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Abstract—Stochastic conditional independence plays an impor-
tant role in the application of probability theory into the field
of artificial intelligence. From the comparison of complexity of
models based on probability distributions and those based on
belief functions it is obvious, that it is even more important
in the latter framework. In this contribution we compare two
conditional independence concepts (conditional non-interactivity
and conditional independence) from various points of view. We
will concentrate not only to their formal properties, but also
to their unconditional versions, their relationship to stochastic
conditional independence, number of focal elements of basic
assignments satisfying the respective conditional independence
constraints, the complexity of their checking, their consistency
with marginalization and, naturally, also their mutual relation-
ship.
Keywords: conditional non-interactivity, conditional inde-
pendence

I. INTRODUCTION

In the application of probabilistic models to the field of
artificial intelligence (but not only to it) the most important
problem is that it is necessary to model a great number
of variables (usually hundreds or even thousands). There-
fore, the most frequently used models are so-called graph-
ical Markov models (the most popular representatives are
Bayesian networks), where the problem of multidimensionality
is solved using the notion of conditional independence, which
enables factorization of a multidimensional probability distri-
bution into small parts, usually marginal or conditional low-
dimensional distributions (or generally into low-dimensional
factors). Usually these low-dimensional distributions are the
“building blocks” of the resulting multidimensional model.

Such a factorization not only decreases the storage require-
ments for representation of a multidimensional distribution,
but it usually induces efficient computational procedures al-
lowing inference from these models as well. Many results anal-
ogous to those concerning conditional independence, Markov
properties and factorization from probabilistic framework were
also achieved in possibility theory [10], [11].

It is easy to realize that our need of efficient methods
for representation of probability and possibility distributions
(requiring an exponential number of parameters) logically
leads us to greater need of an efficient tool for representation
of belief functions, which cannot be represented by a distri-

bution (but only by a set function), and therefore the space
requirements for their representation are superexponential.

The contribution is organized as follows. After a short
overview of necessary terminology and notation (Section II),
in Section III we recall two concepts of conditional inde-
pendence. In Section IV we compare them from different
points of view: their formal properties, unconditional versions,
relationship to stochastic conditional independence, number of
focal elements of a basic assignments satisfying the respective
conditional independence constraints, the complexity of its
checking, their consistency with marginalization and, finally,
their mutual relationship.

II. BASIC NOTIONS

A. Set projections and joins

For an index set N = {1, 2, . . . , n} let {Xi}i∈N be a system
of variables, each Xi having its values in a finite set Xi. In this
paper we will deal with multidimensional frame of discernment

XN = X1 ×X2 × . . .×Xn,

and its subframes (for K ⊆ N )

XK =×i∈KXi.

When dealing with groups of variables on these subframes,
XK will denote a group of variables {Xi}i∈K throughout the
paper.

A projection of x = (x1, x2, . . . , xn) ∈ XN into XK will
be denoted x↓K , i.e., for K = {i1, i2, . . . , ik}

x↓K = (xi1 , xi2 , . . . , xik
) ∈ XK .

Analogously, for M ⊂ K ⊆ N and A ⊂ XK , A↓M will
denote a projection of A into XM :1

A↓M = {y ∈ XM | ∃x ∈ A : y = x↓M}.

In addition to the projection, in this text we will also need
two opposite operations, which will be called a cylindrical
extension and a join.

1Let us remark that we do not exclude situations when M = ∅. In this
case A↓∅ = ∅.



A cylindrical extension A↑K of a set A ⊆ XM to XK(M ⊆
K) is defined by the equality

A↑K = A×XK\M .

By a join2 of two sets A ⊆ XK and B ⊆ XL (K, L ⊆ N )
we will understand a set

A ./ B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Let us note that for any C ⊆ XK∪L naturally C ⊆ C↓K ./
C↓L, but generally C 6= C↓K ./ C↓L.

