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Abstract. We overview three kinds of possibilistic graphical models
(based on directed acyclic graphs) and present, how they can be ex-
pressed by means of non-graphical approach to multidimensional mod-
els, so-called compositional models. We show that any of these graphical
models can be transformed into a compositional model, but not vice
versa. The only exception are directed possibilistic graphs, which are as
general as so-called prefect sequences of low-dimensional distributions.
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1 Introduction

High dimensionality of problems usually solved in the field of artificial intelli-
gence led in late 1980’s to the emergence of new kind of models, usually called
graphical Markov models. These models, sometimes characterized as a “mar-
riage between probability and graph theories”, utilize different types of graphs
to express (in)dependences among variables.

Nevertheless, uncertainty can be modeled also by other calculi; among them
we concentrated to possibility theory, which has in common with probability
theory the advantage, that possibility measure can be expressed by means of
possibility distribution. In this contribution we overview three kinds of possi-
bilistic graphical models (based on directed acyclic graphs) and present, how
they can be expressed by means of non-graphical approach to multidimensional
possibilistic models, so-called compositional models — introduced already in [7]
and further developed e.g. in [8,11].

The paper is organized as follows. After an overview of necessary notions
form possibility theory in Section 2, in Section 3 we will present the most impor-
tant results on compositional models. Section 4 will be devoted to the graphical
models and their relationship to compositional models.

2 Basic Notions

The purpose of this section is to give, as briefly as possible, an overview of basic
notions of De Cooman’s measure-theoretical approach to possibility theory [3],

E. Hüllermeier, R. Kruse, and F. Hoffmann (Eds.): IPMU 2010, Part I, CCIS 80, pp. 21–30, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



22 J. Vejnarová

necessary for understanding the paper. Special attention will be paid to condi-
tioning, independence and conditional independence [9]. We will start with the
notion of a triangular norm, since most notions in this paper are parameterized
by it.

2.1 Triangular Norms

A triangular norm (or a t-norm) T is a nondecreasing, associative and com-
mutative binary operator on [0, 1] satisfying the boundary condition: for any
a ∈ [0, 1]

T (1, a) = a.

A t-norm T is called continuous if T is a continuous function. Within this paper,
we will only deal with continuous t-norms.

Let x, y ∈ [0, 1] and T be a t-norm. We will call an element z ∈ [0, 1] T -inverse
of x w.r.t. y if

T (z, x) = T (x, z) = y. (1)

It is obvious that if x ≤ y then the equation (1) admits no solution, i.e. there
are no T -inverses of x w.r.t. y. On the other hand, if a T -inverse exists, it need
not be unique. Nevertheless, we can obtain a unique representative (which is
even maximal) using the notion of T -residual y�T x of y by x defined for any
x, y ∈ [0, 1] as

y�T x = sup{z ∈ [0, 1] : T (z, x) ≤ y}.

From the viewpoint of this paper the following lemma proven in [5] is impor-
tant, as it gives a hint, how to compute with residuals.

Lemma 1. If c ≥ b, then T (a, b)�T c = T (a, b�T c).

2.2 Possibility Measures and Distributions

Let X be a finite set called universe of discourse which is supposed to contain
at least two elements. A possibility measure Π is a mapping from the power set
P(X) of X to the real unit interval [0, 1] satisfying the following two require-
ments:

(i) Π(∅) = 0;
(ii) for any family {Aj, j ∈ J} of elements of P(X)

Π(
⋃

j∈J

Aj) = max
j∈J

Π(Aj)1.

Within this paper we will always assume that Π is normal, i.e. Π(X) = 1.
For any Π there exists a mapping π : X → [0, 1], called a distribution of

Π , such that for any A ∈ P(X), Π(A) = maxx∈A π(x). This function is a

1 Max must be substituted by sup if X is not finite.
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possibilistic counterpart of a density function in probability theory. It is evident
that (in the finite case) Π is normal iff there exists at least one x ∈ X such that
π(x) = 1. Throughout this paper we will use possibility distributions instead of
possibility measures.

