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Abstract
The Bidirectional Texture Function (BTF) is becoming widely used for accurate representation of real-world
material appearance. In this paper a novel BTF compression model is proposed. The model resamples input
BTF data into a parametrization, allowing decomposition of individual view and illumination dependent texels
into a set of multi-dimensional conditional probability density functions. These functions are compressed in turn
using a novel multi-level vector quantization algorithm. The result of this algorithm is a set of index and scale
code-books for individual dimensions. BTF reconstruction from the model is then based on fast chained indexing
into the nested stored code-books. In the proposed model, luminance and chromaticity are treated separately to
achieve further compression. The proposed model achieves low distortion and compression ratios 1:233–1:2040,
depending on BTF sample variability. These results compare well with several other BTF compression methods
with predefined compression ratios, usually smaller than 1:200. We carried out a psychophysical experiment
comparing our method with LPCA method. BTF synthesis from the model was implemented on a standard GPU,
yielded interactive framerates. The proposed method allows the fast importance sampling required by eye-path
tracing algorithms in image synthesis.
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1. Introduction

Realistic visualization of surface appearance has been one
of the main challenges in computer graphics since the early
eighties. Nowadays, with constantly increasing capabilities
of graphics hardware, increasing attention is paid in almost
all industrial sectors to such applications as computer vi-
sual safety simulations and computer aided material design.
All these applications require realistic reproduction of ma-
terial behaviour under complex illumination and viewing
conditions.

One method to capture real material appearance is based
on the measurement of reflectance with respect to varying
light and viewing directions. This so called ‘Bidirectional Re-

flectance Distribution Function’ (BRDF) was first described
in [NJH∗77]. BRDF has been compressed and approximated
by a variety of empirical and analytical models in the past
[LGC∗05]. The BRDF itself does not preserve texture in-
formation, so it is suitable only for homogeneous materials.
However, a large number of real, rough surfaces have a com-
plicated spatial structure that causes effects such as shadow-
ing, masking, inter-reflection, and subsurface scattering, all
of which vary with illumination and viewing directions.

To preserve at least some of these effects, a new representa-
tion of real-world materials, the ‘Bidirectional Texture Func-
tion’ (BTF), was presented in [DvGNK99]. A monospectral
BTF is a six-dimensional (6D) function which, unlike BRDF,
accounts for the dependence of viewing and illumination
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Figure 1: Example images rendered by the proposed BTF compression methods for illumination by point light and by different
environment maps.
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Figure 2: BTF data processing pipeline.

measurements on planar material position. An appropriately
measured BTF contains information about material proper-
ties as anisotropy, masking, or self-shadowing. Examples of
rendered images using BTF are depicted in Figure 1.

In contrast to BRDFs, BTF requires a very large amount of
data storage. BTFs take up to several giga-bytes per sample in
raw format. The storage space requirements of raw BTF data
prevents their direct use for fast rendering in modern graphics
hardware. Hence a BTF data compression that produces a
compact representation is necessary. Such a method should
provide:

• reasonably high compression ratios,

• fast random access data synthesis (convenient for GPU
implementation and rendering algorithms),

• fidelity comparable with existing BTF compression
algorithms.

In addition, the method should allow fast importance sam-
pling for high-quality rendering applications using path-
tracing algorithms, and spatial enlargement of measured BTF
samples. The processing/workflow pipeline for BTF data is
shown in Figure 2.

Contribution of the paper. In this paper, we present a
novel BTF compression technique based on efficient multi-
level vector quantization, allowing fast importance sampling
for a given viewing direction as well as efficient multi-sample
compression into a single shared database. This can be used
efficiently in rendering algorithms such as path tracing. To
our knowledge there is no other BTF compression method
that has these features.

The rest of the paper is organized as follows: The fol-
lowing section describes the basic terminology used in the
paper. Section 3 outlines prior work in the fields of BTF
compression and importance sampling. Section 4 explains
individual parts of the proposed model. Section 4.1 proposes
a novel BTF data parametrization and interpolation. In Sec-
tion 4.2, a vector quantization algorithm of interpolated data
is explained, and this is followed by a description of a novel
multi-level vector quantization method introduced in Sec-
tion 4.3. Section 4.4 discusses a similarity measure applied
throughout the model for BTF and BRDF data. Section 4.5
describes the use of scalar quantization to achieve further
compression. The GPU implementation is briefly described
in Section 4.6. Properties of the model and its application
to fast importance sampling are discussed in Section 5. The
results of our method are described in Section 6. A compar-
ison of the method with other existing methods is shown in
Section 7. Section 8 concludes the paper.

