the process starts in state i).

Following stationary policy π ∼ (f) for T tending to infinity there exist vectors of average
rewards per transition, denoted G(f) (with bounded entries Gi(f)) and vector of total discounted
rewards, denoted V ρ(f), such that

G(f) := lim
n→∞

1
T

∫ T

0
P (t, π) r(f)dt = P ∗(π)r(f) (12)

V ρ(f) := lim
T→∞

∫ T

0
e−ρt P (t, π) r(f)dt = ρ−1 [r(f) + Q(f)V ρ(f)] (13)

The following facts are well-known to workers in stochastic dynamic programming (see e.g.
[1, 2, 4, 8, 9, 13]).

Fact 2. (i) There exists decision vector f̂ (ρ) ∈ A along with (column) vector V̂ ρ = V ρ(f̂ (ρ)),
being the unique solution of

ρ V ρ(f) = max
f∈A

[
r(f) + Q(f) V ρ(f))

]
. (14)

In particular, for elements of V̂ ρ, denoted V̂ ρ
i , we can write

ρV̂ ρ
i = max

a∈A(i)

[
ri(a) +

∑

j∈I
qij(a)V̂ ρ

j

]
= ri(f̂

(ρ)
i ) +

∑

j∈I
qij(f̂

(ρ)
i )V̂ ρ

j . (15)

(ii) If Assumption A holds there exists decision vector f̂ ∈ A along with (column) vectors
Ŵ = W (f̂) and Ĝ := G(f̂) = P ∗(f̂) r(f̂) (constant vector with elements Ḡ(f) = p∗(f̂)r(f̂))
being the solution of

G(f) = max
f∈A

[
r(f) + Q(f) W (f)

]
(16)

where W (f̂) is unique up to an additive constant, and unique under the additional normalizing
condition P ∗(f) W (f) = 0.

3 Discounted and Averaging Optimality Equations

In this section we discuss connections between optimality equations for discounted and undis-
counted models using a simple transformation of discounted model into the undiscounted unichain
case. Furthermore, we indicate how continuous-time models can be transformed to discrete state
models. The results are adapted from [12] and present a unified approach to various results scat-
tered in the literature (see e.g. [3, 5, 6, 7, 10, 11, 14]).
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Theorem 1. The discounted maximal (resp. current) total reward if the process starts in state
` equals the maximal (resp. current) average reward of the (not necessarily unichain) Markov
reward process if

For the discrete-time case. The transition probability matrix P (f) in (4) is replaced by the tran-
sition probability matrix P (`)(f) := βP (f) + A(`) where A(`) is a square matrix such that
the `th column is equal to (1−β), and elements of the remaining columns equal zero, and
the `th element of vector w(f) equals zero. Then v̂β

` equals elements of (1− β)−1ĝ.

For the continuous-time case. The transition rate matrix Q(f) in (14) is replaced by the tran-
sition rate matrix Q(`)(f) := ρ−1Q(f)− I + B(`), where B(`) is a square matrix such that
only the `th column is non-null with elements equal to unity, and the `th element of vector
W (f) (unique up to additive constant) equals zero. Then V̂ ρ

` equals elements of Ĝ.

Proof. Obviously, results for the current policy follow immediately from results for optimal
policy if we shrink the set of feasible policies to a single policy.

For the discrete-time case
(I is an identity matrix, e denotes unit column vector)

vβ = max
f∈A

[
r(f) + βP (f)vβ

]

m
(1− β) vβ

` e = max
f∈A

[
r(f) + (βP (f)− I)(vβ − vβ

` e)
]

m
w(`) + g e = max

f∈A

[
r(f) + P (`)(f) w(`)

]

where g := (1− β) vβ
` , w(`) := vβ − vβ

`

P (`)(f) := βP (f) + A(`);

(observe that P (`)(f) is a stochastic matrix and that w
(`)
` = 0)

For the continuous-time case

ρV ρ = max
f∈A

[
r(f) + Q(f)V ρ

]

m
0 = max

f∈A

[
ρ−1r(f) + (ρ−1Q(f)− I)V ρ

]

m
V ρ

` e = max
f∈A

[
ρ−1r(f) + ρ−1Q(f)V ρ − [V ρ − V ρ

` e]
]

m
V ρ

` e = max
f∈A

[
ρ−1 r(f) + ρ−1Q(f)[V ρ − V ρ

` e]− [V ρ − V ρ
` e]

]

Then for G := V ρ
` e and W (`) := V ρ − V ρ

` e we can write

G = max
f∈A

[
ρ−1 r(f) + ρ−1Q(f)W (`) −W (`)

]

m
G = max

f∈A

[
ρ−1 r(f) + ρ−1Q(`)(f)W (`)

]

for Q(`)(f) := ρ−1Q(f)− I + B(`)

(observe that Q(`)(f) = ρ−1Q(f)− I + B(`) is a transition rate matrix and that W
(`)
` = 0).
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Theorem 2. The continuous-time maximal (resp. current) average reward being the solution
of (16) equals the discrete-time maximal (resp. current) average reward if in the optimality
equation (6) we set

P (f) := B−1Q(f) + I where B > max
f∈A,i∈I

∑

j∈I,j 6=i

qij(f). (17)

Then g(f) = G(f) and w(f) = BW (f).

Proof. First observe that elements of P (f) = B−1Q(f)+I are nonnegative, nongreater than
unity and all row sums equal unity.

From (16) we get

G(f) = max
f∈A

[
r(f) + Q(f) W (f)

]

m
W (f) + B−1G(f) = max

f∈A

[
B−1r(f) + [B−1Q(f) + I] W (f)

]

m
BW (f) + G(f) = max

f∈A

[
r(f) + [B−1Q(f) + I]BW (f)

]

m
w(f) + g(f) = max

f∈A

[
r(f) + P (f) w(f)

]

Theorem 3. The vector of continuous-time maximal (resp. current) ρ-discounted reward
being the solution of (14) equals the discrete-time maximal (resp. current) β-discounted reward
if the optimality equation (4) takes on the following form

v(f) = max
f∈A

[
B−1r(f) + [B−1(Q(f)− ρI) + I]v(f)

]
(18)

where B > max
f∈A,i∈I

∑

j∈I,j 6=i

qij(f).

Proof. First observe that elements of the matrix P̃ (f) = [B−1(Q(f) − ρI) + I]B−1 are
nonnegative, nongreater than unity and all row sums equal (1− ρ).

From (14) we get

ρV (f) = max
f∈A

[
r(f) + Q(f)V (f)

]

m
V (f) = max

f∈A

[
B−1r(f) + [B−1(Q(f)− ρI) + I] V (f)

]

m
v(f) = max

f∈A

[
B−1r(f) + [B−1(Q(f)− ρI) + I]v(f)

]

4 Conclusions

In this note we focus attention on optimality equations for discrete- and continuous time Markov
decision chains if discounted and averaging optimality criteria are considered. Using a suitable
data transformation we shown connections between discounted and averaging optimality equa-
tions, and using the uniformization technique also connections between discrete- and continuous-
time models.
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