Let us also note that if K and L are disjoint, then their join
is just their Cartesian product A ./ B = A × B, if K = L
then A ./ B = A∩B. If K∩L 6= ∅ and A↓K∩L∩B↓K∩L = ∅
then also A ./ B = ∅. Generally,

A ./ B = A↑K∪L ∩B↑K∪L. (1)

B. Set functions

In evidence theory [7] (or Dempster-Shafer theory) two
measures are used to model the uncertainty: belief and plau-
sibility measures. Both of them can be defined with the help
of another set function called a basic (probability or belief)
assignment m on XN , i.e.,

m : P(XN ) −→ [0, 1],

where P(XN ) is power set of XN and∑
A⊆XN

m(A) = 1.

Furthermore, we assume that m(∅) = 0.
Belief and plausibility measures are defined for any A ⊆

XN by the equalities

Bel(A) =
∑
B⊆A

m(B),

P l(A) =
∑

B∩A 6=∅

m(B),

respectively.
In addition to belief and plausibility measures, commonality

function can also be obtained from basic assignment m:

Q(A) =
∑
B⊇A

m(B).

The last notion plays an important role in the definition
of so-called conditional non-interactivity of variables (cf.
Section III-A) and in Shenoy’s valuation-based systems [8]
— commonality functions are a special type of proper normal
valuations.

A set A ∈ P(XN ) is a focal element if m(A) > 0. A pair
(F , m), where F is the set of all focal elements, is called a
body of evidence. A basic assignment is called Bayesian if all
its focal elements are singletons.

2This term and notation are taken from the theory of relational databases
[1].

For a basic assignment m on XK and M ⊂ K, a marginal
basic assignment of m is defined (for each A ⊆ XM ):

m↓M (A) =
∑

B⊆XK :B↓M=A

m(B).

Let us note that m↓∅ ≡ 1 for arbitrary basic assignment m.
Analogously, Q↓M will denote the corresponding marginal

commonality function.
Having two basic assignments m1 and m2 on XK and XL,

respectively (K, L ⊆ N ), we say that these assignments are
projective if

m↓K∩L
1 = m↓K∩L

2 ,

which occurs if and only if there exists a basic assignment m
on XK∪L such that both m1 and m2 are marginal assignments
of m.

According to the above convention m1 and m2 are projec-
tive whenever K ∩ L = ∅.

Dempster’s rule of combination has been from its appear-
ance frequently criticized by many authors. Therefore, many
alternatives to it were suggested by various authors. From the
viewpoint of this paper, the most important is conjunctive rule,
which is, in fact, unnormalized Dempster’s rule defined for any
C by the formula

(m1 ∩©m2)(C) =
∑

A,B⊆XKA∩B=C

m1(A) ·m2(B).

It can easily be generalized to the case when m1 is defined
on XK and m2 is defined on XL (K 6= L) in the following
way:

(m1 ∩©m2)(C) =
∑

A⊆XK ,B⊆XL

A↑L∪K∩B↑L∪K=C

m1(A) ·m2(B). (2)

for any C ∈ XK∪L.

III. TWO CONCEPTS OF CONDITIONAL INDEPENDENCE

A. Conditional non-interactivity

Ben Yaghlane et al. [2] introduced the notion of conditional
non-interactivity only for the case of three variables. In order
to unify the notation throughout the paper we rewrite it in the
following way.

Definition 1. Let m be a basic assignment on XN and
K, L,M ⊂ N be disjoint, K 6= ∅ 6= L. Groups of variables
XK and XL are conditionally non-interactive given XM with
respect to m, denoted by XK ⊥m XL|XM if and only if the
equality

m↓K∪L∪M ∩©m↓M (A) = m↓K∪M ∩©m↓L∪M (A) (3)

is satisfied for any A ⊆ XK∪L∪M .

Furthermore, they proved that (3) holds if and only if the
equality

Q↓K∪L∪M (A) ·Q↓M (A↓M )
= Q↓K∪M (A↓K∪M ) ·Q↓L∪M (A↓L∪M ) (4)



holds for any A ⊆ XK∪L∪M .
Let us note that (4) is more common expression of con-

ditional non-interactivity than (3) and it is a special case of
the definition of conditional independence in valuation-based
systems introduced by Shenoy [8] (for valuations expressed by
means of commonality functions). Nevertheless, in valuation-
based systems commonality function is a primitive concept
and basic assignment is derived by formula

m(A) =
∑
B⊇A

(−1)|B\A|Q(B).