Let X1 and X2 denote two finite universes of discourse provided by possibility
measures Π1 and Π2, respectively. The possibility measure Π on X1 × X2 is
called T -product possibility measure of Π1 and Π2 (denoted Π1×T Π2) if for the
corresponding possibility distributions for any (x1, x2) ∈ X1 × X2

π(x1, x2) = T (π1(x1), π2(x2)). (2)

Now, let us consider an arbitrary possibility distribution π defined on a product
universe of discourse X1 × X2. The marginal possibility distribution π↓1 on X1

is defined by the expression

π↓1(x1) = max
x2∈X2

π(x1, x2) (3)

for any x1 ∈ X1.

2.3 Conditioning, Independence and Conditional Independence

Let T be a continuous t-norm on [0, 1]. The conditional possibility distribution
πX|

T
Y is defined (in accordance with [3]) as any solution of the equation

πXY (x, y) = T (πY (y), πX|
T

Y (x|
T
y)) (4)

for any (x, y) ∈ X × Y. Continuity of a t-norm T guarantees the existence of
a solution of this equation. This solution is not unique (in general), but the
ambiguity vanishes when almost-everywhere equality is considered (for more de-
tails see [3]). As mentioned in [3,9], this way of conditioning brings a unifying
view on several conditioning rules and it also plays an important role in the
definition of (conditional) independence, therefore its importance from the theo-
retical viewpoint is obvious. On the other hand, from the practical point of view,
its expression by residual πXY (x, ·)�T πY (·), i.e. the least specific (or maximal)
solution of (4), is very useful (for more details see [11]).

Two variables X and Y (taking their values in X and Y, respectively) are
possibilistically T -independent2 [3] if for any x ∈ X and y ∈ Y

πXY (x, y) = T (πX(x), πY (y)). (5)

In light of these facts, we defined the conditional possibilistic independence in
the following way in [8]: Given a possibility measure Π on X × Y × Z with
the respective distribution π(x, y, z), variables X and Y are possibilistically

2 Let us note that the definition presented in [3] is different and (5) is its equiva-
lent characterization. Nevertheless, from the viewpoint of this paper (5) is more
convenient.
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conditionally T -independent3 given Z (in symbols IT (X, Y |Z)) if, for any pair
(x, y) ∈ X × Y,

πXY Z(x, y, z) = T (T (πX|
T

Z(x|
T
z), πY |

T
Z(y|

T
z)), πZ(z)). (6)

In [9] we proved its formal properties and studied its relationship with other def-
initions of conditional possibilistic independence, among others those introduced
in [2].

3 Compositional Models

From now on, we will deal with joint possibility distributions π on Cartesian
product of universes of discourse

XN = X1 × X2 × . . . × Xn,

and their marginals π↓K on its subspaces

XK =×i∈KXi.

3.1 Operators of Composition

Operators of composition of possibility distributions introduced in [7] are, in a
way, a generalization of T -product possibility distributions defined by (2). Con-
sidering a continuous t-norm T , two subsets K1, K2 of {1, . . . , n} (not necessarily
disjoint) and two normal possibility distributions π1(xK1 ) and π2(xK2) we de-
fine the operator of right composition of these possibilistic distributions by the
expression

π1 (xK1) �T π2 (xK2) = T
(
π1 (xK1) , π2 (xK2)�T π↓K1∩K2

2 (xK1∩K2)
)

,

and analogously the operator of left composition by the expression

π1 (xK1) �T π2 (xK2) = T
(
π1 (xK1)�T π↓K1∩K2

1 (xK1∩K2) , π2 (xK2)
)

.

It is evident that both π1 �T π2 and π1 �T π2 are (generally different) possibility
distributions of variables {Xi}i∈K1∪K2 .

Now, we will present two lemmata proven in [7], expressing basic properties
of these operators.

Lemma 2. Let T be a continuous t-norm and π1(xK1) and π2(xK2) be two
distributions. Then

(π1 �T π2)↓K1(xK1) = π1(xK1)

and
(π1 �T π2)↓K2(xK2) = π2(xK2).

3 Let us note that a similar definition of conditional independence can be found in [4].
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Lemma 3. Consider two distributions π1(xK1) and π2(xK2). Then

(π1 �T π2)(xK1∪K2) = (π1 �T π2)(xK1∪K2)

for any continuous t-norm T iff π1 and π2 are projective, i.e.

