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Abstract—The ergodic sequences consisting of vectors(ξn, ηn),
n > 1, over a finite alphabetA×B are colored with ⌊enα⌋ colors
for An and⌊enβ⌋ colors for Bn. Generic behavior of the colorings
in terms of probabilities of monochromatic rectangles intersected
with typical sets is examined. Whenn increases a big majority
of pairs of colorings produces rectangles whose probabilities are
bounded uniformly from above. Limiting rates of bounds are
worked out in all regimes of the rates α and β of colorings.
As a consequence, generic behavior of the colorings in termsof
Shannon entropies of the partitions into rectangles is described.
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I. I NTRODUCTION

Let N be a finite set and(ξi)i∈N a random vector taking
a finite number of values. The collection of the Shannon
entropiesH(ξi, i ∈ I), I ⊆ N , of all the subvectors of the
vector can be interpreted as an entropic point of a Euclidean
space. The last decade has seen renewed investigations of
regions of the entropic points and closely related information
theoretical inequalities [10], [4], [5], [6], [7]. Motivation has
been drawn from numerous schemes of information theory [2],
[9] and elsewhere.

Properties of regions of the entropic points and their limits
were studied recently in [6] by taking independent identically
distributed copies(ξ(n)

i )i∈N , n > 1, of the vector and by
randomly coloring the copiesξ(1)

i , . . . , ξ(n)

i of a single dis-
tinguished variableξi with ⌊enαi⌋ colors,αi > 0. In this way
new entropic points were constructed from old ones and their
limits were described in [6, Theorem 3].

In this framework, a natural idea is to color independently
the copiesξ(1)

i , . . . , ξ(n)

i of eachvariableξi with ⌊enαi⌋ colors,
i ∈ N , and to investigate the entropies of the partitions into
monochromatic blocks. Thus, theN -tuples of colorings come
into play and a majority of them is expected to have a similar,
in some sense generic, behaviour in terms of entropies.

In this contribution, a restriction is made to bivariate vectors.
The multivariate case likely differs only by additional techni-
calities and will be treated elsewhere. Instead of independent
copies of a bivariate vector, an ergodic sequence consisting
of vectors (ξn, ηn), n > 1, over a finite alphabetA×B is
considered. The more general assumption of ergodicity entails
no additional technical complications.

A k-coloring of a setX is any mappingf of X into the set
of colors{1, . . . , k}, to be denoted bŷk. The cardinality ofX
is denoted by|X |.

In the bivariate sequence, first marginal sequenceξ1, . . . , ξn

is colored withkn = ⌊enα⌋ colors and second oneη1, . . . , ηn

with ℓn = ⌊enβ⌋ colors,α, β > 0. If

fn : An → k̂n and gn : Bn → ℓ̂n

are two such colorings, the productAn×Bn partitions into the
(fn, gn)-monochromatic rectangles

f−1
n (i)×g−1

n (j) , i ∈ k̂n , j ∈ ℓ̂n .

The main result, Theorem 2 in Section IV, deals with uniform
upper bounds on probabilities of these rectangles intersected
with special typical setsZn ⊆ An×Bn. The bounds decay
exponentially with the rate

hαβ
ξη = min {hξη, α + hη, hξ + β, α + β}

where hξη, hξ and hη are the entropy rates of the ergodic
sequence and their marginals, respectively. With increasing n
the bounds become valid for more and more decisive majority
of the pairs(fn, gn) of colorings, as specified through a notion
of a convergence to zero faster than exponentially (f.t.e.).

Using Theorem 2, the generic behaviour of the colorings
in terms of entropies of partitions is described in Corollary 2:
with increasingn for majority of the pairs(fn, gn) of colorings
the Shannon entropy of the partition into the(fn, gn)-mono-
chromatic rectangles is lower bounded by a sequencenan such
thatan converges tohαβ

ξη . This rate is the highest possible, see
Remark 2.

Main tools that underly proofs are collected in Section II.
They include a couple of lemmas that go in the spirit back
to [1], [3], and their dynamical versions. On the way to the
main result, a general asymptotic scheme is singled out in
Section III. It comprises crucial arguments towards the proof
of Theorem 2 presented in Section IV.

II. PRELIMINARIES

The following lemma is a minor generalization and refor-
mulation of [6, Lemma 6, p. 322]. The starting idea goes back
to [1, Lemma 3.1, p. 230], see [6, Remark 4, p. 323]. Results
of this sort have been of importance when studying common
randomness and secrecy capacities, see [3, Appendix B].



