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Abstract—The ergodic sequences consisting of vecto(§.,,, 7, ), In the bivariate sequence, first marginal sequence. ., &,
n > 1, over a finite alphabet A x B are colored with [e™ | colors  js colored withk,, = |e™| colors and second ong, ..., 7,

for A™ and|e™? | colors for B™. Generic behavior of the colorings with £, = [e"?] colors,a, 8 > 0. If
in terms of probabilities of monochromatic rectangles intesected " o
with typical sets is examined. Whenn increases a big majority
of pairs of colorings produces rectangles whose probabiliés are

bounded uniformly from above. Limiting rates of bounds are . .. .
worked out in all regimes of the rates o and 3 of colorings. &€ two such colorings, the produét x B™ partitions into the

As a consequence, generic behavior of the colorings in termef  (fn, gn)-monochromatic rectangles
Shannon entropies of the partitions into rectangles is desibed. ) ) g N
fo (%9, (), i€kn,jELly.

The main result, Theorem 2 in Section 1V, deals with uniform
. INTRODUCTION upper bounds on probabilities of these rectangles interdec
Let N be a finite set and¢;);,cn a random vector taking with special typical setsZ, C A"xB". The bounds decay
a finite number of values. The collection of the Shannagxponentially with the rate
entropiesH(¢;, i € I), I C N, of all the subvectors of the
vector can be interpreted as an entropic point of a Euclidean h?,f = min {hey, & + hy, he + 3,0 + 3}

space. The last decade has seen renewed investigationalr(])éreh he and b are the entropy rates of the eraodic
regions of the entropic points and closely related inforamat nr T m Py 9

theoretical inequalities [10], [4], [5], [6], [7]. Motivin has sequence and their marginals, respectively. With incngasi

been drawn from numerous schemes of information theory [ tethbounFis becomefvallld for more and .rfr.]o(;etr?ems'r\]/e matjlonty
[9] and elsewhere. e pairs(f,, g ) of colorings, as specified through a notion

Properties of regions of the entropic points and their E'smitof a convergence to zero faster_than exponentlally (f.t.e.)_
Using Theorem 2, the generic behaviour of the colorings

were studied recently in [6] by taking independent iderijca
y in [6] by g P e in terms of entropies of partitions is described in Corgllar

distributed copies(¢,™)ien, n > 1, of the vector and by "' = : P . .
randomly colorinz( the) igpiesm _..&™ of a single dis- with increasing: for majority of the pairg f,,, g, ) of colorings
CR the Shannon entropy of the partition into thg,, g, )-mono-

tinguished variablg; with |e" | colors,a; > 0. In this way . les is | bounded b h
new entropic points were constructed from old ones and th |'|1romat|c rectang ((ehso‘lg El)_vr\]/_er oun eh r)]/_ahsequanggf)lljc
limits were described in [6, Theorem 3. thata, converges tdy,". This rate is the highest possible, see

In this framework, a natural idea is to color independentﬁema_‘rk 2. ) )
the copiest” €™ of eachvariable; with [e" | colors Main tools that underly proofs are collected in Section II.
S :

i . . ..
i € N, and to investigate the entropies of the partitions intb"€Y include a couple of lemmas that go in the spirit back

monochromatic blocks. Thus, thé-tuples of colorings come t© [1], [3], and their dynamical versions. On the way to the

into play and a majority of them is expected to have a simildf@in result, a general asymptotic scheme is singled out in

in some sense generic, behaviour in terms of entropies. Section Ill. It comprises gruual z_;\rguments towards theopro
In this contribution, a restriction is made to bivariatetegs. ©f Theorem 2 presented in Section IV.

The multivariate case likely differs only by additional ted-

calities and will be treated elsewhere. Instead of indepehd

copies of a bivariate vector, an ergodic sequence congistin Il. PRELIMINARIES

of vectors (&n,7n), n > 1, over a finite alphabetixB is The following lemma is a minor generalization and refor-
considered. The more general assumption of ergodicitylentgy, ,iation of [6, Lemma 6, p. 322]. The starting idea goes back

fmA"—»E; and gn:B”—>/:l

no additional technical complications. _ to [1, Lemma 3.1, p. 230], see [6, Remark 4, p. 323]. Results
A k-coloring of a set¥ is any mappingf of X' into the set ¢ this sort have been of importance when studying common
of colors{1,..., k}, to be denoted b¥. The cardinality ofX o1 4omness and secrecy capacities, see [3, Appendix B].

is denoted by X|.