π↓K1∩K2
1 (xK1∩K2) = π↓K1∩K2

2 (xK2∩K1).

The following theorem proven in [8] reveals the relationship between conditional
T -independence and operators of composition.

Theorem 1. Let T be a continuous t-norm and π be a possibility distribution
of XK1∪K2 with marginals π1 and π2 of XK1 and XK2 , respectively. Then

π(xK1∪K2) = (π1 �T π2)(xK1∪K2) (7)
= (π1 �T π2)(xK1∪K2),

if and only if XK1\K2 and XK2\K1 are conditionally independent, given XK1∩K2 .

3.2 Generating Sequences

In this section we will show how to apply the operators iteratively. Consider
a sequence of possibility distributions π1(xK1), π2(xK2), . . . , πm(xKm) and the
expression

π1 �T π2 �T . . . �T πm.

Before beginning a discussion of its properties, we have to explain how to inter-
pret it. Though we did not mention it explicitly, the operator �T (as well as �T )
is neither commutative nor associative.4 Therefore, generally

(π1 �T π2) �T π3 �= π1 �T (π2 �T π3).

Nevertheless, under specific conditions this equality is satisfied. One of these
situations, important from the viewpoint of this paper, is described by the fol-
lowing lemma.

Lemma 4. Let T be a continuous t-norm and π1, π2 and π3 be defined on
XK1 ,XK2 and XK3 , respectively, such that K1 and K3 are disjoint. Then

(π1 �T π2) �T π3 = π1 �T (π2 �T π3). (8)

Proof. Let x ∈ XK1∪K2∪K3 then the right-hand side of (8) is by definition

π1 �T (π2 �T π3)(x)
= T (π1(xK1), (π2 �T π3)(xK2∪K3)�T (π2 �T π3)(x(K2∪K3)∩K1))
= T (π1(xK1), T (π2(xK2), π3(xK3)�T π3(xK3∩K2))�T π2(xK2∩K1))
= T (π1(xK1), T (π2(xK2)�T π2(xK2∩K1), π3(xK3)�T π3(xK3∩K2)))
= T (T (π1(xK1), π2(xK2)�T π2(xK2∩K1)), π3(xK3)�T π3(xK3∩K2))
= (π1 �T π2) �T π3(x),

4 Counterexamples can be found in [7].
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where we used the fact that K1 ∩K2 = ∅, Lemma 2, Lemma 1 and associativity
of a t-norm. �

For the above reason, let us note that in the part that follows, we always apply
the operators from left to right, i. e.

π1 �T π2 �T π3 �T . . . �T πm = (. . . ((π1 �T π2) �T π3) �T . . . �T πm). (9)

This expression defines a multidimensional distribution of XK1∪...∪Km . There-
fore, for any permutation i1, i2, . . . , im of indices 1, . . . , m the expression

πi1 �T πi2 � . . . �T πim

determines a distribution of the same family of variables, however, for different
permutations these distributions can differ from one another. In the following
paragraph we will deal with special generating sequences (or their special per-
mutations), which seem to possess the most advantageous properties.

3.3 T -Perfect Sequences

An ordered sequence of possibility distributions π1, π2, . . . , πm is said to be
T -perfect if

π1 �T π2 = π1 �T π2,

π1 �T π2 �T π3 = π1 �T π2 �T π3,

...
π1 �T · · · �T πm = π1 �T · · · �T πm.

The notion of T -perfectness suggests that a sequence perfect with respect to
one t-norm need not be perfect with respect to another t-norm, analogous to
(conditional) T -independence. The following lemma, proven in [7], suggests that
perfectness is a stronger property than pairwise projectivity (cf. Lemma 3).

Lemma 5. Let T be a continuous t-norm. The sequence π1, π2, . . . , πm is
T -perfect, if and only if the pairs of distributions (π1 �T · · · �T πk−1) and πk

are projective for all k = 2, 3, . . . , m.

Although T -perfect sequences may be defined for any continuous t-norm T ,
their semantics substantially differ from each other. For more details the reader
is referred to [10].