Nevertheless, this notion of independence does not seem to
be appropriate for construction of multidimensional models.
As already mentioned by Studený [9], it is not consistent
with marginalization. What that means will be shown in
Subsection IV-F.

Therefore, instead of the conditional non-interactivity, in
[4], [12] we proposed to use another notion of conditional
independence recalled in the following subsection.

B. Conditional independence

Let us start this section by recalling the notion of random
sets independence [3]:3 Let m be a basic assignment on XN

and K, L ⊂ N be disjoint. We say that groups of variables
XK and XL are independent with respect to basic assignment
m (and denote it by K ⊥⊥ L [m]) if

m↓K∪L(A) = m↓K(A↓K) ·m↓L(A↓L)

for all A ⊆ XK∪L for which A = A↓K×A↓L, and m(A) = 0
otherwise.

In [12] we generalized this notion in the following way.

Definition 2. Let m be a basic assignment on XN and
K, L,M ⊂ N be disjoint, K 6= ∅ 6= L. We say that groups
of variables XK and XL are conditionally independent given
XM with respect to m (and denote it by K ⊥⊥ L|M [m]), if
the equality

m↓K∪L∪M (A) ·m↓M (A↓M ) (5)
= m↓K∪M (A↓K∪M ) ·m↓L∪M (A↓L∪M )

holds for any A ⊆ XK∪L∪M such that A = A↓K∪M ./
A↓L∪M , and m(A) = 0 otherwise.

Let us note that (5) resembles, from the formal point of
view, the definition of stochastic conditional independence [6].
Aparently (5) and (4) are almost identical except that (5) uses
m instead of Q. But it is not true, as (4) must be satisfied for
any A ⊆ XK∪L∪M , while (5) only for those sets which can
be expressed as joins of their marginals.

In the following section we will present a thorough com-
parison of these two concepts from various points of view.

3Klir [5] uses the notion non-interactivity.

IV. COMPARISON

A. Marginal case

As already mentioned in Section III, conditional indepen-
dence is a generalization of random set independence and
similar relationship holds for conditional and unconditional
non-interactivity (cf. [2]).

Let us present an assertion showing that conditional non-
interactivity and conditional independence are identical if the
condition is empty.

Lemma 1. Let K, L be disjoint, then K ⊥⊥ L [m] if and only
if

Q↓K∪L(A) = Q↓K(A↓K) ·Q↓L(A↓L)

for all A ⊆ XK∪L.

Proof can be found in [4].

So, it can be concluded that conditional non-interactivity
and conditional independence are (different) generalizations
of the same concept. These differences will be in the center
of our attention in the rest of this section.

B. Formal properties

Among the properties satisfied by the ternary relation
K ⊥⊥ L|M [m], the following are of principal importance:

(A1) K ⊥⊥ L|M [m] ⇒ L ⊥⊥ K|M [m],
(A2) K ⊥⊥ L ∪M |I [m] ⇒ K ⊥⊥M |I [m],
(A3) K ⊥⊥ L ∪M |I [m] ⇒ K ⊥⊥ L|M ∪ I [m],
(A4) K ⊥⊥ L|M ∪ I [m] ∧ K ⊥⊥M |I [m]

=⇒ K ⊥⊥ L ∪M |I [m],
(A5) K ⊥⊥ L|M ∪ I [m] ∧ K ⊥⊥M |L ∪ I [m]

=⇒ K ⊥⊥ L ∪M |I [m].

Let us recall that stochastic conditional independence sat-
isfies the so-called semigraphoid properties (A1)–(A4) for
any probability distribution, while axiom (A5) is satisfied
only for strictly positive probability distributions. Analogous
results were proven in [12] also for conditional independence
presented in Definition 2.

Theorem 1. Conditional independence satisfies (A1)–(A4).

Theorem 2. Let m be a basic assignment on XN such that
m(A) > 0 if and only if A =×i∈NAi, where Ai is a focal
element on Xi. Then (A5) is satisfied.