Lemma 1. Let k = eq be a positive integer andQ a finite set
of measures on a finite setX such that

Q(x) 6 e−v · Q(X) , x ∈ X, Q ∈ Q, (1)

for somev. If w 6 q then the number of thosek-coloringsf
of X that violate

Q(f−1(i)) 6 e−w · Q(X) , i ∈ k̂, Q ∈ Q, (2)

is at most

|X |k · k |Q| exp
[
− 1

2 ev−q (eq−w − 1)(q − w)
]
.

Proof: When Q is empty or contains only the zero
measure then (2) is never violated, and the assertion holds
trivially. Otherwise, whenQ consists of probability measures
this is a reformulation of [6, Lemma 6] whereε = eq−w−1 is
nonnegative becausew 6 q. The general case follows directly
from this special one.

In Lemma 1, some coloringsf partitionX into monochro-
matic blocksf−1(i) such that their measuresQ(f−1(i)) are
bounded from above, uniformly ini andQ, while the number
of the remaining colorings has an explicit upper bound. A
symmetric counterpart of the lemma will be needed in the
sequel. For readers convenience, its proof is worked out based
on ideas of the proof of [6, Lemma 6].

Lemma 2. Under the assumptions of Lemma 1, ifw > q then
the number of thosek-coloringsf of X that violate

Q(f−1(i)) > e−w · Q(X) , i ∈ k̂, Q ∈ Q, (3)

is at most

|X |k · k |Q| exp
[
− 1

2 ev−q (1 − eq−w) ln(2 − eq−w)
]
.

Proof: Let the vector(ηx)x∈X consist of independent
random variables, each one distributed uniformly onk̂. Thus,
a realization of the vector is ak-coloring ofX . For i ∈ k̂ and
Q ∈ Q let ζx be equal to−(k−1)Q(x) if ηx = i and toQ(x)
otherwise,x ∈ X . Then, these variables are independent and
centered, that is their expectations are equal to zero. By (1),
they are bounded in the absolute value byeq−vQ(X) and
the sum of variances(k − 1)

∑
x∈X Q(x)2 is majorized by

eq−vQ(X)2. Hence, forε > 0 the inequality

Pr(
∑

x∈Xζx > ε Q(X)) 6 exp
[
− ε

2 eq−v
ln(1 + ε)

]

follows from [6, Lemma 5] wheneverQ(X) > 0, and holds
trivially otherwise. This probability multiplied by|X |k is equal
to the number ofk-coloringsf that satisfy

−∑
x∈f−1(i) (k − 1)Q(x) +

∑
x∈X\f−1(i) Q(x) > ε Q(X) .

This inequality rewrites tokQ(f−1(i)) < (1−ε)Q(X). Since
w is at leastq the choiceε = 1− eq−w is possible. Therefore,
the number of thosek-coloringsf that violate the inequality
Q(f−1(i)) > e−w · Q(X) is at most

|X |k · exp
[
− 1

2 ev−q (1 − eq−w) ln(2 − eq−w)
]
.

This bound does not depend onQ andi whence the assertion
follows.

Dynamical versions of Lemmas 1 and 2 are prepared below
for later purposes.

Lemma 3. For n > 1 let Qn be a set of measures on a finite
setXn such that

Q(x) 6 e−nrn · Q(Xn) , x ∈ Xn, Q ∈ Qn, (4)

for a sequencern that converges to a finite limith. If α > 0,
kn = ⌊enα⌋ and sn = min{rn, α, h} − 2n−1/2 then the pro-
portion of thosekn-coloringsfn of Xn that violate

Q(f−1
n (i)) 6 e−nsn · Q(Xn) , i ∈ k̂n, Q ∈ Qn, (5)

is at most
enα |Qn| exp

[
− 1

2 (e
√

n − 1)
]
.

Proof: If qn = ln kn thennα > qn > nα − 1, and thus
qn−nsn >

√
n. Lemma 1 implies that the proportion of those

kn-coloringsfn that violate (5) is upper bounded by

enα |Qn| exp
[
− 1

2 enrn−qn (eqn−nsn − 1)
√

n
]
.

Omitting
√

n, the bracket is dominated by

− 1
2 en min{rn,α,h}−nα (eqn−nsn − 1) 6 − 1

2 (e
√

n − 1)

whence the assertion follows.

Let us say that a sequence of nonnegative numberspn grows
at most exponentiallyif the sequence1n ln pn is bounded from
above. The sequencepn goes to zerofaster than exponentially
(f.t.e.) if 1

n ln pn tends to−∞.
Lemma 3 is mostly used in a limiting version that only

states existence of a sequencesn.