The following characterization theorem proven in [11] expresses one of the
most important results concerning T -perfect sequences. It says they compose
into multidimensional distributions that are extensions of all the distributions
from which the joint distribution is composed.

Theorem 2. The sequence π1, π2, . . . , πm is T -perfect iff all the distributions
π1, π2, . . . , πm are marginal to distribution π1 �T π2 �T . . . � πm.
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If we translate this theorem to the language of artificial intelligence, its mean-
ing is that the global knowledge expressed by the multidimensional distribution
keeps all the local knowledge contained in the low-dimensional distributions, i.e.
nothing was lost or changed.

4 Graphical Models

Probabilistic graphical models (well-known thanks e.g. to [6]) served as the in-
spiration for various authors e.g. [1,2] to introduce analogous models also in the
framework of possibility theory.

4.1 Possibilistic Trees

Possibilistic trees suggested by de Campos and Huete in [2] for specific condi-
tional independence concepts are based on the following simple idea. If
IT (X, Y |Z), then the joint distribution π(x, y, z) of X, Y, Z can be obtained
from its marginals π(x, z) and π(y, z).

This idea can easily be generalized to n-dimensional case. Let us assume
variables X1, . . . , Xn such that IT ({Xj}j<i{Xj}j>i|i), then the joint possibility
distribution of these variables can be obtained form the marginals π(x1, . . . , xi)
and π(xi, . . . , xn). This idea can be recursively applied to both subsets of vari-
ables. Therefore to obtain the joint possibility distribution, it is enough to store
low-dimensional distributions obtained by this process.

Resulting possibilistic tree T consists of two kinds of nodes — leaf nodes (which
store marginal possibility distributions) and internal nodes (storing conditional
independence statements).

De Campos and Huete presented two propositions concerning possibilistic
trees (induced, in fact, by conditional independence concepts based on Gödel’s
and product t-norms), which can be generalized as suggested below.

Any possibilistic tree T can easily be transformed into a generating sequence
of its leaves πL1 , . . . πLm . The joint possibiility distribution is then obtained in
the following way: any fork of T is substituted by a composition operator con-
necting marginal distributions of corresponding branches. Let us note, that this
transformation keeps according to Theorem 1 all the conditional independences
expressed by the possibilistic tree.

Let us also note, that because of rather complicated system of brackets, the
resulting model is not generally formed by a T -perfect sequence of possibility
distributions. Nevertheless, it must exist, as the following lemma suggests.

Lemma 6. Any possibilistic tree T defines a perfect sequence.

Proof. It follows directly from Theorem 2, as distributions at leaves are marginals
of the joint possibility distribution. �
Now, let us preset an example, which is a generalization of examples from [2].
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IT ((Xi)i=1,2,3,4, (Xi)i=6,7,8,9,10|X5)

IT (X1, (Xi)i=3,4,5|X2) IT ((Xi)i=5,6,7, (Xi)i=9,10|X8)

IT (X2, (Xi)i=4,5|X3) IT (X5, (Xi)i=7,8|X6)

π(x3, x4, x5)π(x2, x3)

π(x8, x9, x10)π(x1, x2)

IT (X6, X8|X7)π(x5, x6)

π(x6, x7) π(x7, x8)

Fig. 1. Possibilistic tree from Example 1

Example 1 Let π be a joint possibility distribution of Xi, i = 1, . . . , 10 with
conditional independences (based on continuous t-norm T ) expressed by possi-
bilistic tree in Figure 1.

The generating sequence π(x1, x2), π(x2, x3), π(x3, x4, x5), π(x5, x6), π(x6,
x7), π(x7, x8), π(x8, x9, x10) forms a joint distribution

(π(x1, x2) �T (π(x2, x3) �T π(x3, x4, x5))) (10)
�T ((π(x5, x6) �T (π(x6, x7) �T π(x7, x8))) �T π(x8, x9, x10)).

Although it is not obvious at the first sight it is also perfect as (10) can be
transformed into

π(x1, x2) �T π(x2, x3) �T π(x3, x4, x5)
�T π(x5, x6) �T π(x6, x7) �T π(x7, x8) �T π(x8, x9, x10).

due to Lemma 4 and convention (9). Therefore π(x1, x2), π(x2, x3), π(x3, x4, x5),
π(x5, x6), π(x6, x7), π(x7, x8), π(x8, x9, x10) is a perfect sequence.

