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Abstract

First, we recall the basic idea of an algebraic and geometric approach to learning a Bayesian
network (BN) structure proposed in (Studený, Vomlel and Hemmecke, 2010): to represent
every BN structure by a certain uniquely determined vector. The original proposal was
to use a so-called standard imset which is a vector having integers as components, as an
algebraic representative of a BN structure. In this paper we propose an even simpler
algebraic representative called the characteristic imset. It is 0-1-vector obtained from the
standard imset by an affine transformation. This implies that every reasonable quality
criterion is an affine function of the characteristic imset. The characteristic imset is much
closer to the graphical description: we establish a simple relation to any chain graph
without flags that defines the BN structure. In particular, we are interested in the relation
to the essential graph, which is a classic graphical BN structure representative. In the end,
we discuss two special cases in which the use of characteristic imsets particularly simplifies
things: learning decomposable models and (undirected) forests.

1 Introduction

The score and search method for learning
Bayesian network (BN) structure from data
consists in maximizing a quality criterion Q,
also named a scoring criterion or simply a score
by other authors. It is a real function of the
(acyclic directed) graph G and the observed
database D. The value Q(G,D) measures how
well the BN structure defined by G fits the
database D.

Two important technical requirements on the
criterion Q emerged in the literature in con-
nection with computational methods dealing
with this maximization task: Q should be score
equivalent (Bouckaert, 1995) and (additively)

decomposable (Chickering, 2002).
Another important question is how to rep-

resent the BN structure in the memory of a
computer. It could be the case that differ-
ent acyclic directed graphs are Markov equiv-
alent, i.e., they define the same BN structure.
A classic graphical characterization of equiva-
lent graphs (Verma and Pearl, 1991) states that
they are equivalent iff they have the same adja-
cencies and immoralities, which are special in-
duced subgraphs. Representing a BN structure
by any of the acyclic directed graphs defining it
leads to a non-unique description causing later
identification problems. Thus, researchers call-
ing for methodological simplification proposed
to use a unique representative for each individ-
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ual BN structure. The classic unique graphical
representative is the essential graph (Andersson,
Madigan and Perlman, 1997).

The idea of an algebraic approach, introduced
in Section § 8.4 of (Studený, 2005), is to use an
algebraic representative, called the standard im-
set. It is a vector whose components are inte-
gers indexed by subsets of the set of variables (=
nodes) N . Moreover, it is a unique BN struc-
ture representative and the memory demands
for its computer representation are polynomial
in |N |. The most important point, however, is:
Every score equivalent and decomposable crite-
rion Q is an affine function (= linear function
plus a constant) of the standard imset. Specif-
ically, given an acyclic directed graph G (over
N) and a database D, we have

Q(G,D) = sQD − 〈tQD, uG〉 , (1)

where sQD is a constant depending on the
database and where 〈tQD, uG〉 is the scalar prod-
uct of a vector depending on the database,
called the data vector (relative to Q), and of
the standard imset uG (for G). Note that there
is a polynomial-time algorithm (in |N |) for the
reconstruction of the essential graph from the
standard imset (Studený and Vomlel, 2009).

The geometric view was introduced in the pa-
per (Studený, Vomlel and Hemmecke, 2010),
where it was shown that the set of standard im-
set (over a fixed set of variables N) is the set
of vertices (= extreme points) of a certain poly-
tope. In particular, the maximization of Q over
acyclic directed graphs can be re-formulated as
a classic linear programming problem, that is,
optimizing a linear function over a polyhedron.1

In this paper, we propose an alternative al-
gebraic representative of a BN structure, called
the characteristic imset. It is a vector obtained
from the standard imset by a one-to-one affine
transformation that maps lattice points to lat-
tice points (in both directions). Thus, every
score equivalent and decomposable criterion is
an affine function of the characteristic imset and
the set of characteristic imsets is the set of ver-
tices of a polytope. The characteristic imset has

1Note that a polytope is simply a bounded polyhe-
dron.

only zeros and ones as its components. More-
over, it is very close to the graphical description:
some of its components with value one corre-
spond to adjacencies. Immoralities can also be
recognized in the graph(s) on the basis of the
characteristic imset. We establish a simple re-
lation of the characteristic imset to any chain
graph (without flags) defining the BN structure.
In particular, this makes it possible to get im-
mediately the characteristic imset on the basis
of the essential graph. We also consider the con-
verse task of reconstructing the essential graph
from the characteristic imset.

