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Abstract In this contribution we generalize belief functions to many-valued
events represented by elements of the finite product of standard MV-algebras.
Our definition is based on the mass assignment approach from Dempster-
Shafer theory of evidence. The generalized belief function is totally monotone
and it has Choquet integral representation w.r.t. a classical belief function.
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1 Introduction

A main aim of this paper is to study belief functions in the more general set-
ting than Boolean algebras of events. This effort is in the line with a growing
interest in the generalization of classical probability towards “many-valued”
events, such as those resulting from formulas in �Lukasiewicz infinite-valued
logic. An algebra of such many-valued events is called an MV-algebra (Defi-
nition 1). The counterpart of a probability on a Boolean algebra is a so-called
state on an MV-algebra—see [10, 14, 11] for a detailed discussion of probabil-
ity on MV-algebras including its interpretation in terms of bookmaking over
many-valued events. The recent articles [7, 6, 9] focus on more general func-
tionals on MV-algebras: namely, upper (lower) probabilities and possibility
(necessity) measures. The presented paper is thus an attempt to fill the gap
in the classification of uncertainty measures on MV-algebras.

Section 2 contains basic definitions related to MV-algebras and totally
monotone functions. In Section 3 we will recall the notion of state and the
integral representation of states (Theorem 1). The states on an MV-algebra
of certain set functions will be of particular interest (Example 4). Section 4
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is devoted to belief functions. We will restrict their discussion only to the
MV-algebra of all [0,1]-valued functions on a finite set. The case of belief
functions on a general MV-algebra is left aside for future investigations since
it involves intricate mathematical tools such as topologies on spaces of closed
sets. Hence we develop a many-valued generalization of the usual notion of
belief function in the finite setting [15]. In particular, Definition 3 of a belief
function in the many-valued framework is based on a natural generalization
of the notion of mass assignment. The properties of such belief functions
are explored through Choquet integral representation (Proposition 1). This
representation implies total monotonicity of belief functions and some other
properties (Proposition 2). Finally, we give a complete description of the
convex set of all belief functions by finding its extreme points (Proposition 3).
Some proofs are omitted due to the lack of space.

2 Preliminaries

If X is any set, then P(X) denotes the set of all subsets of X . Put P /0(X) =
P(X) \ { /0}. For any A ∈ P(X), the characteristic function of the set A is
given by 1A(x) = 1, if x ∈ A, and 1A(x) = 0, otherwise, for every x ∈ X .

A fuzzy set on X is a function X → [0,1]. A set of fuzzy sets on X can
be endowed with an algebraic structure to introduce the union, intersection,
and other possible operations with fuzzy sets. This stream of research is
based on so-called tribes of fuzzy sets parameterized by a t-norm [1]—see
[12] for the latest exposition. Another motivation for investigating algebras of
fuzzy sets stems from mathematical fuzzy logics. In this contribution we will
tacitly confine to �Lukasiewicz infinite-valued logic whose associated algebras
of truth values are so-called MV-algebras—see [3] for their in-depth study.
MV-algebras play the same role in �Lukasiewicz logic as Boolean algebras in
the classical two-valued logic.

Definition 1. An MV-algebra is an algebra 〈M,⊕,¬,0〉 with a binary opera-
tion ⊕, a unary operation ¬ and a constant 0 such that 〈M,⊕,0〉 is an abelian
monoid and the following equations hold true for every f ,g ∈ M: ¬¬ f = f ,
f ⊕¬0 = ¬0, ¬(¬ f ⊕ g)⊕ g = ¬(¬g⊕ f )⊕ f .

On every MV-algebra M we define 1 = ¬0, f � g = ¬(¬ f ⊕¬g). For any two
elements f ,g ∈ M we write f ≤ g if ¬ f ⊕ g = 1. The relation ≤ is in fact
a partial order. Further, the operations ∨,∧ defined by f ∨g = ¬(¬ f ⊕ g)⊕g
and f ∧g =¬(¬ f ∨¬g), respectively, make the algebraic structure 〈M,∧,∨,0,1〉
into a distributive lattice with bottom element 0 and top element 1.