Lemma 1. Let k = ¢4 be a positive integer an@ a finite set This bound does not depend ghand: whence the assertion
of measures on a finite séf such that follows. [ |

Qz) <e - Q(X), reX,QeQ, (1) Dynamical versions of Lemmas 1 and 2 are prepared below

) for later purposes.
for somew. If w < ¢ then the number of thogecolorings f

of X that violate Lemma 3. For n > 1 let Q,, be a set of measures on a finite
. N set X,, such that
Q(f7 (Z)) < e - Q(X) 3 1€ ka Q € Qa (2) —nr
. Q(ZC) g € " Q(Xn)a S Xna Q € an (4)
is at most

. . for a sequence,, that converges to a finite lim#. If « > 0,
| X" k|Qlexp [~ 5" (e” = 1)(g —w)]. kn, = |e"*| and s,, = min{r,, a, h} — 2n~'/2 then the pro-

Proof: When Q is empty or contains only the zeroportion of thosek,-colorings f, of X, that violate

measure then (2) is never violated, and the assertion holdsQ(f-1(i)) < e ™" - Q(X,), i€kn,Q€Qn (5
trivially. Otherwise, whenQ consists of probability measures

this is a reformulation of [6, Lemma 6] whete= ¢?~% —1is IS at most

nonnegative because < ¢. The general case follows directly " |Qn| exp [ — %(e‘/H -1].

from this special one. [ |
P Proof: If ¢, = Ink, thenna > ¢, > na — 1, and thus

In Lemma 1, some coloringg partition X into monochro- ¢, —ns, > 1/n. Lemma 1 implies that the proportion of those
matic blocksf~1(i) such that their measur&$(f—'(i)) are k,-coloringsf, that violate (5) is upper bounded by
bounded from above, uniformly ihand @, while the number no L ntn—dn { odn—nSn
of the remaining colorings has an explicit upper bound. A © |Qulexp[—3e (e —1)vn].
symmetric counterpart of the lemma will be needed in themitting ,/n, the bracket is dominated by
sequel. For readers convenience, its proof is worked owchas

on ideas of the proof of [6, Lemma 6]. — L gnmin{roochy=na (gan=nsn 1) < _L(evm —1)

Lemma 2. Under the assumptions of Lemma 1wif> ¢ then whence the assertion follows. [ ]

the number of thosg-colorings f of X that violate .
gsf Let us say that a sequence of nonnegative numbhggsows

QUf14) = e -Q(X), icekQeOQ, (3) at most exponentiallif the sequence: In p,, is bounded from
_ above. The sequengg goes to zerdaster than exponentially
IS at most (f.t.e.)if  Inp, tends to—oc.
IX|* - k|Q] exp [_ %equ (1— et ") In(2 — eqfw)} _ Lemma 3 is mostly used in a limiting version that only

states existence of a sequenge

Proof: Let the vector(n,)xcx consist of mdAependent Corollary 1. If a sequence,, satisfieq4) with somer,, — h,

random variables, each one distributed uniformlykorThus, ;
- : . S |Qn| grows at most exponentially, > 0 andk,, = [¢"“ | then
a realization of the vector is fcoloring of X. Fori € k£ and . . .
there exists a sequeneg converging tomin{«, h} such that

Q € Q let (, be equal to—(k—1)Q(x) if n, =4 and toQ(z) . i . .
otherwise,z € X. Then, these variables are independent artllae proportion of thosé,-colorings f,, of X, that violate(5)

centered, that is their expectations are equal to zero. Ry (goes to zero fte.
they are bounded in the absolute value &y 7Q(X) and A counterpart of this corollary is needed as well.
the sum of variancegk — 1) > Q(z)? is majorized by

1" Q(X)2 Hence, fore > 0 the inequality Lemma 4. Under the same assumptions as in Corollary 1, if

a < h then there exists a sequentg converging toa: such
c . ) .
< _ that the proportion of thoskg,,-colorings f,, of X,, that violate
Pr(3 e xCe > eQ(X)) <exp [ YT In(1+ 5)} - B e
follows from [6, Lemma 5] whenevef)(X) > 0, and holds Qn(fr (@) 2 ™™ Qn(Xn), 1 € kn,Qn € Cn, (6)
trivially otherwise. This probability multiplied bjX |* is equal goes to zero f.t.e.
to the number of:-colorings f that satisfy

Proof: Let ¢, = Ink,, and|Q,| < e™ for somew. If
—per-10) (B =1)Q() + X ex\ 1) Q@) > e Q(X).  w, =na+1thenw, > g, +1 and the sequendg, = w, /n
. ) ) 'y ) converges obviously te.. Hence, Lemma 2 implies that the
This inequality rewrites t&Q(f (i) < (1-¢)Q(X). Since 5 arion of thosek,-colorings f,, of X,, that violate (6) is
w is at leasly the choices = 1 —e?~" is possible. Therefore, upper bounded by
the number of thosé-colorings f that violate the inequality
Q(f~1(i)) = e ™ -Q(X) is at most e exp[—1e"m " (1-1)In(2-1)].