If we restrict ourselves to decomposable mod-
els (= BN structures defined by acyclic directed
graphs without immoralities), then the charac-
teristic imset has a quite simple form. The sit-
uation is particularly transparent in the case
of (undirected) forests: the edges of the for-
est are in one-to-one correspondence with 1’s in
the characteristic imset. The polytope spanned
by these special characteristic imsets has al-
ready been studied in matroid theory (Schrijver,
2003). Consequently, we can easily learn (undi-
rected) tree structures, which give an elegant
geometric interpretation to a classic heuristic
procedure proposed by Chow and Liu (1968).

The structure of this paper is as follows. In
Section 2 we recall some of the definitions and
relevant results. In Section 3 we introduce the
characteristic imset and derive the above men-
tioned observations on it. Section 4 is devoted
to the reconstruction of the essential graph
from the characteristic imset. Section 5 briefly
outlines our results about learning undirected
forests from (Hemmecke et al., 2010). In Con-
clusions we discuss further perspectives.

2 Basic concepts

2.1 Graphical concepts

Graphs considered in this paper have a finite
non-empty set of nodes N and two types of
edges: directed edges, called arrows, denoted
like i → j or j ← i, and undirected edges. No
multiple edges are allowed between two nodes.
If there is an edge between nodes i and j, we
say they are adjacent.
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Given a graph G over N and a non-empty
set of nodes A ⊆ N , the induced subgraph of
G for A has just those edges in G having both
end-nodes in A. An immorality in G is an in-
duced subgraph (of G) for three nodes {a, b, c}
in which a → c ← b and a and b are not ad-
jacent. A flag is another induced subgraph for
{a, b, c} in which a→ b, b and c are adjacent by
an undirected edge and a and c are not adjacent.

A set of nodes K ⊆ N is complete in G if
every pair of distinct nodes in K is adjacent by
an undirected edge. A maximal complete set is
called a clique. A set C ⊆ N is connected if
every pair of distinct nodes in C is connected
via an undirected path. Maximally connected
sets are called components.

A graph is directed if it has no undirected
edges. A directed graph G over N is called
acyclic if it has no directed cycle, that is,
a sequence of nodes a1, . . . , an, n ≥ 3 with
ai → ai+1 for i = 1, . . . n, under the conven-
tion an+1 ≡ a1. An equivalent definition is the
existence of an ordering b1, . . . , bm, m ≥ 1, of
all nodes in N which is consistent with the di-
rection of arrows, that is, bi → bj in G implies
i < j.

A graph is undirected if it has no arrow. An
undirected graph is called chordal, or decompos-
able, if every (undirected) cycle of length at least
4 has a chord, that is, an edge connecting two
non-consecutive nodes in the cycle. There is a
number of equivalent definitions for a decom-
posable graph (Lauritzen, 1996); one of them
says that it is an undirected graph which can
be acyclically directed without creating an im-
morality. A special case of a chordal graph is
a forest, which is an undirected graph without
undirected cycles. A forest over N in which N
is connected is called a (spanning) tree.

A chain graph is a graph G (allowing both di-
rected and undirected edges) whose components
can be ordered into a chain, which is a sequence
C1, . . . , Cm, m ≥ 1 such that if a→ b in G then
a ∈ Ci and b ∈ Cj with i < j. An equivalent
definition is: It is a graph without semi-directed
cycles. Of course, every acyclic directed graph
and every undirected graph is a special case of
a chain graph (without flags).

Given a connected set C in a chain graph G,
the set of parents of C is

paG(C) ≡ { a ∈ N ; a→ b in G for some b ∈ C }.

Clearly, in a chain graph, paG(C) is disjoint
with (a connected set) C.

2.2 Bayesian network structures

Let N be a finite set of variables; to avoid the
trivial case assume |N | ≥ 2. For each i ∈ N
consider a finite individual sample space Xi (of
possible values); to avoid technical problems as-
sume |Xi| ≥ 2, for each i ∈ N . A Bayesian net-
work can be introduced as a pair (G,P ), where
G is an acyclic directed graph having N as the
set of its nodes and P a probability distribution
on the joint sample space

∏
i∈N Xi that recur-

sively factorizes according to G. Note that a
factorization of P is equivalent to the condition
that P is Markovian with respect to G mean-
ing that it satisfies conditional independence re-
strictions determined by the respective separa-
tion criterion (Lauritzen, 1996).

