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Abstract: We present a simple characterizations of equivalent compositional model
structures based on (A) invariant properties and (B) local transformations. It has
been shown in [1] that one can transform any compositional model into Bayesian
network representing the same joint probability distribution and vice versa.

Moreover, every assertion of independence induced by a Bayesian network structure
is also induced by the structure of the respective compositional model that is created
from the Bayesian network and vice versa.

That is why wa can simply compare characterization of equivalent compositional
model structures together with the known characteristics of equivalent Bayesian net-
work structures. We show which (A) invariant properties and (B)local transforma-
tions correspond each other. In opposite case we show what is its (invariant property,
transformation) meaning in the other model structure.
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1 Introduction

The ability to represent and process multidimensional probability distributions is a necessary
condition for application of probabilistic methods in Artificial Intelligence. Among the most
popular approaches are the methods based on Graphical Markov Models, e.g., Bayesian Net-
works. An alternative approach to Graphical Markov Models are the so-called compositional
models.

A Bayesian network for a set of variables N = {u1, . . . , u|N |} represents a joint probability
distribution over those variables. It consists of (1) a network structure that encodes assertions of
conditional independence in the distribution and (2) a set of conditional probability distribution
corresponding to that structure. The network structure is an acyclic directed graph (DAG for
short) such that each variable u ∈ U has a corresponding node u in the structure.

Consider a system of variables N . Let G = (N, E) is a dag. Denote for each i ∈ N :
pa(i) = {j ∈ N : (j → i) ∈ E}. We say that a probability distribution κ(N) is a Bayesian
network with graph G if

κ(N) =
∏

i∈N

κ(i|pa(i)) (1)

Similarly, compositional model for a set of variables N = {u1, . . . , u|N |} represents a joint
probability distribution over those variables as well. It is represented by a sequence of low-
dimensional probability distributions that are composed together by operator of composition B
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(which is defined in Definition 2). Hence, by a compositional model we understand a sequence
π1(K1), . . . , πn(Kn) representing a joint distribution π1(K1)B. . .Bπn(Kn) where the operator B
is applied from left to right. Note that unlike the Bayesian networks, structure of a compositional
model is not defined anywhere sideways: We say that the sequence of sets of variables K1, . . . ,Kn

is the structure of compositional model π1(K1), . . . , πn(Kn).
For both compositional model and Bayesian network and for any given structure, there is

a corresponding set of probability distributions that can be represented using a model with
that structure/network. Two model structures are equivalent if the set of distributions that
can be represented using one of the structure/dag is identical to the set of distributions that
can be represented using the other. Or in another words: Two model structures are equivalent
if they induce the same set of conditional independence assertions - the same independence
model. Because equivalence is reflexive, symmetric, and transitive, the relation defines a set
of equivalence classes over structure/dag. Note that the notion of equivalence is of particular
importance for learning these models from data.

2 Notation

In this section we introduce our notation and properties necessary to discuss equivalence in both
Bayesian networks and compositional models.

2.1 Bayesian network

We write u ↔G v to denote that there is an edge or an adjacency between nodes u and v in
G which means that either u → v or u ← v in G. The set of edges in directed graph G is the
collection of two-element subsets of N :

E(G) = {{u, v}; u ↔G v}.
We say that distinct nodes u, v, w form an immorality in G and write (u, v) Ã w[G] if u → w

in G, v → w in G, and u=G v. In fact an immorality in dag G is nothing but a special induced
subgraph of G: G[u, v, w].

Example 1. Consider a graph G from Figure 1b. Then there are two immoralities (u, v) Ã
x[G], (u,w) Ã x[G] in G. E(G) = {{v, w},{u, x}, {v, x},{v, w},{v, z},{w, z}}.

