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In this paper we show that the ideas on which GMM are based can be applied also
within the framework of Dempster-Shafer theory of evidence. We introduce two

term was used by the authors of pioneer papers as e.g. Daroch, Lauritzen, Speed,
Edwards, Havrdnek and others in early 80’s of the last century), Bayesian networks
(perhaps the most popular class within GMM), and decomposable models that allow
for the most efficient computational procedures.
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1 Introduction

theories, but a set function. This is why any Space-saving technique for model representation
and /or processing [15] is in Dempster-Shafer theory of such a great importance,

Speaking about probability theory, a substantial decrease of computational complexity was
achieved with the help of Graphical Markov Models (GMM), a technique developed in the
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13th International Workshop on Non-Monotonic Reasoning (Toronto, Canada, May 2010) (7]
and 5th International Conference on Soft Methods in Probability and Statistics (Oviedo and
Mieres, Spain, September/October 2010) [8]. As a motivation let us start with recalling the
notions of GMMs in probability theory.

2 Probabilistic Graphical Markov Models

Let us consider a probability measure 7 on a finite space Xy = X; x X3 x ... x X,,. For any
K C N, symbol 7% will denote its respective marginal measure on subspace Xx = X;exXi.
Similarly, for a point z € Xy its projection into subspace Xk will be denoted ¥, and for
AC Xy
A =y eXk:3z e A ztK =y}
By a join of two sets A C Xx and B C X we will understand a set
A@B={zeXku,: 2 € A & z** € B}.

Consider a probability measure 7 and three disjoint groups of variables Xx = {X;}iek,
X1 = {Xi}ier and Xyp = {Xi}tiem (K,L,M C N, K # 0 # L). We say that Xx and X, are
conditionally independent given X (in probability measure =) if for all z € Xgyrum

wlKULUM (2 LM (1M ,ﬂ_lKuM(leuM) UM (5 LLUM )

This property will be denoted by K 1L L|M [x].
In probability theory, all the graphical Markov models we will deal with in this paper can
be defined as probability distributions (measures) factorizing with respect to a graph; either

oriented (we call them digraphs) or undirected.
0‘9 0‘9
!
® ® & ® 2—®
(d) (e)

0"‘9 0‘9
@'@ @ O
& ® &—®
(b)
Figure 1: Graphs and a digraph

(a).

In addition to standard terms from graph theory, which can be found in any textbook, we
will need a couple of advanced notions and nonstandard notation. If 7 is a node of a digraph
then there is a set of its children (ch(i) = {j € V' (i — j) € E}) and its parents (pa(i) = {j €
V :(j — i) € E}). By fam(i) we understand pa(i) U {i} (e.g. for the digraph in Figure 1(d)
ch(5) = 0, pa(5) = {3,4}, and fam(5) = {3,4,5}). Let us recall a trivial result of theory of
finite digraphs: nodes of any DAG (acyclic digraph) can be ordered so that parents are before
their children. For example, for the graph in Figure 1(d) (notice that it is a DAG) the depicted
enumeration possesses this property.

A graph (undirected) is decomposable if its cliques (maximal complete subsets of nodes)
Ki,K,,...,K, can be ordered in the way that the sequence meets the so called running inter-
section property (RIP):

V’i=2,...,?‘3j,1$j<i:K,'ﬂ(KlLJ...UKi_l)ng. (1)

Notice that this property is met by any ordering of the cliques of the graph in Figure 1(a), and
that the cliques of the graph in Figure 1(b) cannot be ordered to meet this property. It means
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that from the mentioned two graphs only the former is decomposable. The graph in Figure 1(c)
is also decomposable, because the ordering of its cliques {1,2,4}, {2, 3,4}, {4, 6},{3,4,5} meets
RIP (in spite of the fact that, for example, {3, 4,5}, {1,2,4}, {2, 3, 4},{4,6} does not meet this
property). ‘

The last notions we will need are the notions of a separation and a separating set. We say
that two different nodes i, j € N are separated by a set K C N \ {i,} if we cannot go along
the graph edges from i to j without going through a node from K. So, if there is no path from
i to j (as, for example there is no path from 1 to 6 in the graph in Figure 1(a)) then even the
empty set may be a separating set. A set K is a minimal separating set if there exists a pair
of nodes ¢ and j, which is separated by K but no proper subset of K separates ¢ and j. Notice
that in the graph in Figure 1(c) both {2,4} and {4} are minimal separating sets; the former is
a minimal separating set for 1 and 3, whereas the latter is a minimal separating set for 1 and 6.