BN structure (= Bayesian network structure)
defined by an acyclic directed graph G is for-
mally the class of probability distributions (on a
fixed joint sample space) being Markovian with
respect to G. Different graphs over N can be
Markov equivalent, which means they define the
same BN structure. The classic graphical char-
acterization of (Markov) equivalent graphs is
as follows (Verma and Pearl, 1991): they are
equivalent if the have the same underlying undi-
rected graph (= adjacencies) and the same im-
moralities. Of course, a BN structure can be
described by any acyclic directed graph defin-
ing it, but there are other representatives (see
below).

A complete database D of length ` ≥ 1 is a
sequence x1, . . . , x` of elements of the joint sam-
ple space. By learning BN structure (from data)
is meant to determine the BN structure based
on an observed database D. A quality crite-
rion is a real function Q of two variables: of
an acyclic directed graph G and of a database
D. The value Q(G,D) evaluates quantitatively
how good the BN structure defined by G is to
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explain the occurrence of the database D. How-
ever, we will not repeat the formal definition of
the relevant concept of statistical consistency of
Q; see (Neapolitan, 2004). Since the aim is to
learn a BN structure, a natural requirement is
Q to be score equivalent, i.e., for fixed D, we
have

Q(G,D) = Q(H,D),

for any pair of Markov equivalent acyclic di-
rected graphs G and H over N .

An additively decomposable criterion (Chick-
ering, 2002) is a criterion which can be written
as follows:

Q(G,D) =
∑
i∈N

qi|paG(i)(D{i}∪paG(i)),

where DA for ∅ 6= A ⊆ N is the projection of
the database D to

∏
i∈A Xi and qi|B for i ∈ N ,

B ⊆ N \ {i} are real functions.
Statistical scoring methods are typically

based on the likelihood function. For example,
evaluating each BN structure by a maximized
log-likelihood (MLL) leads to a score equivalent
and additively decomposable criterion. How-
ever, this criterion is not statistically consistent
in the sense of (Neapolitan, 2004), because it
does not take the complexity of statistical mod-
els into consideration. Therefore, subtracting
a penalty term evaluating the dimension of the
statistical model and the length of the database
may solve the problem. A standard example of
such a criterion which is statistically consistent,
score equivalent and decomposable is Schwarz’s
Bayesian information criterion (BIC) (1978).

2.3 Essential graph

The essential graph G∗ of an equivalence class
G of acyclic directed graphs over N is defined
as follows:

• a→ b in G∗ if a→ b in every G from G,

• a and b are adjacent by an undirected edge
in G∗ if there are graphs G1 and G2 in G
such that a→ b in G1 and a← b in G2.

The first graphical characterization
of essential graphs was provided by

Andersson, Madigan and Perlman (1997).
It follows from this characterization that every
essential graph is a chain graph without flags.

Actually, chain graphs without flags can serve
as convenient graphical representatives of BN
structures. As explained in Section 2.3 of (Stu-
dený, Roverato and Štěpánová, 2009), every
chain graph defines a class of Markovian dis-
tributions, a statistical model, through the re-
spective (generalized) separation criterion. As
in case of acyclic directed graphs, they are called
Markov equivalent if they define the same statis-
tical model. Lemma 3 in (Studený, 2004) states
that a chain graph H without flags is equiva-
lent to an acyclic directed graph if the induced
subgraphs for its components are chordal (undi-
rected) graphs. Moreover, we can extend the
graphical characterization of equivalence: two
chain graphs without flags are Markov equiva-
lent iff they have the same adjacencies and im-
moralities; see Lemma 2 in (Studený, 2004).

In this paper, we exploit the following charac-
terization of essential graphs: Given an acyclic
directed graph G, let G be the equivalence class
of acyclic directed graphs containing G and H
the (wider) equivalence class of chain graphs
without flags containing G. The class H can
be naturally (partially) ordered: if H1, H2 ∈ H
and a → b in H1 implies a → b in H2 we call
H1 to be larger than H2. With this partial or-
dering, the essential graph G∗ (of G) is just the
largest graph in H; see Corollary 4 in (Studený,
2004).

