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Abstract: In this note we consider Markov decision chains with finite state space in discrete-
and continuous-time setting for discounting and averaging optimality criteria. Connections
between discounted and averaging optimality along with uniformization methods are employed
for producing bounds on optimal discounted and average rewards.
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1 Introduction

In this note, we consider Markov reward processes with finite state and action spaces in discrete-
and continuous-time setting. Attention will be primarily focused on connections and similarity
between discrete- and continuous-time Markov decision chains useful for finding optimal dis-
counted and averaging control policies. According to the best of our knowledge, in the existing
literature generating lower and upper bounds in averaging and discounted optimality was stud-
ied only for discrete-time models; in the present note we show how these methods also work in
the continuous-time case. Also uniformization methods will be employed for producing bounds
on optimal discounted and average rewards.

2 Notations and Preliminaries

We consider Markov decision processes with finite state space Z = {1,2,..., N} both in discrete-
and continuous-time. In the discrete-time case, we consider Markov decision chain X9 =
{X,,n =0,1,...} with finite state space Z = {1,2,..., N}, and finite set A; = {1,2,..., K;}
of possible decisions (actions) in state i« € Z. Supposing that in state i € Z action a € A;
is selected, then state j is reached in the next transition with a given probability p;;(a) and
one-stage transition reward r;; will be accrued to such transition.

In the continuous-time setting, the development of the considered Markov decision process
X¢ = {X(t),t > 0} (with finite state space Z) over time is governed by the transition rates
q(jli,a), for i,j € Z, depending on the selected action a € A;. For j # i q(j|i,a) is the transition
rate from state ¢ into state j, q(ili,a) = 37,7 ;2; q(jli, @) is the transition rate out of state i. As
concerns reward rates, 7(i) denotes the rate earned in state ¢ € Z, and 7(, j) is the transition
rate accrued to a transition from state i to state j.

A (Markovian) policy controlling the decision process is given either by a sequence of decision
at every time point (discrete-time case) or as a piecewise constant right continuous function
of time (continuous-time case). In particular, for discrete-time models policy controlling the
chain, 7 = (f°, f1,...), is identified by a sequence of decision vectors {f*,n = 0,1,...} where
me A=A x...x Ay for every n = 0,1,2,..., and f' € A; is the decision (or action)



2 Karel Sladky

taken at the nth transition if the chain X9 is in state i. Policy which selects at all times the
same decision rule, i.e. m ~ (f), is called stationary; P(f) is transition probability matrix with
elements p;;(f;).

Similarly, for the continuous-time case policy controlling the chain, m = f?, is a piecewise
constant, right continuous vector function where f' € A= A; x ... x Ay, and f! € A; is the
decision (or action) taken at time ¢ if the process X () is in state i. Since 7 is piecewise constant,
for each m we can identify time points 0 < t; < t9... < t; < ... at which the policy switches; we
denote by f#) € A the decision rule taken in the time 1nterva1 (ti—1,t;]. Policy which selects at
all times the same decision rule, i.e. m ~ (f), is called stationary; Q(f) is transition rate matrix
with elements ¢(j|i, fi).

The more detailed analysis requires to consider the discrete- and continuous-time case sep-
arately. In this note we make the following assumption.

Assumption A. There exists state ig € Z that is accessible from any state i € Z for every
f € A, ie. for every f € A the transition probability matrix P(f) or the transition rate matrix
Q(f) is unichain (i.e. P(f) or Q(f) have no two disjoint closed sets).