If graph G = (N, E) is not complete then it is always possible to find a couple of subsets
L,M C N (usually there are lot of such couples; the exception is a graph consisting of only two
cliques, for which this couple is unique) such that

e LUM=N;
e L N M is a minimal separating set;
* each pair of nodes i € L\ M, j € M \ L is separated by L N M.

The set of all such couples will be denoted by symbol 8(G). Now, we are ready to introduce
a class of subsets of Xy whose structures comply with graph G (these sets will be used in the
definition of graphical models in Section 4 — Definition 4):

R(G)={AC XN :V(L,M) € S(G) (A=A AM)},

Probabilistic factorization - graphical model. Consider a graph G = (N, E) with r cliques
K1, K>, ..., K,. We say that a probability distribution 7 factorizes with respect to graph G if
there exist r functions ¢, ¢a,. .., ¢y,

¢i : XK.- — [03 +°O):

such that for all z € Xy, n(z) = fI ¢i(z*%+). For more details see [12].
=1

Decomposable models. We sa.y‘tha.t a probability distribution 7 is decomposable if it factorizes
with respect to a decomposable graph G = (N, E). It is a famous fact that decomposable
distributions can be expressed in a “closed form” as a ration of two products of its marginal
distributions.

Lemma 1 7 is decomposable with respect to a graph G = (N,E) (with cliques K1, K, ..., K,
— assume they are ordered to meet RIP) if and only if

T
” H iKi (lei)
ﬂ'(x) — H ﬂ-lKi (le"\(K1U...UK;_1)Ile,'ﬂ(K1U...UK-_1)) = — =1 )
i=1 H 1rlK.'|’"l(K1U...UK'-1)(xlxin(K1U...UK-_1))
i=2

Bayesian Networks. We say that a probability distribution 7 is a Bayesian network with a
digraph G = (N, E) if it factorizes with respect to this digraph, which means that

n 1,]_u’m'n(i)(:.!.'.J,_fam(i))

- plfam(i) (. 1{i}) . lpa(i)y _ iEN

m(z) = LIV . (#" ) = [ mipal)(zlrali))
‘ ieN
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3 Dempster-Shafer theory

As in the previous section, we consider a finite multidimensional frame of discernment Xy. In
this paper we consider only normalized basic assignments, i.e. functions m : P(Xg) — [0, 1],
for which }° 4cx, m(A) = 1 and m(0) = 0. Set A C X is said to be a focal element of m if
m(A) > 0. In analogy to the probabilistic case, we denote marginal basic assignments by mi¥.

Conditional Independence. There are several ways how the notion of conditional indepen-
dence is introduced (see for example papers [1, 2, 11, 14, 16]). In this text we will use the
one, which was introduced in [5]* and [9], and which differs from the notion of conditional in-
dependence used, for example, by Shenoy [14] and Studeny [16] (and which is the same as the
conditional non-interactivity used by Ben Yaghlane et al. in [1]).

Definition 2 Let m be a basic assignment on Xy and K,L, M C N be disjoint, K # @) # L.
We say that groups of variables X i and X are conditionally independent given X pr with respect
to m (and denote it by K IL L|M [m]), if for any A C Xgyrum such that A = AKUM @ AILUM

leULUM(A) X mlM(AlM) = leUM(AlKUM) . mlLUM(AlLUM)
holds true, and mEYLUM(4) = for all A C Xk runm, for which A # AIKUM @ AILUM

Operator of Composition. Operator of composition was introduced for probability theory in
[4] and its Dempster-Shafer counterpart in [10].

Definition 3 For two arbitrary basic assignments m; on Xx and ms on X (K #0 # L) a
composition my > my is defined for each C C Xk by one of the following expressions:

m1(CHE)ma(CHL) .
méKnL(ClK”L) !