Conditional non-interactivity referred to in Section III-A, on
the other hand, satisfies axioms (A1)–(A5) for general basic
assignment m, as stated in [2].

C. Bayesian case

Now let us present, that both concepts are equivalent in the
case of Bayesian basic assignment.

Lemma 2. Let m be a Bayesian basic assignment on XN .
Then

XK ⊥m XL|XM ⇐⇒ K ⊥⊥ L|M [m]



for any three disjoint subsets K, L,M (K, L 6= ∅) of N .

Proof. To prove the equivalence it is enough to realize, that
the only focal elements of a Bayesian basic assignment are
singletons, and therefore m(A) = Q(A) for any A ⊆ XN .
Furthermore, as m(A) = 0 for all non-singletons, then it is
obvious that also m(A) = 0 for A↓K∪L∪M 6= A↓K∪M ./
A↓L∪M .

In this case both (4) and (5) become

m({x}↓K∪L∪M )·m({x}↓M )) = m({x}↓K∪M )·m({x}↓L∪M )

for all x ∈ XN , otherwise m(A) = 0 and both equalities are
trivially satisfied. �

From the proof of Lemma 2 one can immediately see that
both concepts generalize the well-known concept of stochastic
conditional independence. From this viewpoint the statement
that conditional non-interactivity satisfies so-called graphoid
axioms seems to be questionable.

D. Focal elements

From the definition of K ⊥⊥ L|M [m] it is obvious that the
only focal elements under this property are those, which can
be expressed as the joins of their marginals.

It has been proven in [2] that if XK ⊥m XL|XM , then
the focal elements of m belong to the set of XM -layered
rectangles.4

From (1) and from the fact that any intersection of cylin-
drical extensions is XM -layered rectangle (cf. [2]) it follows
that number of focal elements under conditional independence
is not bigger than that under conditional non-interactivity.

E. Complexity

From the definition of conditional non-interactivity (or from
its equivalent characterization) it is obvious that to test one
conditional non-interactivity statement XK ⊥m XL|XM , it is
necessary check validity of 2|XK∪L∪M | − 1 equalities (as the
last one is trivial).

From the definition of conditional independence, on the
other hand, it is evident that it is enough to check validity of
a smaller number of equalities: only for those subsets which
can be expressed as joins of their marginals, as by Definition 2
for remaining sets m(A) = 0. Upper bound of the number of
equalities to be checked is contained in the following lemma.

Lemma 3. The number of equalities to be checked in order
to test K ⊥⊥ L|M [m] is smaller than 2|XM |·(|XK |+|XL|).

Proof. The only focal elements of m such that K ⊥⊥ L|M [m]
are such that A = A↓K∪M ./ A↓L∪M , i.e. the number of
focal elements must be smaller than the product of numbers
of the focal elements of m↓K∪M and m↓L∪M , i.e. smaller
than 2|XK∪M | · 2|XK∪L|. �

This upper bound is very rough, as can be seen from the
following simple example.

4Let us remind that XM -layered rectangle is a set in XK∪L∪M which is
for nay fixed value xM ∈ XM a rectangle in XK ×XL.

Example 1. Let X1, X2 and X3 be three binary variables
with values in X1 = {a1, ā1},X2 = {a2, ā2}, X3 = {a3, ā3}
described by a basic assignment m. Let us assume that we
have to check the relation 1 ⊥⊥ 2|3 [m]. The potential focal
elements are A ⊆ X1×X2×X3 such that A = A↓13 ./ A↓23

and

• either A↓i3 ∈ P({(ai, a3), (āi, a3)}) \ ∅,
• or A↓i3 ∈ P({(ai, ā3), (āi, ā3)}) \ ∅,
• or C↓i3 ∈ P({(ai, a3), (āi, a3), (ai, ā3), (āi, ā3)})

\P({(ai, a3), (āi, a3)})\P({(ai, ā3), (āi, ā3)}).

