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Abstract: We compare two approaches to the construction of belief networks in
the framework of evidence theory. We show that belief networks reconstructed from
multidimensional models based on recently introduced operator of composition of
basic assignments have similar structural properties to Bayesian networks. On the
other hand, it is not valid for previously proposed directed evidential networks by
Ben Yaghlane at al. The difference between the structural properties of models based
on these two approaches is illustrated by a simple example.
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1 Introduction

Bayesian networks are at present the most popular representative of so-called graphical Markov
models. Therefore it is not surprising that some attempts to construct an analogy of Bayesian
networks have also been made in other frameworks as e.g. in possibility theory [4] or evidence
theory [3].

Since the method from [3] does not seem to us to be satisfactory, as graphical tools well-known
from Bayesian networks are used in different sense, therefore in [9] we brought an alternative to it.
Our approach is based on recently introduced operator of composition for basic assignments [6].
The evidential network is reconstructed from the resulting compositional model. We concentrate
ourselves to structural properties of the network, the problem of definition of conditional beliefs
has not been solved yet. The main contribution of this paper is an illustrative example showing
the differences between these two approaches

The paper is organized as follows. After a brief summary of basic notions from evidence
theory (Section 2), in Section 3 we recall the definition of the operator of composition, perfect
sequences of basic assignments and an algorithm for transformation of a perfect sequence into
an evidential network. Section 4 is devoted to a simple example comparing our approach with
the previous one [3].

2 Basic notions

In this section we will briefly recall basic concepts from evidence theory concerning sets, set
functions and (conditional) independence.

∗The work of the author was supported by the grant GA ČR 201/09/1891, by the grant GA AV ČR A100750603
and by the grant MŠMT 2C06019.
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2.1 Set projections and joins

For an index set N = {1, 2, . . . , n} let {Xi}i∈N be a system of variables, each Xi having its
values in a finite set Xi. In this paper we will deal with multidimensional frame of discernment
XN = X1×X2× . . .×Xn, and its subframes (for K ⊆ N) XK =×i∈KXi. When dealing with
groups of variables on these subframes, XK will denote a group of variables {Xi}i∈K throughout
the paper.

A projection x↓K of x = (x1, x2, . . . , xn) ∈ XN into XK is for K = {i1, i2, . . . , ik}

x↓K = (xi1 , xi2 , . . . , xik) ∈ XK .

Analogously, for M ⊂ K ⊆ N and A ⊂ XK , A↓M will denote a projection of A into XM :

A↓M = {y ∈ XM | ∃x ∈ A : y = x↓M}.

In addition to the projection, in this text we will also need an opposite operation, which will
be called a join. By a join∗ of two sets A ⊆ XK and B ⊆ XL (K,L ⊆ N) we will understand a
set

A ./ B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Let us note that for any C ⊆ XK∪L naturally C ⊆ C↓K ./ C↓L, but generally C 6= C↓K ./
C↓L.

2.2 Set functions

In evidence theory (or Dempster-Shafer theory) two measures are used to model the uncertainty:
belief and plausibility measures (the latter one will not be used in this paper). Both of them can
be defined with the help of another set function called a basic (probability or belief) assignment
m on XN , i.e.,

m : P(XN ) −→ [0, 1],

where P(XN ) is power set of XN and
∑

A⊆XN
m(A) = 1. Furthermore, we assume (in contrary

to [2, 3]) that m(∅) = 0.
Belief measure is defined for any A ⊆ XN by the equality

Bel(A) =
∑
B⊆A

m(B). (1)

For a basic assignment m on XK and M ⊂ K, a marginal basic assignment of m on XM is
defined (for each A ⊆ XM ):

m↓M (A) =
∑

B⊆XK :B↓M=A

m(B).

Having two basic assignments m1 and m2 on XK and XL, respectively (K,L ⊆ N), we say
that these assignments are projective if

m↓K∩L1 = m↓K∩L2 ,

which occurs if and only if there exists a basic assignment m on XK∪L such that both m1 and
m2 are marginal assignments of m. Let us note that according to the convention m↓∅ ≡ 1 for
arbitrary basic assignment m, m1 and m2 are projective whenever K ∩ L = ∅.
∗This term and notation are taken from the theory of relational databases [1].
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2.3 Independence

When constructing graphical models in any framework, (conditional) independence concept
plays an important role. In evidence theory the most common notion of independence is that
of random set independence [5]: Let m be a basic assignment on XN and K,L ⊂ N be disjoint.
We say that groups of variables XK and XL are independent with respect to basic assignment m
(in notation K ⊥⊥ L [m]) if

m↓K∪L(A) = m↓K(A↓K) ·m↓L(A↓L)

for all A ⊆ XK∪L for which A = A↓K ×A↓L, and m(A) = 0 otherwise.
This notion can be generalized in various ways [7, 2, 8]; the concept of conditional non-

interactivity XK ⊥m XL|XM from [2], based on conjunction combination rule, is used for con-
struction of directed evidential networks in [3]. In this paper we will use the concept introduced
in [8, 6], as we consider it more suitable (the arguments can be found in [8]).