2. Basic Terminology and Notation

In this section, we describe basic terminology and notation
used in the paper. The incoming light direction is denoted by
ωi = [θi, ϕi] and viewing direction by ωv = [θv, ϕv]. BRDF
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is a four-dimensional (4D) function BRDF (ωi, ωv) and has
two main important properties [DF97]. The first one is the
Helmholtz reciprocity rule stating that if the illumination and
viewing direction are reversed, the value of the BRDF should
not change. The second property is the energy conservation
law, which states that the ratio of total outgoing radiance
from the material and incoming total radiance from the light
sources must be less than or equal to one for all possible
illumination directions.

Monospectral BTF is a 6D function, BT F (x, ωi, ωv),
which unlike BRDF, accounts for the dependence of viewing
and illumination measurements on planar material position
x = [x, y]. BTF can be decomposed into a set of illumination
and viewing direction dependent texels specifying pixel-wise
BRDFs. We will describe such a texel as an apparent BRDF
and denote it as Fx(ωi, ωv) in this paper. Contrary to BRDF,
due to masking, shadowing, etc. effects the apparent BRDF
does not fulfill the Helmholtz reciprocity rule [MMS∗04],
i.e. the role of illumination and viewing direction cannot
be interchanged without any effect on a reflectance value.
In general, the energy balance is also not preserved. This
happens due to such effects as occlusion and masking or
subsurface scattering inside a rough material structure.

3. Previous Work

In this section, we review relevant BTF compression methods
and importance sampling algorithms for reflectance data.

3.1. BTF compression methods

Since the main purpose of this paper is to introduce a novel
BTF compression technique we discuss here the principles
and basic properties of methods for BTF compression. These
methods can be roughly divided into the three following
groups.

The first group is based on linear basis decomposition. This
approach was presented by Koudelka et al. in [KMBK03].
Individual BTF images are ordered into the columns of a ma-
trix. The corresponding symmetric matrix is created and sub-
sequently decomposed using SVD. The compression method
of [VT04] decomposes BTF space, ordered into tensor, by
means of multi-modal SVD. Even though both methods en-
able realistic BTF rendering, they are not suitable for fast
BTF applications since they require linear combinations of
a large number of components. In [SSK03] the principal
components for BTF images with the same view position
are computed separately. [MMK03] exploited vector quan-
tization of BTF data-space while each resulting cluster was
represented by a local PCA model. This method was also ap-
plied for compression of psychophysically reduced BTF data
in [FCGH08]. Another BTF vector quantization approach
based on azimuthal rotation of resampled data Fx was men-
tioned in [KM06]. In [LM01] introduced a BTF recognition

method that captured surface appearance under different illu-
mination and viewing conditions by using three-dimensional
(3D) textons constructed by means of K-means clustering of
responses to selective linear filters applied at individual pla-
nar positions in BTF. This idea was exploited by [TZL∗02]
for BTF compression and fast rendering. The same authors
[LZT∗04] extended the method with a scheme for reduction
of response vectors based on SVD. [MCT∗05] presented an
approach for BTF LOD rendering based on a Laplacian pyra-
mid of resampled BTF data compressed by PCA. Recently,
[RK09] applied K-SVD algorithm to decompose a mas-
sive BTF data tensor into a small dictionary and two sparse
tensors.