Moreover, there is a graphical procedure for
getting G∗ on the basis of any G in G. It is
based on a special graphical operation. Let H
be a chain graph without flags. Consider two of
its components, U called the upper component
and L called the lower component. Provided the
following two conditions hold:

• paH(L) ∩ U 6= ∅ is a complete set in H,

• paH(L) \ U = paH(U),

we say that the components can be legally
merged. The result of merging is a graph ob-
tained from H by replacing the arrows directed
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from U to L into undirected edges. By Corol-
lary 26 in (Studený, Roverato and Štěpánová,
2009), the resulting graph is also a chain graph
without flags equivalent to H. Moreover, Corol-
lary 28 in (2009) says: If G and H are equivalent
chain graphs without flags and H is larger than
G, then there exists a sequence of legal merging
operations which successively transforms G into
H. Of course, this is applicable to an acyclic
directed graph G and the essential graph G∗ in
place of H.

2.4 Algebraic approach

In this paper, we consider vectors whose compo-
nents are ascribed to (= indexed by) subsets of
the set of variablesN . Let P(N) ≡ {A; A ⊆ N}
denote the power set of N . Every element of
R|P(N )| can be written as a (real) combina-
tion of basic imsets vectors δA ∈ {0, 1}|P(N )|,
A ⊆ N , where δA(A) = 1 and δA(B) = 0 for
A 6= B ⊆ N .

Given an acyclic directed graph G over N ,
the standard imset for G in R|P(N )| is defined
by the formula

uG = δN −δ∅+
∑
i∈N

{
δpaG(i) − δ{i}∪paG(i)

}
, (2)

where the basic vectors can cancel each other.
An important fact is that two acyclic directed
graphs G and H over N are Markov equiva-
lent iff uG = uH ; see Corollary 7.1 in (Studený,
2005). The crucial fact, however, is: Every score
equivalent and decomposable criterion Q has
the form (1), where sQD ∈ R and tQD ∈ R|P(N )|

only depend on the data (and Q); see Lemmas
8.3 and 8.7 in (2005). Moreover, (the constant
sQD and) the data vector tQD is uniquely deter-
mined under additional standardization condi-
tions tQD(A) = 0 for A ⊆ N with |A| ≤ 1.

For example, the standardized data vector for
the MLL criterion can be computed as follows;
see Proposition 8.4 in (2005). Let P̂ denote the
empirical measure on

∏
i∈N Xi computed from

D and P̂A its marginal for A ⊆ N . The mul-
tiinformation of P̂A (for A 6= ∅) is its relative
entropy H(P̂A|

∏
i∈A P̂{i}) with respect to the

product of its own one-dimensional marginals.
Then tMLL

D (A) = ` ·H(P̂A|
∏
i∈A P̂{i}), where ` is

the length of the database D. A formula for the
data vector relative to the BIC criterion can be
found in Section 8.4.2 of (Studený, 2005).

3 Characteristic imset

The characteristic imset is formally an element
of Z|P∗(N )|, where P∗(N) ≡ {A ⊆ N ; |A| ≥ 2}
is the class of sets of cardinality at least 2.

Definition 1. Given an acyclic directed graph
G over N , the characteristic imset for G is given
by the formula

cG(A) = 1−
∑

B,A⊆B⊆N
uG(B) , (3)

for A ⊆ N , |A| ≥ 2.

Clearly, the characteristic imset is obtained
from the standard one by an affine transforma-
tion of R|P(N )| to R|P∗(N )| (we only add and
subtract entries of uG). This mapping is invert-
ible: We can compute back the standard imset
by the formula

uG(B) =
∑

A,B⊆A⊆N
(−1)|A\B| · (1− cG(A)) (4)

for B ⊆ N , |B| ≥ 2. The remaining values
of uG can then be determined by the formulas∑

S⊆N uG(S) = 0 and
∑

S,i∈S⊆N uG(S) = 0 for
i ∈ N . Since the transformation is one-to-one,
two acyclic directed graphs G and H are equiv-
alent iff cG = cH (cf. Section 2.4). Thus, the
characteristic imset is also a unique BN struc-
ture representative.

The basic observation is as follows; see also
Theorem 3.2 in (Hemmecke et al., 2010):

Theorem 1. For any acyclic directed graph G
over N we have cG(A) ∈ {0, 1} for any A ⊆ N ,
|A| ≥ 2. Moreover, cG(A) = 1 iff there exists
i ∈ A with A \ {i} ⊆ paG(i).