Definition 1 Let m be a basic assignment on XN and K,L,M ⊂ N be disjoint, K 6= ∅ 6= L.
We say that groups of variables XK and XL are conditionally independent given XM with respect
to m (and denote it by K ⊥⊥ L|M [m]), if the equality

m↓K∪L∪M (A) ·m↓M (A↓M ) = m↓K∪M (A↓K∪M ) ·m↓L∪M (A↓L∪M ) (2)

holds for any A ⊆ XK∪L∪M such that A = A↓K∪M ./ A↓L∪M , and m(A) = 0 otherwise.

It has been proven in [8] that this conditional independence concept satisfies so-called semi-
graphoid properties taken as reasonable to be valid for any conditional independence concept.

3 Belief network generated by a perfect sequence

3.1 Operator of composition

Operator of composition of basic assignments was introduced in [6] in the following way.

Definition 2 For two arbitrary basic assignments m1 on XK and m2 on XL a composition
m1 . m2 is defined for all C ⊆ XK∪L by one of the following expressions:

[a] if m↓K∩L2 (C↓K∩L) > 0 and C = C↓K ./ C↓L then

(m1 . m2)(C) =
m1(C

↓K) ·m2(C
↓L)

m↓K∩L2 (C↓K∩L)
;

[b] if m↓K∩L2 (C↓K∩L) = 0 and C = C↓K ×XL\K then

(m1 . m2)(C) = m1(C
↓K);

[c] in all other cases
(m1 . m2)(C) = 0.

A lot of properties possessed by the operator of composition can be found in [6], nevertheless
here we will confine ourselves to the following theorem (proven in [6]) expressing the relationship
between conditional independence (from Definition 1) and operator of composition.

Theorem 3 Let m be a joint basic assignment on XM , K,L ⊆M. Then (K\L) ⊥⊥ (L\K)|(K∩
L) [m] if and only if

m↓K∪L(A) = (m↓K . m↓L)(A)

for any A ⊆ XK∪L.
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3.2 Perfect sequences

Now, let us consider a system of low-dimensional basic assignments m1,m2, . . . , mn defined
on XK1 ,XK2 , . . . ,XKn , respectively. Composing them together by multiple application of the
operator of composition, one gets multidimensional basic assignments on XK1∪K2∪...∪Kn .

To avoid using too many parentheses let us make the convention, that the operator of
composition is performed successively from left to right:

m1 . m2 . . . . . mn = (. . . ((m1 . m2) . m3) . . . .) . mn. (3)

Therefore, multidimensional model (3) is specified by an ordered sequence of low-dimensional
basic assignments — a generating sequence m1,m2, . . . ,mn.

From the point of view of artificial intelligence models used to represent knowledge in a
specific area of interest, a special role is played by the so-called perfect sequences, i.e., generating
sequences m1,m2, . . . ,mn, for which

m1 . m2 . . . . . mk = mk . (m1 . . . . . mk−1)

for any k = 2, . . . , n.
The property explaining why we call these sequences “perfect” is expressed by the following

assertion proven in [6].

Theorem 4 A generating sequence m1,m2, . . . ,mn is perfect if and only if all m1,m2, . . . ,mn

are marginal assignments of the multidimensional assignment m1 . m2 . . . . . mn:

(m1 . m2 . . . . . mn)↓Kj = mj ,

for all j = 1, . . . , n.

3.3 Reconstruction of a belief network

Having a perfect sequence m1,m2, . . . ,mn (m` being the basic assignment of XK`
), we first

order (in an arbitrary way) all the variables for which at least one of the basic assignments m`

is defined. Finally we have

{X1, X2, X3, . . . , Xk} = {Xi}i∈K1∪...∪Kn .

Then we get a graph of the constructed belief network in the following way:

1. the nodes are all the variables X1, X2, X3, . . . , Xk;

2. there is an edge (Xi → Xj) if there exists a basic assignment m` such that both i, j ∈ K`,
j 6∈ K1 ∪ . . . ∪K`−1 and either i ∈ K1 ∪ . . . ∪K`−1 or i < j.