Corollary 1. If a sequenceQn satisfies(4) with somern → h,
|Qn| grows at most exponentially,α > 0 andkn = ⌊enα⌋ then
there exists a sequencesn converging tomin{α, h} such that
the proportion of thosekn-coloringsfn of Xn that violate(5)
goes to zero f.t.e.

A counterpart of this corollary is needed as well.

Lemma 4. Under the same assumptions as in Corollary 1, if
α < h then there exists a sequencetn converging toα such
that the proportion of thosekn-coloringsfn of Xn that violate

Qn(f−1
n (i)) > e−ntn · Qn(Xn) , i ∈ k̂n, Qn ∈ Qn, (6)

goes to zero f.t.e.

Proof: Let qn = ln kn and |Qn| 6 enu for someu. If
wn = nα + 1 thenwn > qn + 1 and the sequencetn = wn/n
converges obviously toα. Hence, Lemma 2 implies that the
proportion of thosekn-coloringsfn of Xn that violate (6) is
upper bounded by

enα enu exp
[
− 1

2 enrn−nα (1 − 1
e ) ln(2 − 1

e )
]
.

This expression vanishes f.t.e.



III. M AIN ASYMPTOTIC SCHEME

In this section a general limiting scheme is presented
that abstracts some typical situations encountered in bivariate
ergodic sequences. This is believed to provide a better insight
and, at the same time, to simplify and shorten proofs.

Theorem 1. For n > 1 let Qn be a finite measure on a finite
setXn×Yn such that the cardinalities of the sets

{y ∈ Yn : Qn(Xn×{y}) 6= 0} (7)

grow at most exponentially. LethX , hY andhXY be numbers
such thathXY 6 hX + hY , the inequalities

Qn({x}×Yn) 6 e−nrn · Qn(Xn×Yn) , x ∈ Xn, (8)

Qn(Xn×{y}) 6 e−nsn · Qn(Xn×Yn) , y ∈ Yn, (9)

hold with converging sequencesrn → hX , sn → hY , and

Qn(x, y) 6 e−ntn · Qn(Xn×{y}) , (x, y) ∈ Xn×Yn, (10)

be satisfied with a converging sequencetn → hXY − hY . Let
further α, β > 0, kn = ⌊enα⌋, ℓn = ⌊enβ⌋ and a pair(fn, gn)
consist of akn-coloringfn of Xn and anℓn-coloringgn of Yn.

If α < hX or β > hY then there exists a sequence

wn → hαβ
XY = min {hXY , α + hY , hX + β, α + β}

such that the proportion of those pairs(fn, gn) that violate

Qn(f−1
n (i)×g−1

n (j)) 6 e−nwn · Qn(Xn×Yn) ,

i ∈ k̂n , j ∈ ℓ̂n ,
(11)

goes to zero f.t.e.

Proof: Let QX
n be the family consisting of the single

measure onXn given by x 7→ Qn({x}×Yn). By (8), Corol-
lary 1 applies to the sequenceQX

n . There exists a sequenceu+
n

converging tomin{α, hX} such that the proportion of those
kn-coloringsfn of Xn that violate

Qn(f−1
n (i)×Yn) 6 e−nu+

n · Qn(Xn×Yn) , i ∈ k̂n, (12)

goes to zero f.t.e.
Let us consider the set of measuresQX|Y

n on Xn given by

x 7→ Qn(x, y) , y ∈ Yn,

that are nonzero. By (7), the cardinality of this set grows at
most exponentially. Hence, Corollary 1 based on (10) implies
existence of a sequencep+

n converging tomin{α, hXY − hY }
such that the proportion of thosekn-coloringsfn that violate

Qn(f−1
n (i)×{y}) 6 e−np+

n · Qn(Xn×{y}) ,

i ∈ k̂n, y ∈ Yn,
(13)

goes to zero f.t.e.
If a coloring fn satisfies (13) then by (9)

Qn(f−1
n (i)×{y}) 6 e−n[sn+p+

n ] · Qn(Xn×Yn) ,

i ∈ k̂n, y ∈ Yn,
(14)

wheresn + p+
n converges tomin{α + hY , hXY }.