2.1 Discrete-Time Case

We denote by P(f) = [pij(fi)] the N x N transition matrix of the chain X9. Recall that
the limiting matrix P*(f) = n%gnoo m~t 221:_01 P"(f) exists; in case that the chain is aperiodic
even P*(f) = lim (P(f))"™. In particular, if P(f) is unichain (i.e. P(f) contains a single
n—oo
class of recurrent states) the rows of P*(f), denoted p*(f;), are identical. Obviously, r;(f;) =
Z;-V:l pij(fi)rij is the expected one-stage reward obtained in state ¢ € Z and r(f) denotes the
corresponding N-dimensional column vector of one-stage rewards. Then [P(f)]" - r(f) is the
(column) vector of rewards accrued after n transitions; its ith entry denotes expectation of the
reward obtained at time point n if the process X9 starts in state i.
, ~1

Let &% (m) = i oer (fX ) (resp. §X:(7T) = > ik er(fﬁk)) be the (random) total
reward (resp. total (- dlscounted reward) received in the n next transitions of the considered
Markov chain X4 if policy 7 = (f™) is followed and the chain starts in state Xg. Then for the total
expected reward v]'(m) and for the total expected discounted reward viﬂ "(m) we have vl(m) =
ET > C 0 X, (ff(k) and 'Uiﬁ’n(ﬂ') =BT Y0 B rx, (ff(k) respectively (ET is the expectation if the
process starts in state ¢ and policy 7 is followed). Then for the vectors of total rewards v™(m)
and total discounted rewards v?"(7) we get

n—1k—1 n—1k—1
=311 P()r(s*),  vesp. oP"(m) =D [ 8° PU)r(M). (1)
k=0 j=0 k=0 j=0

For n — oo elements of v"(7) (resp. v®™(m)) can be typically infinite (resp. bounded by
M/(1 — ) where M = max; maxy r;(k)). Following stationary policy m ~ (f) for n tending
to infinity there exist vectors of average rewards per transition, denoted g¢(f) (with elements

g;(f) bounded by M), and vector of total discounted rewards, denoted v°(f) with elements

B

v; (f) being the discounted reward if the process starts in state ¢, where (I denotes the identity

matrix)

o) = Tm ()= Prme(f) )
() = DB PO =[1=8PAH " r(f) =r(f) + 8 vP(m). (3)

k=0



Markov Decision Chains in Discrete- and Continuous-Time; a Unified Approach 3

Let for arbitrary policy 7 = (f*) o7 :=supv®(n), §:=suplim inf% v"™ () where @iﬁ, resp. g
™ T Moo
(the ith element of P, resp. of g) is the maximal (-discounted reward, resp. maximal average
reward, if the process starts in state ¢ € Z. Moreover, under Assumption A for every stationary
policy 7 ~ (f) the vector g(f) is a constant vector with elements g(f) equal to p*(w)r(f).
The following facts are well-known to workers in stochastic dynamic programming (see e.g.
[1? 47 8? 9’ 13])'

Fact 1. (i) There exists decision vector 8 € A along with (column) vector 7 = v?(f9), being
the unique solution of

o(f) = max [r(£) + 8 P(f) v°(])]. (4)
In particular, for elements of ¥, denoted ﬁz’g , We can write
o = max [ri(a) + 03 pi(@9]] =il +83_pis(F) v]. (5)
JET JET

(ii) If Assumption A holds there exists decision vector feA along with (column) vectors
w = w(f) and § = g(f) (constant vector with elements g(f) = p*(f)r(f)) being the solution of

w(f)+ 9(f) = max [r(f) + P(f) - w(f)] (6)

where w( f ) is unique up to an additive constant, and unique under the additional normalizing
condition P*(f) w(f) = 0. In particular, for elements of § = g(f), and @ = w(f), denoted g
and w;, we can write

it g = max [ri(a) + 3 pij(@)a;] = ril) + 3 _pii(f) )
JET JET

2.2 Continuous-Time Case

Let for f € F Q(f) = [¢ij(fi)] be the N x N matrix whose ijth element ¢;;(f;) = q(jl¢, f;) fori # j
and for the 7ith element we set ¢;;(f;) = —q(il7, f;). The sojourn time of the considered process
X¢in state ¢ € 7 is exponentially distributed with mean value ¢(i|i, f;). Hence the expected value
of the reward rate obtained in state i € Z equals r;(f;) = q(i[i, fi) 7(¢) + > ez 2 904, fi) 7(2, )
and r(f) is the (column) vector of reward rates at time ¢.