Proof. First, we substitute (2) into (3) and get
for fixed A ⊆ N , |A| ≥ 2:

cG(A) = −
∑

i∈N,A⊆paG(i)

1 +
∑

i∈N,A⊆{i}∪paG(i)

1

=
∑

i∈N,A⊆{i}∪paG(i) & i∈A

1 =
∑

i∈A,A\{i}⊆paG(i)

1 .
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Assume for a contradiction there exist distinct
i, j ∈ A with A \ {i} ⊆ paG(i) and A \ {j} ⊆
paG(j). Then, however, both j → i and i → j
are in G contradicting its acyclicity. In partic-
ular, cG(A) ∈ {0, 1}.

The consequence is the characterization of ad-
jacencies and immoralities in terms of the char-
acteristic imset.

Corollary 1. Let G be an acyclic directed graph
over N and a, b (and c) are distinct nodes. Then

(i) a and b are adjacent in G iff cG({a, b}) = 1.

(ii) a → c ← b is an immorality in G iff
cG({a, b, c}) = 1 and cG({a, b}) = 0. The
latter two conditions imply cG({a, c}) = 1
and cG({b, c}) = 1.

Proof. Part (i) directly follows from Theorem
1: cG({a, b}) = 1 iff either b ∈ paG(a) or
a ∈ paG(b). The necessity of the condition in
(ii) also follows from Theorem 1. Conversely,
if cG({a, b, c}) = 1, three options may occur:
{b, c} ⊆ paG(a), {a, c} ⊆ paG(b) and {a, b} ⊆
paG(c). But cG({a, b}) = 0 means by (i) that a
and b are not adjacent in G, which excludes the
first two options and implies that a→ c← b is
an immorality in G.

Now we show that any reasonable quality cri-
teria is an affine function of the characteristic
imset.

Definition 2. Given a score equivalent, addi-
tively decomposable criterion Q and a database
D, let tQD denote the standardized data vector
relative to Q. Introduce the revised data vector
(relative to Q) as an element of R|P∗(N )|:

rQD(A) =
∑

B,B⊆A,|B|≥2

(−1)|A\B| · tQD(B) (5)

for A ⊆ N , |A| ≥ 2.

Lemma 1. Every score equivalent and addi-
tively decomposable criterion Q has the form

Q(G,D) = Q(G∅, D) + 〈rQD, cG〉 , (6)

where G∅ is the graph over N without edges.

Proof. We substitute (4) into (1):

Q(G,D) = sQD−

∑
B⊆N,|B|≥2

tQD(B) ·
uG(B)︷ ︸︸ ︷∑

A,B⊆A

(−1)|A\B| · (1− cG(A)) .

Now, change the order of summation in the sum:∑
A⊆N,|A|≥2

(1− cG(A)) ·
∑

B⊆A,|B|≥2

(−1)|A\B| · tQD(B)

︸ ︷︷ ︸
rQ

D
(A)

.

Thus, we get by (5):

Q(G,D) = sQD −
∑

A⊆N,|A|≥2

(1− cG(A)) · rQD(A)

= constant +
∑

A⊆N,|A|≥2

cG(A) · rQD(A) .

The observation that the characteristic imset for
the empty graph G∅ is identically zero implies
that the constant above is simply Q(G∅, D).

Finally, we establish the relation of the char-
acteristic imset to any chain graph without flags
defining the BN structure.
Theorem 2. Let H be a chain graph without
flags equivalent to an acyclic directed graph G.
For any A ⊆ N , |A| ≥ 2 one has cG(A) = 1 iff

∃ ∅ 6= K ⊆ A complete in H, with A\K ⊆ paH(K). (7)

Proof. In an acyclic directed graph G, the only
non-empty complete sets are singletons. Thus,
by Theorem 1, cG(A) = 1 iff (7) holds with G
(in place of H).

The next step is to observe that if H̃ is ob-
tained from a chain graph H without flags by
legal merging of components (see Section 2.3),
then for any A ⊆ N , |A| ≥ 2, (7) holds with H
iff it holds with H̃. To verify this observe that
any set A satisfying (7) has a uniquely deter-
mined component C with K ⊆ C in H. More-
over, paH(K) = paH(C), since H has no flags.
The validity of (7) then depends on the induced
subgraph of H for C ∪ paH(C). However, if H̃
is obtained from H by legal component merg-
ing, then most of these induced subgraphs are
kept and the only change concerns the merged
components U and L. We leave the reader to
evidence that this change satisfies condition (7)
in both directions.
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Finally, we use the result mentioned in Sec-
tion 2.3 which implies the existence of sequences
of legal merging operations transforming G into
G∗ and H into G∗. In particular, for A ⊆ N ,
|A| ≥ 2, (7) with G is equivalent to (7) with G∗,
and this is equivalent to (7) with H.

