
3008 Oberwolfach Report 55/2004

Incompressible ionized fluid mixtures

Tomáš Roub́ıček

A model of a fluid mixture of L incompressible chemically reacting charged con-
stituents in Prigogine’s description (i.e. balancing barycentric impulse but not im-
pulses of particular constituents) was presented. Under the volume-additivity hy-
pothesis and some other simplifying assumptions, the model combines the Navier-
Stokes equation (1a) for the barycentric velocity v and the pressure p with the
Nernst-Planck equation with advection (1b) for the concentrations cℓ of the par-
ticular mutually reacting constituents, the Poisson equation (1d) for self-induced
quasistatic electric field φ, and the heat equation (1c) for temperature θ:

(1a) ̺
∂v

∂t
+ ̺(v ·∇)v − ν∆ v + ∇p =

L∑

ℓ=1

cℓfℓ , div v = 0 ,

(1b)
∂cℓ
∂t

+ div
(
jℓ+cℓv

)
= rℓ(c1, ..., cL, θ) , ℓ = 1, ..., L ,

(1c) ε∆φ = −q, q =

L∑

ℓ=1

eℓcℓ ,

(1d) cv
∂θ

∂t
− div

(
κ∇θ + cvvθ

)
= ν|∇v|2 +

L∑

ℓ=1

(
fℓ · jℓ − hℓ(θ)rℓ(c1, ..., cL, θ)

)

where the Lorenz force and the phenomenological diffusive fluxes are considered
as

(2) fℓ = −eℓ∇φ, jℓ = −d∇cℓ −mcℓ(eℓ−q)∇φ,
and where ̺ > 0 is the mass density both of the mixture and of the particular
constituents, ν > 0 is viscosity, eℓ valence (i.e. electric charge) of the ℓ-constituent,
ε > 0 permitivity, rℓ(c1, ..., cL, θ) production rate of the ℓ-constituent by chemical
reactions, hℓ(θ) the enthalpy contained in the ℓth constituent, d > 0 a diffusion
coefficient, m > 0 a mobility coefficients, cv > 0 a specific heat, and κ > 0 a heat
conductivity coefficient.

Thermodynamics of this model is based on the energy balance, which sounds
essentially as

(3)
d

dt

(∫

Ω

( ̺

2
|v|2
︸ ︷︷ ︸
kinetic
energy

+
ε

2
|∇φ|2
︸ ︷︷ ︸

electrostatic
energy

+ cvθ
︸︷︷︸

internal
energy

)
dx

)
−
∫

Ω

∑L
ℓ=1hℓ(θ)rℓ(c, θ)

︸ ︷︷ ︸
heat production via
chemical reactions

dx = 0

in an isolated system on a fixed domain Ω, i.e. no contribution from (here nonspec-
ified) boundary conditions on ∂Ω is counted. The heat sources on the right-hand
side of (1d), i.e.

(4) ν|∇v|2 + d∇q ·∇φ+

L∑

ℓ=1

mcℓe
2
ℓ |∇φ|2 −mq2|∇φ|2 −

L∑

ℓ=1

hℓrℓ,
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includes respectively the heat production due to viscosity, the power of the electric
current arising by due to the diffusion flux which may have a local Peltier-type
cooling effects alhough globally it cannot cool because of

(5)

∫

Ω

d∇q · ∇φdx = ε

∫

Ω

−d∇(∆φ) · ∇φdxε

∫

Ω

d|∆φ|2 dx ≥ 0,

the further term in (4) is Joule’s heat produced by the electric currents which
always dominates the 4th term (i.e. the rate of cooling by a “reaction force” which

balances the volume-additivity constraint
∑L

ℓ=1 cℓ = 1), while the 5th term is the
heat produced or consumed by chemical reactions. The entropy balance based on
Helmholtz’ free energy ε

2 |∇φ|2−cvθln(θ) can formally be established for spatially
isothermal processes or electroneutral processes; the violation of Claussius-Duhem
inequality for such an entropy may be due to incompressible simplification or due
to certain inconsistency of Prigoggine concept with electrostatics.

Existence of a weak solution to an initial-boundary-value problem for (1)–(2)
can be shown in two special cases: the Stokes’ one (i.e. the convective term
̺(v · ∇) v in (1a) neglected) or the isothermal one (i.e. the heat equation (1d)
neglected). A Kakutani fixed-point argument can be used for both cases [1].
The Galerkin approach has been used for the latter case in [2]. In both cases,
fine design of the scheme is necessary, using a certain correcting retract of con-

centrations from the linear manifold
∑L

ℓ=1 cℓ = 1 to its subset of non-negative
cℓ’s, which eventually may be forgotten in the fixed point or in the limit, respec-
tively. The a-priori L∞-bound of retracted concentrations facilitates the whole
proceedure. In the isothermal case, a (very) weak solution has then the quality:
cℓ ∈ L∞((0, T ) × Ω) ∩ L2([0, T ];W 1,2(Ω)) with ∂

∂tcℓ ∈ L4/3([0, T ];W 1,2(Ω)∗), and

v ∈ L2([0, T ];W 1,2(Ω; R3)) ∩ L∞([0, T ];L2(Ω; R3)) with the acceleration ∂
∂tv ∈

L4/3([0, T ];W 1,2
0,DIV

(Ω; R3)∗) where the notation W 1,2
0,DIV

indicates divergence-free

functions, and eventually φ ∈ L∞([0, T ];W 1,2(Ω)). In case the Stokes the convec-
tive term in (1a) is neglected, a regularity for the Poisson and the Stokes equations
yields additionally φ ∈ L∞([0, T ];W 2,2(Ω)) and v ∈ L6([0, T ];W 2,6(Ω; R3)), and
then θ ∈ L2([0, T ];W 1,2(Ω)) ∩ L∞([0, T ];L2(Ω)) with ∂

∂tθ ∈ L2([0, T ];W 1,2(Ω)∗).
The application of the model is limitted to situations where the magnetic field

can be neglected and where all constituents are incompressible and have equal
mechanical response (i.e. have the same mobility d and diffusivity m as well as
the “reaction force” q∇φ in (2) which balances the volume-additivity contraint∑L

ℓ=1 cℓ = 1 influence them equally). Acknowledgement: The work was supported also by

the grant 201/03/0934 (GA ČR).

References
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