We have only 9 sets in both the first and second cases and
81 sets in the third case, i.e. only 99 equalities of the form (5)
must be checked (and not 256, as Lemma 3 says). ♦

It is evident, even from the rough upper bound presented in
Lemma 3, that, in the general case, to test K ⊥⊥ L|M [m] is
computationally less demanding than to test XK ⊥m XL|XM

as

2|XM |·(|XK |+|XL|) ≤ 2|XM |·|XK |·|XL|

if both XK and XL contain at least two elements.

F. Consistency with marginalization

An independence concept is consistent with marginalization
[9] iff for arbitrary projective basic assignments (probability
distributions, possibility distributions, etc.) m1 on XK and
m2 on XL there exists a basic assignment (probability distri-
bution, possibility distribution, etc.) on XK∪L satisfying this
independence concept and having m1 and m2 as its marginals.

In [2] one can find the following example (originally
suggested by Studený) showing that application of (4) to two
projective basic assignments may lead to a model which is
beyond the framework of evidence theory.

Example 2. Let X1, X2 and X3 be three binary variables
with values in X1 = {a1, ā1},X2 = {a2, ā2}, X3 = {a3, ā3}
and m1 and m2 be two basic assignments on X1 ×X3 and
X2 × X3 respectively, both of them having only two focal
elements:

m1({(a1, ā3), (ā1, ā3)})= .5,

m1({(a1, ā3), (ā1, a3)})= .5, (6)
m2({(a2, ā3), (ā2, ā3)})= .5,

m2({(a2, ā3), (ā2, a3)})= .5.

Since their marginals are projective

m
↓3

1 ({ā3})=m
↓3

2 ({ā3}) = .5,

m
↓3

1 ({a3, ā3})=m
↓3

2 ({a3, ā3}) = .5,

there exists (at least one) common extension of both of them,
but none of them is such that it would imply conditional non-
interactivity of X1 and X2 given X3. Namely, the application
of equality (4) to basic assignments m1 and m2 leads to the



following values of the joint “basic assignment”:

m̄(X1 ×X2 × {ā3})= .25,

m̄(X1 × {a2} × {ā3})= .25,

m̄({a1} ×X2 × {ā3})= .25,

m̄({(a1, a2, ā3), (ā1, ā2, a3)})= .5,

m̄({(a1, a2, ā3)})=−.25,

which is outside of evidence theory. ♦

This problem is solved in [2] by the application of (3) to the
marginals. The result is now basic assignment, but it does not
keep the original marginals, as can be seen from the following
example.

Example 2. (Continued) Application of (3) to marginals (6)
leads to the joint basic assignment

m̂(X1 ×X2 × {ā3})= .25,

m̂(X1 × {a2} × {ā3})= .25, (7)
m̂({a1} ×X2 × {ā3})= .25,

m̂({(a1, a2, ā3), (ā1, ā2, a3)})= .25

with marginal basic assignments

m↓13({(a1, ā3), (ā1, ā3)}) = .5,

m↓13({(a1, ā3)}) = .25,

m↓13({(a1, ā3), (ā1, a3)}) = .25,

m↓23({(a2, ā3), (ā2, ā3)}) = .5,

m↓23({(a2, ā3)}) = .25,

m↓23({(a2, ā3), (ā2, a3)}) = .25.
♦

These different results obtained by the application of one
conditional non-interactivity concept seem to be, at the first
glance, surprising. Nevertheless, it is caused by the fact, that
(as already said above), there does not exist any joint basic
assignment keeping the prescribed marginals such that it
would imply conditional non-interactivity of X1 and X2 given
X3. Therefore, if we try to find it, something gets wrong:
when (4) is applied, we obtain “basic assignment” which is
not nonnegative for all subsets; application of (3), on the
other hand, ensures, that the result is basic assignment, but
simultaneously it “spoils” the prescribed marginals.

Therefore, this solution is not completely satisfactory —
although the resulting model belongs to the evidence theory
framework, the marginals are different (i.e. the original infor-
mation has been changed).

The following assertion expresses the fact (already men-
tioned above) that the concept of conditional independence
K ⊥⊥ L|M [m] is consistent with marginalization. Moreover,
it presents a form expressing the joint basic assignment by
means of its marginals.