The next group of compression methods represents BTF
by means of analytical reflectance models. The pioneering
work was done by [MLH02], who represented the reflectance
of each pixel in BTF using the Lafortune reflectance lobes
[LFTG97] parametrized by both view and illumination di-
rection. A similar method using an additional look-up table
to scale reflectance lobes and handle shadowing and mask-
ing was published in [DLHS01]. The spatial inconsistency of
individual pixels in BTF for different view directions led to
separate modeling of BTF images corresponding to only one
view direction. [MGW01] represented each pixel in BTF by
means of per-pixel polynomials. [MMK03] fit BTF by several
pixel-wise Lafortune lobes for fixed viewing direction. The
lobes are used only for fitting luminance values, which are
used to modulate an albedo-map of individual colour chan-
nels. In [FH05] only one lobe is used per colour channel.
The obtained results are then corrected by means of poly-
nomials representing histogram matching functions between
original and restored images. A similar method proposed in
[ND06] uses a combination of histogram matching and steer-
able pyramids for sparsely sampled BTF compression. The
BTF compression technique proposed in [MCC∗04] models
average BTF reflectance by the Phong model. Differences be-
tween the model and the original BTF are stored in residual
BTF textures that are approximated by appearance pertur-
bation parameters. BTF volumetric compression by a stack
of semi-transparent layers through the surface texture was
presented in [MK06].

The final group of compression methods achieved even
better compression ratios and were based on probabilistic
BTF modeling [HF07]. All of these models approximate
a regular rough structure dependent on illumination posi-
tion by means of a combination of a displacement filter
and Markov random field-based texture synthesis of BTF
subset images. Although these methods allow synthesis of
arbitrary resolution BTFs, and reach impressive compres-
sion ratios, they sometimes compromise the visual quality
of highly non-Lambertian materials. These methods also
do not allow fast data synthesis for random access of in-
dividual apparent BRDFs. A recent comparison of some
of the methods reviewed here is shown in a BTF survey
paper [FH09].
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Figure 3: The proposed BTF model scheme illustrating dependencies of individual VQ code-books.

Although all the above mentioned methods allow very
fast BTF rendering, they mostly achieve relatively moderate
compression ratios, less than 1:200. Only some of them allow
fast GPU implementation, only two ([LM01, KM06]) use a
variant of vector quantization, and only a few of them allow
importance sampling of BTF without reconstruction. Our
method is designed to provide all the features required for
CPU-based and GPU-based rendering algorithms.

3.2. Importance sampling

For random walk algorithms [DBB03] such as path tracing
and bidirectional path tracing an efficient importance sam-
pling algorithm according to material reflectance is necessary
to reduce the variance of integral estimates.

Below we review the most relevant work on importance
sampling for BRDF data. Lawrence et al. [LRR04] described
the method of fast importance sampling of BRDF based on
non-negative matrix factorization. The terms of this factor-
ization are then used for the computation of cumulative dis-
tribution functions (CDF). This method provides much better
results for the same number of samples than sampling based
on CDF computation using analytical BRDF models, and a
more compact representation than sampling based on tabu-
lating the full BRDF. Another technique for reducing the size
of tabulated CDF, by one to three orders of magnitude, based

on a curve approximation algorithm is presented in [LRR05].
Another method based on non-linear PCA is presented in the
thesis of Matusik [Mat03, p.107].

To the best of our knowledge, no other paper achieves
fast importance sampling of highly compressed BTF data.
Obviously, the importance sampling of BTF can be imple-
mented for any BTF compression method by the inverse
transform method [Fis96, DBB03] reconstructing apparent
BRDF and computing CDF. We tested such an approach for
[SSK03]; it is about 300 times slower than the direct support
of BTF importance sampling in the proposed compression
model.

4. A Novel BTF Model

The scheme of the proposed BTF model is shown in Figure 3.
The compression scheme is based on subsequent decomposi-
tion of 4D, 3D, two-dimensional (2D) and one-dimensional
(1D) slices of BTF data. These slices are obtained by re-
sampling original BTF data to a novel parametrization of
illumination and viewing directions. The model’s compres-
sion is achieved by vector quantization of slices to individual
dimensions to obtain a set of code-books. These code-books
work as nested look-up tables of indices and scales of the in-
dividual slices while only the code-books at the lowest level
contain the resampled original BTF data.
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4.1. Model parametrization

The key motivation of the model was to propose a light di-
rection parametrization over a hemisphere that enables not
only efficient data compression but also fast rendering and
importance sampling. In addition, as the proposed model
decomposes the function to parts in the individual dimen-
sions separately, we want to align the data at these individual
dimensions.