1. Let us assume first thatα < hX . On account of (8),
Lemma 4 applies to the sequenceQX

n . There exists a sequence
u−

n converging toα such that the proportion of thosekn-
coloringsfn that violate

Qn(f−1
n (i)×Yn) > e−nu−

n · Qn(Xn×Yn) , i ∈ k̂n, (15)

goes to zero f.t.e.
Let Fn be the family of thosekn-coloringsfn that violate

an inequality in (12), (13), (14) or (15). By three above
convergence statements, the proportion|Fn||Xn|−kn goes to
zero f.t.e. Iffn 6∈ Fn then (14) and (15) combine to

Qn(f−1
n (i)×{y}) 6 e−nvn · Qn(f−1

n (i)×Yn) ,

i ∈ k̂n, y ∈ Yn,
(16)

wherevn = sn + p+
n − u−

n converges tomin{hY , hXY − α},
denoted in the sequel byhv.

Let qn = min{vn, β, hv}−2n−1/2 play the role ofsn from
Lemma 3 that is applied to the setsQfn

of measures onYn

given by
y 7→ Qn(f−1

n (i)×{y}) , i ∈ k̂n,

for kn-coloringsfn 6∈ Fn andn > n0. By (16), if Gfn
denotes

the family of thoseℓn-coloringsgn of Yn that violate

Qn(f−1
n (i)×g−1

n (j)) 6 e−nqn · Qn(f−1
n (i)×Yn) ,

i ∈ k̂n, j ∈ ℓ̂n,
(17)

then the proportion|Gfn
||Yn|−ℓn is upper bounded by

cn = enβ |Qfn
| exp

[
− 1

2 (e
√

n − 1)
]
.

Here, obviously|Qfn
| 6 enα.

Therefore, the cardinality of the set

Hn = {(fn, gn) : fn ∈ Fn or (fn 6∈ Fn and gn ∈ Gfn
)}

is upper bounded by

|Fn||Yn|ℓn +
∑

fn 6∈Fn
|Gfn

|

and the proportion|Hn||Xn|−kn |Yn|−ℓn is at most the sum of
|Fn||Xn|−kn with cn. It follows that this proportion goes to
zero f.t.e.

Let wn = qn + u+
n . This sequence converges to

min{α + β, α + hY , hXY }
which equalshαβ

XY becauseα < hX . If a pair of colorings
(fn, gn) does not belong toHn, thusfn 6∈ Fn andgn 6∈ Gfn

,
then (12) and (17) hold. Since (11) is their consequence the
proportion of those pairs(fn, gn) that violate (11) is upper
bounded by|Hn||Xn|−kn |Yn|−ℓn , going to zero f.t.e.

2. It remains to considerα > hX and β > hY . Let QY
n

be the family consisting of the single measure onYn given
by y 7→ Qn(Xn×{y}). Corollary 1 can be applied to the
sequenceQY

n and β in the role ofα. By (9) andβ > hY ,
there exists a sequencev+

n converging tohY such that the
proportion of thoseℓn-coloringsgn of Yn that violate

Qn(Xn×g−1
n (j)) 6 e−nv+

n · Qn(Xn×Yn) , j ∈ ℓ̂n, (18)



goes to zero f.t.e. If akn-coloring fn satisfies (13) then by
the summation ofy over g−1

n (j),

Qn(f−1
n (i)×g−1

n (j)) 6 e−np+
n · Qn(Xn×g−1

n (j)),

i ∈ k̂n, j ∈ ℓ̂n.
(19)

Here,p+
n → hXY − hY becauseα > hX > hXY − hY .

Let wn = v+
n + p+

n . This sequence tends tohXY = hαβ
XY .

Combining (18) and (19) the inequalities (11) follow. Since
they are violated only if (13) or (18) fails the proportion of
those pairs(fn, gn) that violate (11) goes to zero f.t.e.

Remark1. Let α < hXY −hY , β < hY and the assumptions of
Theorem 1 hold. Using (7) and (10), Lemma 4 applies to the
sequenceQX|Y

n from the previous proof and implies existence
of a sequencep−n converging toα such that the proportion of
thosekn-coloringsfn that violate

Qn(f−1
n (i)×{y}) > e−np−

n · Qn(Xn×{y}) ,

i ∈ k̂n, y ∈ Yn,
(20)

goes to zero f.t.e. Using (9), Lemma 4 applies to the sequence
QY

n . There exists a sequencev−n converging toβ such that the
proportion of thoseℓn-coloringsgn that violate