Theorem 3. Let m1 and m2 be projective basic assignments
on XK and XL, respectively. Let us define a basic assignment

m on XK∪L by the formula

m(A) =
m1(A↓K) ·m2(A↓L)

m↓K∩L
2 (A↓K∩L)

(8)

for A = A↓K ./ A↓L such that m↓K∩L
1 (A↓K∩L) > 0 and

m(A) = 0 otherwise. Then

m↓K(B) = m1(B),
m↓L(C) = m2(C)

for any B ∈ XK and C ∈ XL, respectively, and
(K \ L) ⊥⊥ (L \ K)|(K ∩ L) [m]. Furthermore, m is the
only basic assignment possessing these properties.

Proof can be found in [12].

Let us close this section by demonstrating application of
the conditional independence notion (and Theorem 3) to
Example 2.

Example 2. (Continued) Let us go back to the problem of
finding a common extension of basic assignments m1 and m2

defined by (6). Theorem 3 says that for basic assignment m

m(X1 ×X2 × {ā3}) = .5, (9)
m({(a1, a2, ā3), (ā1, ā2, a3)}) = .5,

obtained from (6) by (8), variables X1 and X2 are condition-
ally independent given X3. ♦

G. Mutual relationship

Conditional independence does not imply conditional non-
interactivity, as can be seen from the following example.

Example 3. Let X1, X2 and X3 be three binary variables
with the joint basic assignment defined by (9). As can be
seen from the last part of Example 2 variables X1 and X2

are conditionally independent given X3, but they are not
conditionally non-interactive, as e.g.

Q(X1 ×X2 × {ā3}) ·Q↓3({ā3})
= 0.5× 1 6= 0.5× 0.5
= Q↓13(X1 × {ā3}) ·Q↓23(X2 × {ā3}). ♦

On the other hand, neither conditional non-interactivity
implies conditional independence. It is demonstrated by the
following example.

Example 4. Let X1, X2 and X3 be three binary variables with
the joint basic assignment defined by (7). As stated in [2] X1

and X2 are conditionally non-interactive given X3, but they
are not conditionally independent, as e.g.

m(X1 ×X2 × {ā3}) ·m↓3({ā3})
= 0.25× 0.75 6= 0.5× 0.5
= m↓13(X1 × {ā3}) ·m↓23(X2 × {ā3}). ♦

From these two simple examples one can deduce that none
of these two conditional independence concepts is stronger
than the other.



V. CONCLUSIONS

We recalled two conditional independence concepts in evi-
dence theory, compared them from various points of view and
realized:
• They are equivalent to each other if the condition is

empty, i.e. unconditional non-interactivity coincides with
unconditional random set independence.

• They are equivalent to each other for Bayesian basic
assignments. In this case they collapse to stochastic
conditional independence.

• From the viewpoint of formal properties conditional
non-interactivity seems to be preferable, as it satisfies
(as stated in [2]) so-called graphoid properties, while
conditional independence only semigraphoid ones. This
superiority is somewhat relativized by the preceding state-
ment (as stochastic conditional independence satisfies
only semigraphoid properties).

• The number of (potential) focal elements under con-
ditional independence is not greater than that under
conditional non-interactivity, as a join of its projections
is a special case of XM -layered rectangle.

• The complexity of checking conditional non-interactivity
is substantially higher, as it is necessary to check pre-
scribed equality for all subsets of the frame of discern-
ment in question, while for conditional independence
only for those sets, which are joins of its projections.

• From the multidimensional model construction point of
view the most substantial difference is that conditional
non-interactivity is not consistent with marginalization,
while conditional independence is.

• None of these concepts is stronger that the other one.
It can be summarized that the only disadvantage of con-

ditional independence in comparison with conditional non-
interactivity is, that it does not generally satisfy axiom
(A5), while we can see two drawbacks of conditional non-
interactivity: complexity of checking the conditional indepen-
dence statements and mainly the fact that it is not consistent
with marginalization, which leads to multidimensional models
not keeping the original information.
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[10] J. Vejnarová, “Conditional independence relations in possibility theory.”
Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 8, pp.
253–269, 2000.
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