X5 exp[—3e" 7 (1—et") In(2 —e?")]. This expression vanishes f.t.e. ]



I1l. M AIN ASYMPTOTIC SCHEME

1. Let us assume first that < hx. On account of (8),

In this section a general limiting scheme is presenté@mMma 4 applies to the sequen@¢ . There exists a sequence

that abstracts some typical situations encountered irribbea

u,, converging toa such that the proportion of thoge,-

ergodic sequences. This is believed to provide a betteghinsi olorings f, that violate

and, at the same time, to simplify and shorten proofs.

Theorem 1. For n > 1 let ,, be a finite measure on a finite

set X,,xY,, such that the cardinalities of the sets

{y € You: Qu(Xnx{y}) # 0} (7)

grow at most exponentially. Léty, hy and hxy be numbers
such thathxy < hx + hy, the inequalities

Qn({r}xYy,) <e ™ - Qn(XnxYy),
Qn(Xnx{y}) <e ™ - Qn(XnxYs),

hold with converging sequences — hx, s, — hy, and

Qn(z,y) < e M Qn(Xnx{y}), (z,y) € X, xY,, (10)

be satisfied with a converging sequernge— hxy — hy. Let

furthera, 3 > 0, k,, = [e"®], £, = |e"?| and a pair(f,,, gn)

consist of a;,,-coloring f,, of X,, and an/,,-coloring g,, of Y,.
If a < hx or 3> hy then there exists a sequence

T € X,,
yEYn,

(8)
9)

Wy, — )%ﬁ/ =min {hxy,a+ hy,hx + 5,a + (3}
such that the proportion of those paifg,, g, ) that violate
Qu(f (1) x5 () < e - Qu(XnxYy),
— ~ (11
1 €kn,j€ly,

goes to zero f.t.e.

Qu(fi (@)% Yy) = €™ - Qu(XuxYn), i€ kn,
goes to zero f.t.e.

Let F,, be the family of thosé:,, -colorings f,, that violate
an inequality in (12), (13), (14) or (15). By three above
convergence statements, the proportiéh||X,,|~*» goes to
zero f.t.e. If f,, ¢ F,, then (14) and (15) combine to

Qn(f () x{y}) <e ™ - Qu(fy (i) xYy),
i € knyy € Yy,

(15)

(16)

wherewv,, = s,, + p;7 —u,, converges tanin{hy, hxy — a},
denoted in the sequel by,.

Let ¢, = min{v,, 3, h,} —2n~'/2 play the role ofs,, from
Lemma 3 that is applied to the se®;, of measures ory,
given by .

Y= Qn(fn_l(z)x{y})7 i € kn,
for k,,-coloringsf, ¢ F,, andn > ng. By (16), if G¢, denotes
the family of those/,,-coloringsg,, of Y,, that violate

Qn(f(0)xgn" (7)) < e - Qu( S () xYa)
—~ ~ (17
i € knyJ € ln,
then the proportionG;, ||Y,,| =% is upper bounded by
cn ="’ |Qy, | exp [— %(eﬁ -1)].

Here, obviously|Qy, | < e™.

Proof: Let QX be the family consisting of the single Therefore, the cardinality of the set

measure onX,, given byx — Q,({z}xY,). By (8), Corol-
lary 1 applies to the sequengeX. There exists a sequeneg

Hn = {(fnagn) fn € ]:n or (,fn gfn and gn € gfn)}

converging tomin{a, hx } such that the proportion of thoseis upper bounded by

kn-colorings f,, of X,, that violate

Qn(f7 () xY,) < e ™ - Qu(XpxYy), i€k (12)

goes to zero f.t.e.
Let us consider the set of measu@g " on X, given by

xHQn(xvy)a ernv

|fn||Y’ﬂ,|én + angj:n |gfn|

and the proportiofi,, || X,,| =%~ |Y;,| ~*~ is at most the sum of
| Fnl| Xn|~F» with ¢,. It follows that this proportion goes to
zero f.t.e.