[a] if miE"E(CLENL) > 0 and C = CHX ® CL then (my > my)(C) =

[b] if miXME(CUENL) = 0 and C = C¥ x X\ g then (myq > ma)(C) = my (C'KX);

[c] in all other cases (m; >m2)(C) = 0.

4 Graphical Markov Models in D-S Theory

Definition 4 (Factorization) Let G = (N, E) be a graph with r cliques K1, K, ..., K,. We
say that basic assignment m factorizes with respect to graph G if there exist r functions
Y1, %2, .., Ur, (Wit P(XK,) — [0,+00)), such that for all A C Xy

i iALKis if A ]
ey | [LBA, g4cR©

0 otherwise.

()

Theorem 5 If basic assignment m factorizes with respect to G = (N, E) and K C N separates
nodes i,j in G, then {i} 1L {j}| K [m].

Example. Consider a 6-dimensional basic assignment factorizing with respect to the graph in
Figure 1(e). If all X; are binary, then general basic assignment may have up to 2% — 1 focal
elements. Nevertheless, since the considered graph consists of 5 cliques: {1,2,3}, {1, 4}, {3,5},
{4,5} and {6}, all the necessary factor functions are defined with by 28 + 3 - 24 + 22 = 308
numbers.

*In [5] the notion was called conditional irrelevance.
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Decomposable Models. Analogously to probabilistic case, basic assignment m is said to
be decomposable if it factorizes with respect to a decomposable graph. Since it is well-known
that decomposable probability distributions had markedly preferential properties in comparison
with general graphical distributions, one can expect something similar also in Demster-Shafer
theory. And really, the following assertions express specificity concerning decomposable basic
assignments.

Theorem 6 If K, Ky, ..., K, are cliques of a decomposable graph G = (N, E) ordered to meet
RIP then
R(G)={ACXy:A=A10 425 g AKX

Theorem 7 Let K1, K>, ..., K, be cliques of a decomposable graph G = (N, E) ordered to meet
RIP. Basic assignment m factorizes with respect to G if and only if
m=mF omifzp  pmplk

Example. Consider a 4-dimensional binary frame of discernment Xy;534). A general basic
assignment can have up to 65 535 focal elements. However, if m is decomposable with respect to
the (decomposable) graph in Figure 1(f), then thanks to Theorem 6 the reader can deduce that
(due to the requirements made by Definition 4 on m) this basic assignment can have only 658
focal elements. Nevertheless, we know that to define this assignment we do not need to assign
values to all these potential focal elements but it is enough to define its three 2-dimensional
marginals (m{1:2} mi{23} {34}y which means that it is enough to define only three times
15 numbers.

Belief Networks. To conclude considerations on graphical Markov models in Dempster-Shafer
theory of evidence it has remained to say what are the models that are considered a Dempster-
Shafer counterpart of Bayesian networks. In analogy with the probabilistic case we have to say
what do we understand when saying that a basic assignment factorizes with respect to DAG.
The answer is given in the following definition.

Definition 8 (Factorization with respect to DAG) Let G = (N, E) be DAG, and iy, is,
..., % n| be its nodes ordered in the way that parents are before their children. We say that a
basic assignment m factorizes with respect to G if

m = mifem(i) p gy lfam(ia) , o Lfam(in)

5 Conclusions

Inspired by GMM in probability theory, we showed that it is possible to introduce analogous
models in Dempster-Shafer theory of evidence. We introduced “classical” graphical models
(basic assignments factorizing with respect to undirected graphs), their special subclass of de-
composable models, and belief networks which form a D-S theory counterpart to probabilistic
Beyesian networks. It is evident that from the computational point of view belief networks
and decomposable models deserve a special attention. Both these models can be defined with
the help of their marginals, which makes their construction simple and tractable. Namely, the
resulting multidimensional basic assignment is constructed from a given system of marginals by
an iterative application of the operator of composition. The respective graph gives instructions
which marginals should be used and in which order they are to be composed.

We fully agree with the anonymous reviewer of [6] who stated: “The idea of generalizing
the fundamental concepts from probability theory to belief functions is very natural.” It is
simple and natural, and therefore it brings an additional supporting argument in favor of the
definition of the conditional independence in Dempster-Shafer theory of evidence as used here
in Definition 2.
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