2.2 Compositional models

Definition 2. For two arbitrary distributions π1(U) and π2(V ) their composition is given by
the formula

π1(U) B π2(V ) =
π1(U)π2(V )
π2(U ∩ V )

if π1(U ∩ V ) ¿ π2(U ∩ V ), otherwise the composition remains undefined.
The symbol π1(K) ¿ π2(K) means that π1(K) is dominated by π2(K), which in its turn

means (in the considered finite setting) ∀x ∈ ×j∈KXj ; (π2(x) = 0 =⇒ π1(x) = 0). Moreover, if
there is a product of two zeros in the numerator and we take 0·0

0 = 0

Considering a compositional model with structure P = K1, . . . ,Kn, each set Ki can be
divided into two disjoint parts with respect to the structure P. We denote them R(KP

i ) and
S(KP

i ) , where R(KP
i ) = Ki\(K1 ∪ . . . ∪Ki−1) and S(KP

i ) = Ki ∩ (K1 ∪ . . . ∪Ki−1).
It has the following meaning: R(KP

i ) denotes the variables first occurring in the structure
(as well as in model itself). S(KP

i ) denotes those variables that have been already used. Observe
that KP

i = R(KP
i ) ∪ S(KP

i ) .
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Example 3. Let π1(K1) B . . . B π7(K7) be a compositional model such that. K1 = {u},K2 =
{v}, K3 = {v, w},K4 = {u, v, w, x},K5 = {y},K6 = {u, x, y}, and K7 = {v, w, z}. Then
one can see its structure P = K1, . . . , K6 depicted on Figure 1a where columns correspond to
{Ki}i=1,...,7. Rows correspond to variables. Sets {R(Ki)}i=1,...,7 are denoted by box-markers while
{S(Ki) }i=1,...,7 by bullets. Observe that box-marker is always the first marker in each row.

K1 K2 K3 K4 K5 K6 K7
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x

w
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u

(a) Visualization of a compositional model structure
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y

(b) Dag - Bayesian network struc-
ture

Figure 1: Two different structures that induce the same independence model

We write u ↔P v to denote that there is a set Ki ∈ P such that u, v ∈ Ki and u ∈ R(KP
i )

or v ∈ R(KP
i ) . The connection set of P is the collection of two-element subsets of N :

E(P) = {{u, v} : u, v ∈ N,u ↔P v}

We say that distinct variables u, v, w form a F-condition in P and write 〈u, v|w〉 ∈ F(P) if
∃Ki ∈ P such that w ∈ R(KP

i ) , {u, v} ⊆ S(KP
i ) , and u=P v. The set of all F-conditions induced

by P is denoted by F(P). Observe that if 〈u, v|w〉 ∈ F(P) then u ↔P w and v ↔P w.

Example 4. One can find the following connections and F-conditions in structure P from Fig-
ure 1a: F(P) = {〈u, v|x〉, 〈u,w|x〉}, E(P) = {{v, w},{u, x}, {v, x},{v, w},{v, z},{w, z}}. Notice
that E(P) = E(G) for G from Figure 1b and F(P) corresponds to its immoralities.

For another characteristics, we need a definition of structure core, which is closely related to
the special shape of a structure - the so-called reduced structure.

Definition 5. For a structure P, its core C(P) is a collection of Ki ∈ P such that Ki 6= S(Ki)
and Ki 6= S(Kj) for all Kj ∈ P such that R(KP

j ) 6= ∅.
Structure where set of columns coincide with its core is called reduced structure.

Example 6. Observe that for P = K1, . . . , K7 from Figure1a holds that C(P) = {K1,K4,K5,K7}.
Indeed, notice K2 = S(KP

3 ) ,K3 = S(KP
7 ) and K6 = S(KP

6 ) .