Example 1. The most important example of an MV-algebra is the standard
MV-algebra, which is the real unit interval [0,1] equipped with operations
f ⊕g = min(1, f +g) and ¬ f = 1− f . Note that we have f �g = max(0, f + g− 1).
The operations �,⊕ are also known under the names �Lukasiewicz t-norm and
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�Lukasiewicz t-conorm, respectively. The partial order ≤ on the MV-algebra
[0,1] coincides with the usual order of reals.

Example 2. More generally, the set [0,1]X of all fuzzy sets on a set X becomes
an MV-algebra if the operations ⊕ and ¬ and the element 0 are defined
pointwise. The corresponding lattice operations ∨,∧ are then the pointwise
maximum and the pointwise minimum of two real functions, respectively.

Example 3. MV-algebras generalize Boolean algebras in the following sense.
Every (Boolean) algebra of sets is an MV-algebra in which ⊕ coincides with
∨ and � coincides with ∧, where ∨ and ∧ is the union and the intersection
of two sets, respectively. The operation ¬ becomes the complement of a set.

We say that an MV-algebra is semisimple if it is (isomorphic to) an MV-
algebra of continuous functions [0,1] defined on some compact Hausdorff
space. In particular, all the MV-algebras from Examples 1–3 are semisim-
ple. Semisimple MV-algebras can be viewed as many-valued counterparts of
algebras of sets.

Throughout the remainder we deal with real functions on an MV-algebra
whose successive differences of all orders are nonnegative. This property (so-
called total monotonicity) of real functions was studied already by Choquet in
his foundational work about capacities [2]. Total monotonicity is the common
property of belief functions studied in different settings such as a finite algebra
of sets [15], any algebra of sets [16] or Borel σ -algebra of the real line [4]. We
consider the difference operator with respect to the lattice operations of an
MV-algebra M. This leads to the following definition. Let b : M →R and put
Δgb( f ) = b( f )− b( f ∧g), for every f ,g ∈ M.

Definition 2. A function b : M → R is totally monotone if

Δgn· · ·Δg1b( f ) ≥ 0, for every n ≥ 1 and every f ,g1, . . . ,gn ∈ M.

It is possible to show that b is totally monotone if and only if

(i) b( f ) ≤ b(g) whenever f ≤ g, for every f ,g ∈ M,
(ii) for each n ≥ 2 and every f1, . . . , fn ∈ M:

b

(
n∨

i=1

fi

)
≥ ∑

I⊆{1,...n}
I 
= /0

(−1)|I|+1 b

(∧
i∈I

fi

)
.

3 Probabilities on MV-Algebras

A state on an MV-algebra M is a mapping s : M → [0,1] such that s(1) = 1
and s( f ⊕ g) = s( f ) + s(g), for every f ,g ∈ M with f � g = 0. In case that M
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is an algebra of sets, then the notion of state agrees with that of finitely
additive probability measure. Properties of states are best analyzed through
their correspondence to Borel probability measures: it turns out that every
state on a semisimple MV-algebra is integral—see [8] or [13].

Theorem 1. If s is a state on a semisimple MV-algebra M, then there exists
a uniquely determined Borel probability measure μ on the compact Hausdorff
space X such that s( f ) =

∫
f dμ, for each f ∈ M.

It is possible to show by using linearity of Lebesgue integral that s is a totally
monotone function on M.

The following example is crucial for the investigation of belief functions
in the next section. We will introduce an MV-algebra whose elements are set
functions and single out a particular class of states for later use.