Of course, Theorem 2 applied to the essential
graph G∗ in place of H gives a direct method
for obtaining the characteristic imset from the
essential graph.

4 Back to the essential graph

Corollary 1 allows us to reconstruct the essen-
tial graph from the characteristic imset. Indeed,
conditions (i) and (ii) determine both the ad-
jacencies and immoralities (in every acyclic di-
rected graph G defining the corresponding BN
structure). Thus, we can directly get the pattern
(of G) being the underlying undirected graph in
which only the edges belonging to an immoral-
ity are directed.

This graph neither has to be the essential
graph nor a chain graph. However, there is a
simple (polynomial-time) procedure for trans-
forming the pattern into the corresponding es-
sential graph G∗. It consists of an (repeated)
application of three orientation rules. Specif-
ically, Theorem 3 in (Meek, 1995) states that
the exhaustive application of rules from Figure
1 to the pattern of an acyclic directed graph G
results in the essential graph (of the equivalence
class containing G).

5 Learning undirected forests

Decomposable models (Lauritzen, 1996) can be
viewed as BN structures whose essential graphs
are (chordal) undirected graphs.

Corollary 2. Let H be a chordal undirected
graph over N . Then the corresponding char-
acteristic imset cH is specified as follows:
cH(A) = 1 iff A is a complete set in H.

Proof. Consider the equivalence class G of
acyclic directed graphs equivalent to H and ap-
ply Theorem 2. Since H has no arrow, (7) is
equivalent to the above requirement.

A special case of a chordal graph is an undi-
rected forest. The only complete sets of cardi-
nality at least 2 in it are its edges:

Corollary 3. Let H be an undirected forest.
Then the corresponding characteristic imset cH
vanishes for sets of cardinality 3 and more, and
for distinct a, b ∈ N we have cH({a, b}) = 1 iff
a and b are adjacent in H.

In particular, the characteristic imset for a
forest can be identified with a vector of polyno-
mial length

(|N |
2

)
, which simplifies many things.

For example, if maximizing a quality criterionQ
over (undirected) forests is of interest, then, by
Lemma 1, the function H 7→ cH ∈ Z|P∗(N )| 7→
〈rQD, cH〉 =

∑
A edge in H r

Q
D(A) should be maxi-

mized, that is, H 7→∑
A edge in H t

Q
D(A) by (5).

In particular, in case of the MLL cri-
terion this means maximizing the sum of
weights

∑
{a,b} edgew{a,b}, where w{a,b} =

H(P̂{a,b}|P̂{a} × P̂{b}) is the (empirical) mutual
information between a and b; see Section 2.4.

The polytope spanned by (restricted) charac-
teristic imsets for forests has already been stud-
ied in matroid theory (Schrijver, 2003). It ap-
pears to be quite nice from an algorithmic point
of view – for details see (Hemmecke et al., 2010).
One important observation is the existence of a
simple polynomial-time procedure based on the
greedy algorithm for finding maximum-weight
forest, where forests are weighted by the sums
of weights of their edges.

This gives an elegant geometric interpretation
to a classic (heuristic) procedure for approxi-
mating probability distributions with trees pro-
posed by Chow and Liu (1968). Taking into
account what was said above, it can be inter-
preted as the maximization of the MLL crite-
rion over trees (= connected forests) using the
greedy technique.

Conclusions

Our geometric interpretation of the classic
learning procedure (for trees) may lead to use-
ful generalizations. First, the application of the
greedy algorithm is not limited to the MLL cri-
terion and can be applied to maximize other
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Figure 1: Orientation rules for getting the essential graph.

reasonable criteria like the BIC criterion. Sec-
ond, we are not limited to trees and can ap-
ply the method to learning undirected forests,
actually, to learning sub-forests of a prescribed
undirected graph. Future research topics could
be whether characteristic imsets can be applied
to learning decomposable models, for example,
with limited cardinality of cliques.

There are some related open questions. It
follows from Section 4 that the components of
the characteristic imset for sets of cardinalities
2 and 3 determine the remaining components.
However, is there any direct method for de-
termining them? Another question is whether
Meek’s (1995) orientation rules can be avoided
in the reconstruction of the essential graph on
the basis of the characteristic imset. We hope
that a modification of the procedure from (Stu-
dený and Vomlel, 2009) leads to such an algo-
rithm.
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