The following lemma is stated without proof. The proof is based on the characteristics of
local transformations and avid reader may find it in [3]. We denote the reduced form of structure
P by symbol PC .
Lemma 7. Every structure can be transformed into its equivalent reduced form in the following
way:
1: P ′ = P where all columns Ki such that Ki = S(KP

i ) are removed;
2: while P ′ is not reduced do
3: (i, j) = {i, j ∈ {1, . . . , |P ′|} such that i < j; KP′

i = S(KP ′
j ) }; {such pair exists since P ′ is

not reduced}
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4: P ′ = KP ′
1 , . . . , KP′

i−1,K
P′
j ,KP ′

i+1, . . . , K
P′
j−1,K

P′
j+1, . . . ,K

P ′
|P ′| {remove column Ki and move

column Kj on i− th position}
5: end while
6: PC = P ′;
7: return PC;

Example 8. Following the algorithm presented in the previous lemma and structure P from Fig-
ure 1a, one can create the following sequence of equivalent structures (See Figure 2) where the last
one is reduced: K1, . . . , K7 ⇒ K1,K2, K3,K4,K5, K7 ⇒ K1,K3, K4, K5,K7 ⇒ K1, K7,K4,K5 =
PC. See Example 6 and observe that PC consists of columns that are contained in C(P) only.
Moreover, notice that E(P) = E(PC) and F(P) = F(PC).
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(c)

Figure 2: The process of reduction

For the purpose of characterization of equivalent structures, we introduce the following ad-
ditional notation: By a symbol S(PC) we understand a collection of sets {S(KPC

i ) } for all KPC
i .

Example 9. For a structure P from Figure 1a holds that S(PC) = {{u, v, w}}. Indeed, see its
reduced form PC depicted on Figure 2c.

3 Equivalence

From the definition of Bayesian network (1) one can immediately see that a Bayesian network
κ(N) is uniquely defined by a system of conditional distributions {i|pa(i)}i∈N . Define π({i} ∪
pa(i)) such that π(i|pa(i)) = κ(i|pa(i)). To do this, one can take, for example, a uniform
distribution µ(pa(i)) and set π({i} ∪ pa(i)) = κ(i|pa(i))µ(pa(i)).

Now we immediately see that the considered Bayesian network can be expressed in the
form κ = πj1 B . . . B πjN , if the permutation j1, . . . , jN is such that all parents of a node are
always before it: jk ∈ pa(jl) ⇒ k < l. Therefore, each Bayesian network can be represented as a
compositional model. Similarly, we can find a Bayesian network representation for a distribution
defined as a compositional model. Since this article deals with the independence relations
induced by structure of the corresponding model only, we show how to convert structure of a
compositional model into equivalent dag:

Algorithm 10. Having a structure P = K1, . . . , Kn we first order (in an arbitrary way) all the
variables from (K1∪ . . .∪Kn) = N . Then a graph G(N, E) of the constructed Bayesian network
is defined in the following way: u, v ∈ N , (u → v) ∈ E if there exists Ki ∈ P such that (A)
u ∈ S(KP

i ) , v ∈ R(KP
i ) or (B) u, v ∈ R(KP

i ) and u is in the ordering defined in the first step
before v.
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Observe that for a structure P and dag G obtained from P by application of Algorithm 10
holds that E(P) = E(G) and F(P) corresponds to the set of immoralities induced by G. (Notice
that if one apply this algorithm on structure P from Figure 1a then the dag from Figure 1b will
be obtained.)

Both theories are able to model the same set of probability distributions. Let us compare
tools to determine the equivalence of structures.

3.1 Direct characterization

In this section we present several invariant properties of equivalent compositional model struc-
tures as well as corresponding properties of equivalent dags. The first direct characterization
of equivalent compositional model structures corresponds to the well known direct characteriza-
tion of equivalent dags which is closely related to the so called essential graph. (See conversion
Algorithm 10.)

• Compositional model: Two structures P,P ′ over N are independence equivalent if and
only if E(P) = E(P ′) and F(P) = F(P ′).

• Bayesian network:Two dags G,G′ over N are equivalent if and only if E(G) = E(G′) and
the graphs G,G′ have the same immoralities

Unlike Bayesian networks, this characterization is not very appropriate for compositional
models. For example, try to compare connection sets corresponding to structures from Fig-
ures 1a and 2c. It is quite difficult even for such simple structures. For this reason, further
characterization based on columns was derived.