Let w, = ¢, + u;}. This sequence converges to

min{a + 8, + hy, hxy }

that are nonzero. By (7), the cardinality of this set grows at

most exponentially. Hence, Corollary 1 based on (10) inspligvhich equalshyy becausen < hx. If a pair of colorings
existence of a sequengg converging tomin{a, hxy — hy}  (fn,9») does not belong @1, thus f,, ¢ F,, andg, & Gy,
such that the proportion of thogg,-colorings f,, that violate then (12) and (17) hold. Since (11) is their consequence the

L — proportion of those pairsf.,, g,) that violate (11) is upper
Qu(fi (@) x{y}) < e " - Qu(Xux{y}), bounded by H,,||X,.| " |Y,|~*, going to zero f.t.e.

ol (13)
i€ kn,y €Y, 2. It remains to considet > hy and 3 > hy. Let QY
goes to zero f.t.e. be the family consisting of the single measure n given
If a coloring f,, satisfies (13) then by (9) by y — Qn(X,x{y}). Corollary 1 can be applied to the
1. s, tpt sequence?} and 3 in the role ofa. By (9) and3 > hy,
Qu(fi (D)x{y}) < e ") Qu (X xYy), (14) there exists a sequeneg converging tohy such that the

proportion of those,,-coloringsg,, of Y,, that violate

Qn(Xnxg () < €™ - Qu(XuxYy), j€ly, (18)

i € knyy € Yy,

wheres,, + p;" converges tanin{« + hy, hxy }.



goes to zero f.t.e. If &,-coloring f,, satisfies (13) then by Theorem 2. For n > 1 letk, = [¢"] and/,, = |’ | where

the summation of; over g, 1(j), a, 3 > 0. There exist a sequence of sets C A" x B" and;\
1. 1. —npt 1. sequence of numbets, such thatP,(Z,) — 1, w, — hgn

Qn(fn (1) %9~ (7)) S e”™n 'Q”(X”ign (J)A)’ (19) and the proportion of those paifs’,, g..), consisting of a,,-

1€ kn,j €4y coloring f,, of A” and an¢,-coloring g,, of B", that violate

Here,p;” — hxy — hy becausey > hx > hxy — hy. Po((f (0)xg, ' (4)) N Zn) < €™ i€ kn, j € 0y, (23)
Let w, = v, + p,. This sequence tends oy = h;@.
Combining (18) and (19) the inequalities (11) follow. Sinc

they are violated only if (13) or (18) fails the proportion of ~ Proof: By exchanging the coordinate variablgs and
those pairgf,,, g») that violate (11) goes to zero f.t.e. m 7, if necessary there is no loss of generality when assu_ming
Remarkl. Leta < hxy —hy, 3 < hy and the assumptions of & < he or g > _hn. The subsetZ,, is constructed below via
Theorem 1 hold. Using (7) and (10), Lemma 4 applies to ti3€ entropy-typical sets

sequenc@f'y from the previous proof and implies existence T¢s = {x e A™: pg(x) — efn[hgié]},

of a sequence,, converging too such that the proportion of Trs = {y € B": PI(y) = efn[hn:tJ]}7

thosek,,-colorings f,, that violate
Tis = {(z,y) € A"xB": P,(z,y) < e_”[hﬁﬂi‘;]}.

n (i 2 TP n Xn )
@n(f (D) {y}) > e @n _ Xj\y}) (20) Here, the symbolx means that the number on the left is
0 € kn,y € Yo, between the two numbers on the right.

goes to zero f.t.e. Using (9), Lemma 4 applies to the sequencéince the sequenci,,n,) and two marginal sequences
QY . There exists a sequencg converging to? such that the are ergodic the Shannon-McMillan-Breiman theorem, known

proportion of those,,-coloringsg, that violate also as the asymptotic equipartition property [8, Sectibiss
and 1.6], implies that for every positivé the probabilities

-1/, —nv, . . 7 n n n
Qn(Xnxg, () = e Qn(XnxYn), j€lun, (21) PS(T2,), PI(T)s) and P,(TZ ;) tend to 1. By standard

goes to zero f.te. If, satisfies (20) then for anf,-coloring diagonal arguments, there exists a positive sequéfge 1
converging to zero, perhaps rather slowly, such that eatieof

goes to zero f.t.e.