For any policy m = (f*') the accompanying set of transition rate matrices {Q(f*),t > 0}
determines a continuous-time (in general, nonstationary) Markov process.

Let P(-,-,m) be the N x N matrix of transition functions associated with Markov chain X¢,

e., for each 0 < s < t the ijth element of P(s,t,m), denoted Pj;(s,t,m), is the probability

that the chain is in state j at time ¢ given it was in state ¢ at time s and policy 7 is followed.
Obviously, P(s,t,m) = P(s,u,n) P(u,t,7) for each 0 < s < u < t. The values P(s,t,7) are
absolutely continuous in ¢ and satisfy the system of differential equations (except possibly where
the piecewise constant policy switches)

OP(s,t,m) " , B s
T - P(Svtvﬂ-) Q(f )v T - _Q(f )P(S’tvﬂ-) (8)

where P(s,s,m) =1 (I is an N x N unit matrix). In what follows it will be often convenient to
let P(t,m) = P(0,t,7). By (8) we then immediately get for any ¢ > 0

dP(t, )
dt

OP(s,t,m)

— P(t,m) Q") <= P(t.m) =1 + /0 P, ))Q(f")du. (9)
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In particular, for 7 ~ (f) we have
P(tm) = explQ(f) ] = 3 1 (@) 1) (10)
k=0 "

It is well known that for any stationary policy m ~ (f) there exists lim;_,o, P(t,7) = P*(7) and,
moreover, that for any ¢ > 0 it holds P(t,7) P*(w) = P*(w) P(t,n) = P*(m) P*(7) = P*(n),
Q(f) P*(m) = P*(m) Q(f) = 0.

If policy m = (f?) is followed then for the vector of total rewards and p-discounted rewards
VP (1) (with discount factor p > 0) obtained up to time T we get

T T
T7r: mT)r t T, ) = eft mT)r ¢
VT () /0 P(t,m)r(fh)dt, VT (x) /0 PPt ) r(f1)dt (11)

(the ith element of V7*?(r) denoted VZ-T’p (7) is the reward is the process starts in state ).

Following stationary policy m ~ (f) for T tending to infinity there exist vectors of average
rewards per transition, denoted G(f) (with bounded entries G;(f)) and vector of total discounted
rewards, denoted V?(f), such that

1 T

G(f) = Jim £ [ Pt r(at = Pr(s) (12)
T

VAR = Jim e P my r(fdt = o () + QUAVA(S)) (13)

The following facts are well-known to workers in stochastic dynamic programming (see e.g.
[17 2’ 47 8’ 97 13])'

Fact 2. (i) There exists decision vector fP) € A along with (column) vector Ve =V ( f(p)),
being the unique solution of

pVP() = max [r() + QU V()] (1)
In particular, for elements of V?, denoted Vip , We can write
PV = mae [ri() + 3 aig(@)V)] =il i) + D ()0 (15)
jE€T jeT

(ii) If Assumption A holds there exists decision vector f e A along with (column) vectors
W = W(f) and G := G(f) = P*(f)r(f) (constant vector with elements G(f) = p*(f)r(f))
being the solution of

G(f) = max [r(f) + QU W(F)] (16)

where W(f) is unique up to an additive constant, and unique under the additional normalizing
condition P*(f) W (f)= 0.

3 Discounted and Averaging Optimality Equations

In this section we discuss connections between optimality equations for discounted and undis-
counted models using a simple transformation of discounted model into the undiscounted unichain
case. Furthermore, we indicate how continuous-time models can be transformed to discrete state
models. The results are adapted from [12] and present a unified approach to various results scat-
tered in the literature (see e.g. [3, 5, 6, 7, 10, 11, 14]).
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Theorem 1. The discounted maximal (resp. current) total reward if the process starts in state
¢ equals the maximal (resp. current) average reward of the (not necessarily unichain) Markov
reward process if

For the discrete-time case. The transition probability matrix P(f) in (4) is replaced by the tran-
sition probability matrix PO (f) := BP(f) + A®) where A®) is a square matrix such that
the /th column is equal to (1 — 3), and elements of the remaining columns equal zero, and
the ¢th element of vector w(f) equals zero. Then ﬁf equals elements of (1 — 3)~ 1.