We considered several different parametrizations proposed
for BRDFs, e.g. half-angle parametrization by Rusinkiewicz
[Rus98], by Stark et al. [SAS05] and by Edwards et al.
[EBJ∗06]. However, we decided to abandon them for three
reasons. First, the published parametrizations do not pre-
serve monotonicity between the generated direction and the
bivariate uniform variable in the input domain. That is, when
we generate a similar pair of random numbers we want
to get a similar generated direction for all random pairs.
This is discussed in more detail in Section 5.2. Although,
parametrization proposed in [HDS03] preserves the mono-
tonicity it would be complicated to use it the proposed multi-
level quantization scheme. Second, many BTF samples have
distinct properties from BRDF samples. We found experi-
mentally by visualization that since BTF also captures the
geometry of the surface, the alignment of the data features is
not the same as for BRDF data measured on a smooth sur-
face. Typically, there can be several specular highlights that
are not aligned with the direction of an ideal reflected ray.
Therefore the conditions are not satisfied under which other
parametrizations such as halfway vector disk parametrization
[EBJ∗06, SAS05, Rus98] were proposed. The third reason is
that we want to compress not only one but many apparent
BRDFs. We want to align their perceptually similar features
as we expect similarity among apparent BRDFs across a BTF
sample. Hence the design of the parametrization proposed
here specifically for BTF data compression is tightly cou-
pled with a multi-level vector quantization method described
in Section 4.3.

The proposed parametrization defines BTF slices that can
be represented as conditional probability density functions
(PDF). These PDFs are treated as input data into the vector
quantization scheme proposed in the Section 4.2.

The proposed [α, β] parametrization is based on an ‘onion
slices’ concept of a hemisphere of illumination directions,
as illustrated in Figure 4. The hemisphere is divided into a
set of meridian slices running between points A and B ly-
ing at its bottom part. Each slice is parametrized by angle
β ∈ 〈−π/2, π/2〉 with a zero value at the upper pole E of
the hemisphere. A uniform placement of individual 1D slices
over a hemisphere is controlled by angle α ∈ 〈−π/2, π/2〉
with zero value at the upper pole as well. A mapping
M between standard hemispherical [θ, ϕ] parametrization
and the proposed [α, β] parametrization can be stated as
follows:

(θ ,ϕ )
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[x,y]
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B

A
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 v     v
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Figure 4: Illumination direction parametrization over a
hemisphere.

M(θ, ϕ) → {α, β}
θ ∈ 〈0, π/2〉 α ∈ 〈−π/2, π/2〉
ϕ ∈ 〈0, 2π〉 β ∈ 〈−π/2, π/2〉.

(1)

A corresponding unit 3D directional vector can be specified
by means of the [θ, ϕ] and [α, β] parametrization, respec-
tively as

[x, y, z] = [cos ϕ · sin θ, sin ϕ · sin θ, cos θ ]

[x, y, z] = [sin β, sin α · cos β, cos α · cos β].
(2)

While the illumination direction ωi is specified by
[α, β], the viewing direction ωv is given by standard [θ, ϕ]
parametrization only resampled to regular sampling steps of
angles θ and ϕ. On one hand this resampling causes dense
sample distribution near the pole of the hemisphere but on
the other hand it allows direct factorization of samples along
angles θv and ϕv . Such a resampling consequently allows
better compression of underlying data samples.

Now we describe how Fx is resampled from original spher-
ical parametrization θ ′

i , ϕ
′
i , θ

′
v, ϕ

′
v

{α, β, θv, ϕv} ← M
(
θ ′
i , ϕ

′
i , θ

′
v, ϕ

′
v

)
θv = θ ′

v β = arcsin
(
sin θ ′

i · cos
(
ϕ′

i − ϕ′
v

))
ϕv = ϕ′

v α = arccos

(
cos θ ′

i

cos β

)
.

(3)

Note that the hemisphere is oriented in such a way that an
outline between points A and B is always perpendicular to
the azimuth of viewing direction ϕv . Such an arrangement
guarantees that the ideal mirrored reflection is embedded in
the plane given by points D, C and E (i.e. when β = 0).
This means that the highest probability of a steep change in
reflectance is in the middle of the slice, so this part should be
sampled more densely than its tails. In addition, we need to
achieve equitable distribution of samples on the hemisphere
in [α, β] parametrization. Due to this reason the sample dis-
tribution along β slice is not chosen uniformly according
to β angle shift (Figure 5(a)), but uniformly in cos β so
that the projection of the samples is equidistant as shown in
Figure 5(b). The poles A and B are accounted only once for
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Figure 5: Sample points distribution along the 1D slice.