Example 4. Let X be a finite nonempty set. Consider the MV-algebra [0,1]P(X)

of all functions P(X) → [0,1]. We will deal only with those states s on
[0,1]P(X) for which s(1{ /0}) = 0. Theorem 1 says that each such state s cor-
responds to a unique finitely additive probability μ on P(P(X)) satisfying
s(q) = ∑A∈P(X) q(A)μ({A}) and μ({ /0}) = 0, for every q ∈ [0,1]P(X). The set S
of all states s on [0,1]P(X) with s(1{ /0}) = 0 can be identified with a convex

subset of the (2|X| −1)-dimensional Euclidean space. Since the correspondence
between S and the set of all probabilities μ on P(P(X)) with μ({ /0}) = 0 is
a one-to-one affine mapping, the convex set S is in fact a (2|X| − 2)-simplex.
The extreme points of S are in one-to-one correspondence with the nonempty
subsets of X : every state sA, A ∈ P /0(X) such that sA(q) = q(A), for each
q ∈ [0,1]P(X), is an extreme point of S. This characterization of state space
and its extreme points is a consequence of the description of state space of
any MV-algebra—see [10] or [8].

4 BFs on Finite Product of Standard MV-Algebras

The domain of belief functions introduced in this section is limited to those
MV-algebras [0,1]X with X finite. Each such MV-algebra is in algebraic terms
just a finite product of standard MV-algebras.

We will repeat basic definitions of Dempster-Shafer theory of belief func-
tions [15]. Let X be a finite nonempty set. We say that a function β : P(X)→
[0,1] is a belief function on P(X) if there is a mapping m : P(X) → [0,1]
with m( /0) = 0 and ∑A∈P(X) m(A) = 1 such that β(A) = ∑B⊆A m(B), for every
A ∈ P(X). The function m is usually called a basic assignment. Observe that
an equivalent description of a belief function β is possible by a finitely additive
probability μ : P(P(X)) → [0,1] with μ({ /0}) = 0 and such that

β(A) = μ({B ∈ P(X) | B ⊆ A}), for every A ∈ P(X). (1)
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Every belief function β on P(X) is totally monotone on the lattice P(X).
A point of departure for the generalization of the notion of belief function

to an MV-algebra [0,1]X of all [0,1]-valued functions from the finite set X is the
introduction of the following operator. Let the operator ρ : [0,1]X → [0,1]P(X)

be defined for every f ∈ [0,1]X as

ρ( f )(B) =

{
min{ f (x) | x ∈ B}, B ∈ P /0(X),

1, B = /0.

Given A,B∈P(X), observe that ρ(1A)(B) = 1 if and only if B⊆ A. This means
that ρ(1A) is the characteristic function of {B∈ P(X) | B ⊆ A}. Thus, we can
rewrite (1) with a slight abuse of notation as

β(A) = μ(ρ(1A)), for every A ∈ P(X). (2)

The preceding considerations lead naturally to the following definition of
belief function.

Definition 3. Let X be a finite nonempty set. A mapping b : [0,1]X → [0,1]
is called a belief function on [0,1]X if there is a state on the MV-algebra
[0,1]P(X) such that s(1{ /0}) = 0 and b( f ) = s(ρ( f )), for every f ∈ [0,1]X . The
state s is called a state assignment.

We are going to generalize the integral representation theorem for states (The-
orem 1) to belief functions. This requires introduction of Choquet integral [5].
Although we are integrating only the functions defined on the finite set X ,
we keep the integral notation to emphasize the analogy with Theorem 1 in
this setting.

0

1

X

ρ( f )({x})

P(X)\{{x} | x ∈ X
}

ρ( f )(B)

Fig. 1 Continuation of an element of the MV-algebra [0,1]X to [0,1]P(X)

If f is a function X → [0,1] and β is a set function P(X) → [0,1] with
β( /0) = 0, then Choquet integral of f with respect to β is defined as

∫
C f dβ =∫ 1

0 β
(

f−1([t,1])
)

dt. Since X is finite, the Choquet integral
∫
C f dβ exists and

takes the form of a finite sum. Indeed, assume the set X has n elements
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x1, . . . ,xn indexed in such a way that the numbers yi = f (xi), i = 1, . . . ,n satisfy
y1 ≥ ·· · ≥ yn. Put yn+1 = 0 and Si = {x1, . . . ,xi}, i = 1, . . . ,n. Then

∫
C f dβ =

∑n
i=1(yi − yi+1)β(Si).