Qn(Xn×g−1
n (j)) > e−nv−

n · Qn(Xn×Yn) , j ∈ ℓ̂n, (21)

goes to zero f.t.e. Iffn satisfies (20) then for anyℓn-coloring
gn of Yn

Qn(f−1
n (i)×g−1

n (j)) > e−np−

n · Qn(Xn×g−1
n (j)) ,

i ∈ k̂n, j ∈ ℓ̂n,
(22)

by summing overy ∈ g−1
n (j). Combining (21) and (22) it

follows that the sequencewn = p−n + v−n tends toα + β and
the proportion of those pairs(fn, gn) that violate

Qn(f−1
n (i)×g−1

n (j)) > e−nwn ·Qn(Xn×Yn) , i ∈ k̂n , j ∈ ℓ̂n ,

goes to zero f.t.e. This symmetric counterpart of Theorem 1
is interesting per se but not used below. The assumption (8)
was not needed.

IV. ERGODIC BIVARIATE SEQUENCES

Let (ξn, ηn), n > 1, be a bivariate ergodic sequence with
the states in a finite productA×B. The distribution of the
first n vectors of the sequence is denoted byPn and its
marginals toAn and Bn by P ξ

n and P η
n , respectively. In

this section Theorem 1 is applied to the restrictions ofPn

to certain subsets ofXn×Yn = An×Bn that are constructed
by a notion of entropic typicality. The role ofhXY is played
by the entropy ratehξη = lim 1

n lnH(Pn) of the bivariate
sequence, and the entropies rates of the marginal sequences,
hξ = lim 1

n lnH(P ξ
n) and hη = lim 1

n lnH(P η
n ), correspond

to hX andhY , respectively.
The following theorem asserts rigorously what was earlier

mentioned as the generic behavior of pairs of colorings in
terms of probabilities of monochromatic rectangles intersected
with typical sets.

Theorem 2. For n > 1 let kn = ⌊enα⌋ andℓn = ⌊enβ⌋ where
α, β > 0. There exist a sequence of setsZn ⊆ An×Bn and a
sequence of numberswn such thatPn(Zn) → 1, wn → hαβ

ξη

and the proportion of those pairs(fn, gn), consisting of akn-
coloring fn of An and anℓn-coloring gn of Bn, that violate

Pn

(
(f−1

n (i)×g−1
n (j)) ∩ Zn

)
6 e−nwn , i ∈ k̂n, j ∈ ℓ̂n, (23)

goes to zero f.t.e.

Proof: By exchanging the coordinate variablesξn and
ηn if necessary there is no loss of generality when assuming
α < hξ or β > hη. The subsetZn is constructed below via
the entropy-typical sets

T n
ξ,δ = {x ∈ An : P ξ

n(x) ≍ e−n[hξ±δ]} ,

T n
η,δ = {y ∈ Bn : P η

n (y) ≍ e−n[hη±δ]} ,

T n
ξη,δ = {(x, y) ∈ An×Bn : Pn(x, y) ≍ e−n[hξη±δ]} .

Here, the symbol≍ means that the number on the left is
between the two numbers on the right.

Since the sequence(ξn, ηn) and two marginal sequences
are ergodic the Shannon-McMillan-Breiman theorem, known
also as the asymptotic equipartition property [8, Sections1.5
and 1.6], implies that for every positiveδ the probabilities
P ξ

n(T n
ξ,δ), P η

n (T n
η,δ) and Pn(T n

ξη,δ) tend to 1. By standard
diagonal arguments, there exists a positive sequence(δn)n>1

converging to zero, perhaps rather slowly, such that each ofthe
sequencesP ξ

n(T n
ξ,δn

), P η
n (T n

η,δn
) andPn(T n

ξη,δn
) converges to

one.
Let Un denote the intersection ofT n

ξ,δn
×Bn, An×T n

η,δn
and

T n
ξη,δn

. If pn = 1 − [1 − Pn(Un)]1/2 and

Y ∗
n =

{
y ∈ Bn : Pn((An×{y}) ∩ Un) > pn · P η

n (y)
}

then the estimations

pn[1 − P η
n (Y ∗

n )] =
∑

y∈Bn\Y ∗

n
pn · P η

n (y)

>
∑

y∈Bn\Y ∗

n
Pn((An×{y}) ∩ Un)

= Pn(Un) − Pn((An×Y ∗
n ) ∩ Un)

> Pn(Un) − P η
n (Y ∗

n )

andpn < 1 imply

P η
n (Y ∗

n ) >
Pn(Un) − pn

1 − pn
= pn .