Let us note, that another ordering of the marginal possibility distributions, e.g.
π(x1, x2), π(x3, x4, x5), π(x2, x3), π(x5, x6), π(x6, x7), π(x7, x8), π(x8, x9, x10),
may lead to a different model than that expressed by a possibilistic tree T ,
as the resulting model does not keep π(x2, x3) unless π(x2, x3) = π(x2) · π(x3).

Let us also note that not every perfect sequence can be transformed into a
possibilistic tree, e.g. if one variable appears in three (or more) marginals.

4.2 Dependence Trees

In dependence trees [2] nodes represent variables (or groups of variables) and
edges represent direct dependence relationship among variables (or groups). Con-
ditional independence statements can be obtained from the graph in an analo-
gous way to Bayesian networks.
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In [2] a simple algorithm for the construction of dependence tree of a possi-
bility distribution in question is presented. In that paper it is also shown (by
examples) how to a transform dependence tree to a possibilistic tree and vice
versa. It is also mentioned that possibilistic tree is a more general structure than
dependence tree. As we have shown that any possibilistic tree can be transformed
to perfect sequence, it is obvious, that the same holds for dependence trees.

Nevertheless, we present a direct procedure of the transformation of depen-
dence tree to a perfect sequence, which is extremely simple.

For each dependence tree one can construct a perfect sequence π1, . . . , πm of
distributions of variables XK1 , XK2 , . . . , XKm , respectively. These distributions
are such that each {Xi}i∈Kk

equals some cl(Xj) = {Xj}∪pa(Xj) and π1�. . .�πm

equals the distribution represented by the dependence tree.
This approach can be applied also to more general directed possibilistic graphs

[1], which will be in the center of our attention in the next part.

4.3 Directed Possibilistic Graphs

Directed possibilistic graph (or possibilistic belief network) is a possibilistic coun-
terpart of Bayesian network (and a generalization of dependence trees) and can
be defined in the following way:

Relationships among variables in directed possibilistic graph are determined
in two ways. Structural information describing the existence of a “direct” depen-
dence of variables is given by a graph, while the quantitative information is given
by a system of conditional possibility distributions. Thus, a possibilistic belief
network is a couple: an acyclic directed graph and a system of conditional prob-
ability distributions . In this system there are as many distributions as variables,
i.e. nodes of the graph (in contrary to dependence trees). For each variable there
is a conditional distribution given all parent variables in the condition. Some of
nodes (at least one because of acyclicity) are parentless and their distributions
are in fact unconditional.

To transform a possibilistic belief network into a a perfect sequence the pro-
cedure described in the preceding section can be used. Here we present a reverse
procedure for transformation of a perfect sequence into a possibilistic belief net-
work.

Having a perfect sequence π1, π2, . . . , πm (πk being the distribution of XKk
),

we first order (in an arbitrary way) all the variables for which at least one of the
distributions πk is defined, i.e.

{X1, X2, X3, . . . , Xn} = {Xi}i∈K1∪...∪Km .

Then we get a graph of the constructed possibilistic belief network in the follow-
ing way:

1. the nodes are all the variables X1, X2, X3, . . . , Xn;
2. there is an edge (Xi → Xj) if there exists a distribution πk such that both

i, j ∈ Kk, j �∈ K1 ∪ . . . ∪ Kk−1 and either i ∈ K1 ∪ . . . ∪ Kk−1 or i < j.
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5 Conclusions

We overviewed the non-graphical approach to multidimensional possibilistic
models based on operators of composition — so-called compositional models. We
presented three types of graphical models and showed, how these models can be
expressed by means of compositional models. Furthermore, we showed that any
of these three models can be expressed by a perfect sequence of low-dimensional
distributions. Finally, we presented a procedure by which any perfect sequence
of low-dimensional distributions can be transformed into directed possibilistic
graph (or possibilistic belief network).

Acknowledgments. The work of the author was supported by the grant GA
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