2D PDF. These arrangements enable more uniform sampling
of the illumination hemisphere and avoid dense sampling
near the points A and B (see Figure 4).

In this paper, BTF data from [SSK03] were used. These
data provide uniform distribution of measurement points at
81 illumination and 81 viewing angles over the hemisphere.
Such a distribution is obtained by using variable quantization
of azimuth angle ϕ for individual elevation angles θ . These
BTF data were resampled into proposed illumination [α, β]
and viewing [θv, ϕv] direction parametrization by means of
a two-step interpolation scheme based on radial basis func-
tions [CBC∗01]. In the first step, the data for all illumination
directions ωi and the fixed viewing direction ω′

v = [θ ′
v, ϕ

′
v]

are interpolated, and these interpolated values for all combi-
nations of α and β angles are then interpolated into a new
ωv = [θv, ϕv] viewing direction discretization. The resulting
data (see example in orange part of Figure 3) are then used as
direct input into the proposed multi-level vector quantization
based BTF model.

4.2. Vector quantization

The proposed BTF compression model is based on the prin-
ciple of lossy block coding often referred to as vector quan-
tization (VQ) [GG92]. VQ is based on an assumption that a
set of data vectors can be represented by its representative
subset – the code-book. This subset is obtained by represent-
ing similar vectors m by a suitable code-vector m̂ according
to a predefined maximal allowed distance. The similarity
between them is defined by a distance measure d(m, m̂) > 0.

Let us mention the important theorem for lossy compres-
sion methods related to our work [GG92, p.313]: When the
code-book is set optimally then no other coding system ex-
ists that can do better than VQ. So a careful design of the
code-vectors is the main issue. Even if we cannot claim the
selection of thresholds to be optimal in the proposed algo-
rithm, this theoretical result both motivates and justifies the
use of vector quantization in lossy compression schemes,
including our proposed BTF data compression scheme.

In this paper, a vector code-book is based on selective
elimination of input data-vectors until a final set of input data-
vectors remains as the code-book, a procedure also known
as pruning [TG74]. This idea of code-vectors generation can
be explained as:

1. Put the first input data-vector V1 in the empty code-book

2. With each new input data-vector Vx , find the nearest
code-vector VNN in the code-book

3. If the minimum found distance between the vector Vx

and VNN is not within some threshold ε, add the input
data-vector Vx to the code-book and return its index.
Continue to 2. Else return index of the nearest code-
vector VNN . Continue to 2.

The selection of a distance measure appropriate for input
data and the setting of the corresponding threshold ε have a
crucial influence on the performance of the vector quantizer.

4.3. Multi-level vector quantization

Now we can connect all the building blocks described above
and explain our BTF compression model. As input data a Fx is
converted from original θ ′

i , ϕ
′
i and θ ′

v, ϕ
′
v data parametrization

into a novel parametrization [α, β] and [θv, ϕv] as described
in Section 4.1. An example of Fx for lacquered wood material
is depicted in the orange part of Figure 3.

The general scheme of the proposed BTF model is shown
in Figure 3. The resulting 4D function Fx(α, β, θv, ϕv) is de-
composed along a viewing azimuth angle ϕv into a set of 3D
functions. Similarly, each 3D function is decomposed along
a viewing elevation angle θv into a set of 2D functions. Each
2D function describes the behaviour of material reflectance
along all slices in [α, β] parametrization, where data of a
single slice can be considered as a 1D function. To enable
perceptually correct matching of individual data patterns and
sharing of some common material features, the input BTF
data were converted from standard RGB space into more
perceptually uniform colour space. YCrCb colour space was
used for LDR BTF samples and LogLUV [Lar98] for HDR
BTF samples.

The advantage of both colour models is mutual indepen-
dence of luminance and colour channels that can be treated
and compressed separately. In the rest of the paper, regard-
less of the colour-space that is used the luminance channel is
denoted by L and chromaticity channels by a and b.

The original 1D, 2D, 3D and 4D luminance functions are
normalized to obtain corresponding conditional probability
functions (PDF), which are used as training vectors for our
VQ scheme. The proposed BTF model is based on BTF data
decomposition into several code-books of indices and scale
coefficients, while only the code-books on the lowest level
contain the resampled original BTF data as 1D vectors.