Proposition 1. For every belief function b on [0,1]X there exists a unique
belief function β on P(X) such that b( f ) =

∫
C f dβ, f ∈ [0,1]X .

Proof. Let s be the state assignment on [0,1]P(X) corresponding to b. Ac-
cording to Example 4 there is a unique probability μ on P(P(X)) such
that s(q) = ∑A∈P(X) q(A)μ({A}) and μ({ /0}) = 0, for every q ∈ [0,1]P(X). This
means that b can be expressed as

b( f ) = s(ρ( f )) = ∑
A∈P(X)

ρ( f )(A)μ({A}). (3)

For every A ∈ P /0(X) and B ∈ P(X), let εA(B) = 1, whenever A ⊆ B, and
εA(B) = 0, otherwise. Then ρ( f )(A) = min{ f (x) | x∈A}=

∫
C f dεA. The equality

(3) together with linearity of Choquet integral with respect to the integrating
set functions εA yield

b( f ) = ∑
A∈P /0(X)

μ({A})

∫
C f dεA =

∫
C f d

(
∑

A∈P /0(X)

μ({A})εA

)
.

It suffices to show that the function β = ∑A∈P /0(X) μ({A})εA is a belief function
on P(X). For each B ∈ P(X),

β(B) = ∑
A∈P /0(X)

μ({A})εA(B) = ∑
A⊆B

μ({A}) = μ({A ∈ P(X) | A ⊆ B}).

��

Fig. 2 The relation between belief functions (BF), states, and probabilities

BF b on [0,1]X BF β on P(X)

State s on [0,1]P(X) Probability μ on P(P(X))

∫
C

ρ∫ρ

The derived Choquet integral representation coincides with the definition
of a belief function on “formulas”of �Lukasiewicz logic proposed in [9]. Due to
Proposition 1 the properties of belief functions on [0,1]X are completely deter-
mined by the properties of Choquet integral. These are the most important
among them—see [5].
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Proposition 2. Let b be a belief function on [0,1]X . Then b is totally mono-
tone and for every f ,g ∈ [0,1]X :

(i) b(0) = 0, b(1) = 1
(ii) if f � g = 0, then b( f ⊕ g) ≥ b( f ) + b(g)

(iii) b( f ) + b(¬ f ) ≤ 1
(iv) b is a state if the state assignment s satisfies s(q) = 0 for each q∈ [0,1]P(X)

such that q(A) > 0 for some A ∈ P(X) with |A|> 1
(v) b( f ) = min{s( f ) | s state on [0,1]X with s ≥ b}
The property (ii) is so-called superadditivity. The condition (iv) is a gen-
eralization of the analogous fact about belief functions on P(X): a belief
function β on P is a probability iff the corresponding basic assignment sat-
isfies m(A) = 0 for each A ∈ P(X) with |A|> 1. The last property (v) means
that b is a lower probability in the sense of [6, Definition 4.1], which enables
interpreting the belief function b in the game-theoretical framework based on
a notion of coherence.

The geometrical structure of the set of all belief functions on [0,1]X is
fully determined by the associated simplex of state assignments on [0,1]P(X).
For each A ∈ P /0(X), a belief function bA( f ) = min{ f (x) | x ∈ A}, f ∈ [0,1]X

corresponds to the state assignment sA (see Example 4). Consequently, we
obtain the following characterization of the set of all belief functions.

Proposition 3. The set of all belief functions on [0,1]X is a (2|X| −2)-simplex
whose set of extreme points is {bA | A ∈ P /0(X)}.
Observe that every bA preserves finite minima since for every f ,g ∈ [0,1]X

we have bA( f ∧ g) = bA( f ) ∧ bA(g). In general, it can be shown that each
minimum-preserving function b : [0,1]X → [0,1] with b(0) = 0,b(1) = 1 is a be-
lief function. Such functions are termed necessity measures and they were
recently investigated on formulas of finitely-valued �Lukasiewicz logic in [7].
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