Lemma 11. Two structures P,P ′ over N are independence equivalent if and only if C(P) = C(P ′)
and S(CP) = S(CP).
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Figure 3: Independence equivalent structures

What is the corresponding property of structure core in the area of equivalent dags? Note
that core correspond to a collection of sets {pa(u) ∪ {u}} for some u ∈ N . Nevertheless, a very
similar method for testing equivalence of dags over N is partially based on the approach from [2]
where one writes a ’formal ratio’ for every dag G over N as follows: in the nominator one lists
sets paG(u)∪{u} for u ∈ N while in the denominator one lists the sets paG(u) for u ∈ N . Then
the cancelation is performed: one occurrence of a set U ⊆ N in the denominator is canceled
against one occurrence of U in the nominator. For example the dag G from Figure 1b induces
the following ’ratio’:

u · v · zvw · xuvw · wv · y
∅ · ∅ · vw · uvw · v · ∅ =

u · zvw · xuvw · y
uvw
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Considering compositional model structure, the structure core is a set of columns that are
not removed during ’cancelation’ with sets S(Ki) . Hence if one defines a ’ratio’ where in the
nominator one lists sets {KP

i }i=1,...,n while in the denominator one lists the sets {S(KP
i )}i=2,...,n,

then after cancelation the nominator correspond to C(P) while denominator to S(CP) - see
Algorithm 10. These two characterization coincide. For example the structure from Figure 1a
induces the following ’ratio’:

u · v · vw · uvwx · y · uxy · vwz

∅ · v · uvw · ∅ · uxy · vw
=

u · zvw · xuvw · y
uvw

3.2 Indirect characterization

In the case of Bayesian networks, there is a local transformation - the so called legal arrow
reversal - which enables to generate all dags that are equivalent to a given one. By a legal arrow
reversal we understand the change of dag K into dag L by replacement of an arrow u → v
(in K) by u ← v (in L) under the condition that paK(u) ∪ {u} = paK(v) (here u, v ∈ N are
some distinct nodes). Two dags, if one is obtained from the other by legal arrow reversal, are
equivalent. For example: the change of direction of the arrow v → x in graph on Figure 1b is
legal arrow reversal.

In case of compositional model, there are three local transformation - the so called IE op-
erations - which similarly enables to generate all structures that are equivalent to a given one.
Restriction to a set of reduced structures suggests that two equivalent structures consist of
the same columns (possibly in different order). I.e. one is a permutation of the other. It is
no surprise that two of the elementary operations are transposition of adjacent columns: con-
stant transposition and box transposition. The third transformation that removes/adds columns
composed from bullets only (KP

i = S(KP
i ) ) is called simple reduction/extension.

Let P = K1, . . . , Kn and σ = (k − 1, k) such that k ≤ n. σ = (k − 1, k) is a transposition
and Pσ = K1, . . . , Kk−2,Kk,Kk−1, Kk+2, . . . , Kn. (Kk−1 and Kk changed their positions).

For P = K1, . . . , Kn and k ∈ {2, . . . , n} a transposition σ = (k−1, k) is constant if R(KP
k−1) ∩

KP
k = ∅. We say that Pσ is constant transposition of P. Observe that P ′ = K1,K2,K3,K5,K4

is constant transposition of P = K1, . . . , K5 from Figure 3a.
We call transposition σ = (k − 1, k) a box transposition in P = K1, . . . , Kn if k ∈ {2, . . . , n}

and S(KP
k−1) ⊆ S(KP

k ) ⊆ KP
k−1. We say that Pσ is box transposition of P. Observe that

structures from Figures 3b and 3c are mutually its own box transpositions. Similarly, P ′′ =
K2,K1, K3,K4,K5 is box transposition of P = K1, . . . , K5 from Figure 3a.

In the case of indirect characterization, the individual operations do not meet each other
in a 1:1 ratio. Legal arrow reversal can reflect the application of several IE operations in the
corresponding structure and vice versa. Rather, it is closer to realize parallels between IE
operations and formal ratio that was mentioned at the end of the previous chapter. Specifically,
simple reduction corresponds precisely to the classical cancelation of the common factor.
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