The vector quantization of luminance BTF data is car-
ried out separately for individual dimensions as shown in
Figure 3. As a result of 1D PDFs quantization we obtain
code-book P1(size S1 × nβ ) of normalized 1D data slices
along illumination angle β. This code-book is indexed by
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the P2(size S2 × nα) code-book of 2D PDFs representing lu-
minance values where each item contains indices and scales
cP2 of individual 1D slices along illumination angle α in
P1. Items in P2 are indexed from the auxiliary code-book
M(size SI2 × 2). M in fact only merges indices pointing into
luminance and colour code-books (P2 and I2) and is indexed
from the code-book of 3D PDFs P3(size S3 × nθv

), where for
each item indices and scales cP3 corresponding to viewing
angle θv are stored. The Fx encoding is finished by the last
shared code-book P4(size S4 × nϕv

), which provides items
corresponding to viewing angle ϕv with indices and scales
cP4 to P3.

Chromaticity channels a and b (Cr/Cb or U/V) of BTF data
are quantized in a slightly different way. The C(size SC ×
2) code-book stores basic a and b colour values. Possible
colour variations along 1D slices are described in items of
the I1(size SI × nβ ) code-book and the corresponding colour
can be looked-up by indexing into C. Colour variations for
all illumination directions are obtained by means of items of
the I2(size SII × nα) code-book. Each such item of length
nα determines which colour variations from I1 are used for
individual positions of angle α.

The code-books P2 and I2 are stored separately to allow
the use of different colour variations for the same luminance
distribution over a hemisphere of different illumination di-
rections. This arrangement also makes it possible to save
considerably fewer P2 slices when, e.g., BTFs of similar
material structure but different colour are encoded. The lu-
minance and colour information is merged by means of the
auxiliary code-book M indexed from P3. M contains only
index to P2 and index to I2. The remaining P4 and P3 code-
books have the same function as in the luminance channel.

During BTF compression, individual Fx are compared
with reconstructed F̂x in P4 by means of nested indexing
through all code-books. If a similar code-vector is not found,
Fx is decomposed into a set of less dimensional slices and
the same process continues on all levels of the model either
until the similar slice is found, or the P1 or C code-books
are reached. Then the new unique data are inserted into the
code-book P1 in the form of a luminance vector of length nβ

along a slice parametrized by angle β or a chromaticity in the
code-book C. The insertion to P1 and C corresponds to stan-
dard vector quantization. During insertion the data-vector is
compared so that the luminance is normalized in both the
inserted data-vector and the data-vector in the code-book.
When the match is found, this then provides a corresponding
scale for upper-level code-book.

All the code-books described so far enable efficient coding
of colour Fx and can be shared by more BTF samples (i.e.,
materials). However, individual apparent BRDFs Fx do not
provide any information about sample structure, so for coding
of an entire BTF a material-specific planar index is needed.
Such an index is obtained by VQ of individual Fx and stored
in a form of P6(nxm

× nym
) code-book where nxm

× nym
is

Figure 6: Pixel reconstruction in a fragment shader.

the spatial resolution of the mth BTF sample. P6 contains an
index to P4 together with its scale value cP6 .

The scale values are used for scaling of the stored PDFs
to obtain correct reconstruction of 4D PDF function, i.e. Fx,
in the form of a compound function as follows

cscale = cP6 · cP4 · cP3 · cP2

k = P3(P4(P6(x, y), ϕv), θv)

FxL = cscale · P1(P2(M(k, 1), α), β)

Fx{a,b} = C(I1(I2(M(k, 2), α), β), {1, 2})
Fx{L,a,b} → Fx{R,G,B}.

(4)

A scheme of pixel value reconstruction and interpolation is
shown in Figure 6.