n Of Y,
g - sequence:?g(Tgf&n), PI(Ty s ) and P, (T, 5 ) converges to
Qn(f ()% g, (7)) = €7 - Qu(Xnxg, " (7)) (22) One:
i €kn,je by, Let U, denote the intersection @f’; xB", A"xT}'; and

: - TR s M py=1—[1— P,(U,)]"/? and
by summing overy € g, '(j). Combining (21) and (22) it o

follows that the sequence, = p;, + v, tends toa + 3 and Yy ={yeB": P((A"x{y})NUn) = pn Pl(y)}
the proportion of those pairsf,, g.) that violate then the estimations
Quf 1 (0)x9, (1) 2 €™ -Qu(XuxYa) i € kg € by Poll = PIVD] = Eyepnyy; oo BlW)
goes to zero f.t.e. This symmetric counterpart of Theorem 1 Z Lyepny; Pn((A"x{y}) NU)
is interesting per se but not used below. The assumption (8) = P, (Uy,) — P ((A"XY,))NU,)
was not needed. > P,(U,) — PI(Y))
andp, <1 imply
IV. ERGODIC BIVARIATE SEQUENCES P,(Uy) — pn

L . . PHY ) > =Dy, .
Let (¢.,m.), » > 1, be a bivariate ergodic sequence with (¥:0) 1—opp b

the states in a finite productx B. The distribution of the opviously, P7(Y*) = 1 if p, = 1.

first n vectors of the sequence is denoted By and its Let Z, denote the intersection of” xY;* with U,,. Then
marginals toA™ and B" by P; and P, respectively. In it is possible to conclude subsequently that the sequences
this section Theorem 1 is applied to the restrictionsFf P, (Uyn), pn, P7(Y;?) and P,(Z,) converge to one. Lef),,

to certain subsets ok, xY,, = A"xB" that are constructed denote the restriction of, to Z,. To apply Theorem 1, its

by a notion of entropic typ|cal|t1y. The role dfxy is played assumptions are verified as follows.

by the entropy ratehe, = lim, InH(P,) of the bivariate  The set in (7) is contained ivi, = B so that its cardinality
sequence, and the entropies rates of the marginal sequengrfivs at most exponential.

he = lim = In H(PS) and h, = lim +InH(PY), correspond | etr, be equal tohe — 6, + L1 P,(Z,) providedP,(Z,)

to hx andhy, respectively. is positive. If z ¢ T{s thenQ,({z}xY,) vanishes and the

The following theorem asserts rigorously what was earlighequality in (8) holds trivially. Otherwise, if: € T7s. then
mentioned as the generic behavior of pairs of colorings in ’

terms of probabilities of monochromatic rectangles irtetsd ~ @n({z}xB™) < P,({#}xB") = P§(x) < e he0n
with typical sets. =e " Py(Zy)=e " Qn(A"xB")



so that (8) is verified with a sequenc@ converging tohe. Remark2. If the assertion of Corollary 2 holds for a sequence
For s, defined througth,, —d,,+ L1n P,(Z,), a verification a,, converging to some instead ofh v thena cannot exceed

of (9) is analogous to that of (8) and omitted here. this number. This follows from
Let ¢, be equal tohe, — h,, — 26, + = Inp,, providedp, o
is positive. If (z,y) ¢ Z, then @, (x,y) vanishes and the hfln_)solip Sy, g, wH (Pnlfus gn) < hyy - (24)

inequality in (10) holds trivially. Otherwisez,y) € T, 5. . . . .
andy e 77, imply m; To prove the inequalityH (P, |fx, gn) iS majorized by the

sum of H(P%|f,) and H(P)|g,), defined analogously. The

Qn(z,y) = Po(z,y) < e "hen—0n] former summand is dominated @\(Pg) andna because the
< e lhen=0a] gnlhaton] pu(yy pgrt!tion of A™ into f,71(4), i € kn, has at most,, blocks.
" Similarly, the latter summand is dominated By P/7) andn(.
Usingy € Y;* and Z,, = (A"xXY*) N U,, It follows that the left-hand side of (24) is at most
n - Pl (y) < Pa((A"x{y}) NUR) = Qu(A"x{y}). min{hg, a} + min{hy, 5} .

Combining above estimations, it follows that (10) is vedfie This andH (P,|f., g») < H(P,) imply (24).
with a sequence,, — hg, — hy. Obviously,he, < he + hy,.

Therefore, Theorem 1 implies existence of a sequence
converging toh?nﬁ such that the proportion of those pairs ACKNOWLEDGMENT
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