For the continuous-time case. The transition rate matrix Q(f) in (14) is replaced by the tran-
sition rate matrix Q0 (f) := p~'Q(f) — I + BY, where B) is a square matrix such that
only the /th column is non-null with elements equal to unity, and the /th element of vector
W (f) (unique up to additive constant) equals zero. Then Vep equals elements of G.

Proof. Obviously, results for the current policy follow immediately from results for optimal
policy if we shrink the set of feasible policies to a single policy.

For the discrete-time case

(I is an identity matrix, e denotes unit column vector)

o = max [r(f) + BP()’)

Il <

(1=B)vfe = max|r(f)+(BP() — D(” ~ v e)]

feA L

Il <

(0) [ () )
w® tge = max|r(f) + PO )]
where g:=(1-7) vf, w =P — vf

PU(f) == BP(f) + AY;
(observe that P(®)(f) is a stochastic matrix and that wée) =0)

For the continuous-time case

pV: = max :r(f)+Q(f)V’J}
0 E max :p_lr(f) +(p'Q(f) - I)Vp]
Vie £ max :p_lr(f)er‘lQ(f)Vp—[Vp—erﬂ
Vie E max :p_lr(f)er‘lQ(f)[Vp—er]—[Vp—‘//zpe]]

Then for G := Ve and wo .= yr _ V/} e we can write

G = max[p™ () + o7 QAW — W)
)

G r;lgft( {p‘l r(f) + p—lQ(f)(ﬁw(f)}
for QU(f):=p'Q(f) — T+ BY

(observe that Q) (f) = p~'Q(f) — I + BY is a transition rate matrix and that WE(Z) =0).
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Theorem 2. The continuous-time maximal (resp. current) average reward being the solution
of (16) equals the discrete-time maximal (resp. current) average reward if in the optimality
equation (6) we set
P(f):= B7'Q(f) +1 where B> max Z 4 (f)- (17)
fGA»/LeI . -
JEL,j#i
Then g(f) = G(f) and w(f) = BW(f).

Proof. First observe that elements of P(f) = B~'Q(f)+I are nonnegative, nongreater than
unity and all row sums equal unity.

From (16) we get
max [r(f) + Q(f) W(f)]

JeA

Il < |l

max [B1r(f) + [B71Q() + N1W ()]

I <

BW(f)+G(f) = max |r(f)+[B~'Q(f) + 1| BW()]

feA L

Il <

w(f)+9(f) = max[r(f)+ P(f)w(f)]

feA L

Theorem 3. The vector of continuous-time maximal (resp. current) p-discounted reward
being the solution of (14) equals the discrete-time maximal (resp. current) S-discounted reward
if the optimality equation (4) takes on the following form

o(f) = max [B7(f) + [B7HQU) — pI) + 1o(/) (18)
where B > max ii (f)-
fEA’IGIjG%J:';Ai dij

Proof. First observe that elements of the matrix P(f) = [B~YQ(f) — pI) + I|B~" are
nonnegative, nongreater than unity and all row sums equal (1 — p).
From (14) we get
pV(f) = max[r(f) +Q(f) V(f)]

feA

Il <

V() = max [B~'r() +[B7HQU) ~ D) + V()]
)
o(f) = max |B7() + [BTHQU) — o) + 1o()|

4 Conclusions

In this note we focus attention on optimality equations for discrete- and continuous time Markov
decision chains if discounted and averaging optimality criteria are considered. Using a suitable
data transformation we shown connections between discounted and averaging optimality equa-
tions, and using the uniformization technique also connections between discrete- and continuous-
time models.
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