Obviously,P η
n (Y ∗

n ) = 1 if pn = 1.
Let Zn denote the intersection ofAn×Y ∗

n with Un. Then
it is possible to conclude subsequently that the sequences
Pn(Un), pn, P η

n (Y ∗
n ) and Pn(Zn) converge to one. LetQn

denote the restriction ofPn to Zn. To apply Theorem 1, its
assumptions are verified as follows.

The set in (7) is contained inYn = Bn so that its cardinality
grows at most exponential.

Let rn be equal tohξ − δn + 1
n lnPn(Zn) providedPn(Zn)

is positive. If x 6∈ T n
ξ,δn

thenQn({x}×Yn) vanishes and the
inequality in (8) holds trivially. Otherwise, ifx ∈ T n

ξ,δn
then

Qn({x}×Bn) 6 Pn({x}×Bn) = P ξ
n(x) 6 e−n[hξ−δn]

= e−nrn · Pn(Zn) = e−nrn · Qn(An×Bn)



so that (8) is verified with a sequencern converging tohξ.
For sn defined throughhη−δn+ 1

n lnPn(Zn), a verification
of (9) is analogous to that of (8) and omitted here.

Let tn be equal tohξη − hη − 2δn + 1
n ln pn providedpn

is positive. If (x, y) 6∈ Zn then Qn(x, y) vanishes and the
inequality in (10) holds trivially. Otherwise,(x, y) ∈ T n

ξη,δn

andy ∈ T n
η,δn

imply

Qn(x, y) = Pn(x, y) 6 e−n[hξη−δn]

6 e−n[hξη−δn] en[hη+δn] P η
n (y) .

Using y ∈ Y ∗
n andZn = (An×Y ∗

n ) ∩ Un,

pn · P η
n (y) 6 Pn((An×{y}) ∩ Un) = Qn(An×{y}) .

Combining above estimations, it follows that (10) is verified
with a sequencetn → hξη − hη. Obviously,hξη 6 hξ + hη.

Therefore, Theorem 1 implies existence of a sequencevn

converging tohαβ
ξη such that the proportion of those pairs

(fn, gn) that violate

Qn(f−1
n (i)×g−1

n (j)) 6 e−nvn · Pn(Zn) , i ∈ k̂n , j ∈ ℓ̂n ,

goes to zero f.t.e. Writingwn = vn − 1
n lnPn(Zn), the above

inequalities coincide with (23) andwn → hαβ
ξη .

The following consequence of Theorem 2 describes what
was alluded to as the generic behavior of the colorings in
terms of Shannon entropies of the partitions into rectangles.

Corollary 2. If H(Pn|fn, gn) denotes the Shannon entropy
underPn of the partition ofAn×Bn into the(fn, gn)-mono-
chromatic rectanglesf−1

n (i)×g−1
n (j), i ∈ k̂n, j ∈ ℓ̂n, then

there exists a sequencean converging tohαβ
ξη such that the

proportion of those pairs(fn, gn) of colorings that violate
1
nH(Pn|fn, gn) > an goes to zero f.t.e.

Proof: If Zc
n = (An×Bn) \ Zn then

∑
D

[
Pn(D∩Zn) ln Pn(D∩Zn)

Pn(D)Pn(Zn)+Pn(D∩Zc
n) ln

Pn(D∩Zc
n)

Pn(D)Pn(Zc
n)

]

is nonnegative by convexity. Here, the summation runs over
the (fn, gn)-monochromatic rectanglesD. This implies

H(Pn|fn, gn) + ln 2 > −
∑

D Pn(D ∩ Zn) lnPn(D ∩ Zn) .

By Theorem 2, for a sequencewn converging tohαβ
ξη , the

summand on the right is majorized by−nwnPn(D ∩ Zn).
Taking an = wnPn(Zn) − 1

n ln 2 the assertion follows.

Remark2. If the assertion of Corollary 2 holds for a sequence
an converging to somea instead ofhαβ

XY thena cannot exceed
this number. This follows from

lim sup
n→∞

supfn,gn

1
nH(Pn|fn, gn) 6 hα,β

X,Y . (24)

To prove the inequality,H(Pn|fn, gn) is majorized by the
sum of H(P ξ

n |fn) and H(P η
n |gn), defined analogously. The

former summand is dominated byH(P ξ
n) andnα because the

partition of An into f−1
n (i), i ∈ k̂n, has at mostkn blocks.

Similarly, the latter summand is dominated byH(P η
n ) andnβ.

It follows that the left-hand side of (24) is at most

min{hξ, α} + min{hη, β} .

This andH(Pn|fn, gn) 6 H(Pn) imply (24).
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