Evidently, for each j the requirement j ∈ K`, j 6∈ K1 ∪ . . . ∪ K`−1 is met exactly for one
` ∈ {1, . . . , n}. It means that all the parents of node Xj must be from the respective set {Xi}i∈K`

and therefore the necessary conditional belief function Bel(Xj |Xpa(j)) can easily be computed
from basic assignment m` via (1) and some (not yet specified) conditioning rule. As far as we
know, the use of a conditioning rule is still not fixed in evidence theory, and therefore we leave
this question open for the present.

It is also evident, that if both i and j are in the same basic assignment and not in previous
ones, then the direction of the arc depends only on the ordering of the variables. This might
lead to different independences, nevertheless, the following theorem proven in [9] sets forth that
any of them is induced by the perfect sequence.
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Table 1: Basic assignments mi and conditional basic assignments m.|i.

A ⊆ Ci mi(A) D ⊆ B m.|i(D)

{hi} 0.49 {b} 0.49

{t1} 0.49 {b̄} 0.51

{h1, t1} 0.02 {b, b̄} 0.02

Table 2: Joint basic assignment m of variables C1, C2 and B.

m {b} {b̄} {b, b̄}
{h2} {t2} {h2, t2} {h2} {t2} {h2, t2} {h2} {t2} {h2, t2}

{h1} 0.2401 0 0 0 0.2401 0 0 0 0.0098

{t1} 0 0.2401 0 0.2401 0 0 0 0 0.0098

{h1, t1} 0 0 0 0 0 0 0.0098 0.0098 0.0004

Theorem 5 For a belief network defined by the above procedure the following independence
statements are satisfied for any j = 2, . . . k:

{j} ⊥⊥ ({i < j} \ pa(j)) | pa(j). (4)

Let us note that it is different than in the case of directed evidential networks with con-
ditional belief functions introduced in [3], where is no distinction between conditionally and
unconditionally independent variables, as we shall see in the next section.

4 Example: two coins toss

Let us consider two fair coins toss expressed by variables C1 and C2 with values in C1 and C2,
respectively (Ci = {hi, ti}), and the basic assignments m1 and m2 (contained in the left part
of Table 1) expressing the fact that the result of any of the coins may from time to time be
unknown. The results of tossing two coins are usually considered to be independent, therefore
the joint basic assignment m12 is just a product of these m1 and m2 (cf. definition of random
set independence at the beginning of Section 2.3).

Now, let us consider one more variable B expressing the fact the bell is ringing, i.e B = {b, b̄}.
It happens only if the result on both coins is the same (two heads or two tails). It is evident,
that B depends on both C1 and C2, which corresponds to the following graph

��� ��� ���
�-C1 B C2

and (due to deterministic dependence of the values of B on the values of C1 and C2) the joint
basic assignment of the three variables is in Table 2. Above-presented graph can easily be
obtained from perfect sequence of basic assignments m1,m2 and m3 ≡ m (contained in Tables 1
and 2) via the algorithm presented in the preceding section.

The approach suggested by Ben Yaghlane et al. [3] is completely different. The authors
start from belief functions of C1 and C2 and conditional belief functions of B given C1 and C2,
respectively. To make the difference between these two approaches more apparent we will use
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Table 3: Joint belief function Bel of variables C1, C2 and B.

m {b} {b̄} {b, b̄}
{h2} {t2} {h2, t2} {h2} {t2} {h2, t2} {h2} {t2} {h2, t2}

{h1} 0.0624 0.0624 0.0025 0.0624 0.0624 0.0025 0.0001 0.0001 ∼ 0

{t1} 0.0624 0.0624 0.0025 0.0624 0.0624 0.0025 0.0001 0.0001 ∼ 0

{h1, t1} 0.0025 0.0025 0.0001 0.0025 0.0025 0.0001 ∼ 0 ∼ 0 ∼ 0

basic assignments instead of belief functions (belief functions, nevertheless, can be easily obtained
from them by (1)). The conditional basic assignments of B given C1 and C2, respectively, can
be found in the right part of Table 1. Let us note that these conditional basic assignments do
not depend on the condition, as the results of tossing two coins are independent and therefore
also the event that the bell rings does not depend on the result at one coin.

The values of joint belief is computed from Tables 1 using (non-normalized) conjunctive
combination rule. Results of these computations can be found in Table 3.

It is evident that the independence (non-interactivity) between coins C1 and C2 is not valid
any more — it has been substituted by conditional non-interactivity, which does not make a
sense, as C1 is strongly dependent on C2 whenever B is known.
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[9] J. Vejnarová, An Alternative Approach to Evidential Network Construction. To appear in:
Proceedings of SMPS’10. Oviedo, Spain.

6