4.4. Similarity measure

For VQ in the proposed BTF compression model we need
a similarity measure between the input data-vector and the
stored code-vector; this is of crucial importance for the com-
pression algorithm. The data-vector corresponds to either a
1D, 2D, 3D or 4D slice of Fx of BTF at a given planar position.
As the proposed BTF compression model can use any similar-
ity measure, we studied and tested several possibilities. The
first group of measures comes from comparing probability
density functions (PDF), as BTF data decomposed to Fx cor-
respond to the PDF. We have been experimenting with a num-
ber of similarity measures (i.e. distance functions), includ-
ing f-divergences [RFS03] (e.g. Hellinger distance [Hel09]
and total variation) and information based distances (mutual
information and entropy). The second group of measures in-
cludes traditional distances for comparing functions. It is for
example Euclidean distance corresponding to MSE, which is
related to the power of a function when viewed as a signal.
As a third group of measures we tested similarity measures
developed in the perception for visual image quality assess-
ment. Below we describe our final choices for this paper,
but the selection of the optimal similarity measure in BTF
compression remains an open problem.
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4.4.1. BRDF data compression

As BRDF data lacks the spatial neighborhood information,
we decided to use the mean square error (MSE) as a distance
function between the original and the compressed data. The
computation of MSE, which corresponds to computing Eu-
clidean distance, has one big advantage. We can specify for
each code-book P1, P2, M, P3 and P4 the maximum MSE
that is acceptable for compression. This allows us to effec-
tively control the maximum MSE achieved for each BRDF
sample. While the maximum MSE for P4 is user specified,
the MSE thresholds for other code-books are smaller by mul-
tiplicative constants such as 0.4 and squares of multiplicative
constants among code-vectors. This is possible thanks to the
function decomposition scheme described in Section 4.3.

The MSE for P4, P3 and M is computed directly in sRGB
colour space according to the definition of MSE, but the
MSE for P2 and for P1 is computed for luminance only. The
thresholds for code-books I1, I2, C of colour components of
YCrCb/LogLUV space are set to small constants; I2 thresh-
old = 0.5, I1 threshold = 0.2, C threshold = 0.1.

4.4.2. BTF data compression

After experiments with several similarity measures we finally
decided to analyze BTF samples using a structural similarity
index measure (SSIM) [WBSS04], which compares in power
to other visual assessment methods such as a visible differ-
ence predictor [Dal93]. Another advantage of SSIM over
other standard image quality measures as MSE, PSNR, etc.
is that SSIM also takes into account both the surroundings of
the compared pixels and local visual masking effects. SSIM
measures the local structure similarity in their local neigh-
borhood of an R × R window of pixels in an image (usually
11 × 11, [WBSS04]). The basic idea of SSIM is to sepa-
rate the task of similarity measurement into comparisons of
luminance, contrast, and structure. These independent com-
ponents are then combined into one similarity function

SSIM(x, y) = (2μxμy + C1)(2σxy + C2)(
μ2

x + μ2
y + C1

) (
σ 2

x + σ 2
y + C2

) , (5)

whose formulation should be qualitatively consistent with
human perception of difference. Where μx, μy, σx, σy and
σxy are mean values, standard deviations, and mutual variance
of values in the local neighbourhood of compared images
X and Y . C1, C2 are specific non-zero constants. The valid
range of SSIM for a single pixel is [−1, 1], with higher values
indicating higher similarity. When the local neighbourhood
is evaluated for each pixel we obtain the SSIM difference of
two images (or two sets of images) as a mean value of SSIM
values across all pixels. This mean value is understood as
MSSIM in the rest of the paper.

The MSSIM is computed for P2 and for P1 over lumi-
nance only, for P4, P3 and M in YCrCb/LogLUV colour
space, for I1 and I2 and C in two chromaticity channels

of YCrCb/LogLUV colour space. We tested the method of
weighting MSSIM values from three channels using the fol-
lowing weights {Y,LogL} = 0.8 and {Cr,U,Cb,V} = 0.1 as
proposed in [WLB04]. However, as the weighting method
appeared not to be discriminative enough for chromaticity of
colour images, we propose a different method. For example
for P4 we compute MSSIM for all three channels (e.g Y, Cr
and Cb) for all combinations of viewing and illumination
direction for the selected discretization over the hemisphere,
which yields 3 × nϕv × nϑv × nα × nβ values. As a simi-
larity measure, we then compute the 98th-percentile from
MSSIM values for all three channels. The 50th-percentile is
the median and the 100th-percentile is the maximum error
for a set of values, which corresponds to the worst similarity.
In our approach we allow only 2% of outliers.

The proposed approach is computationally efficient, as it
allows us to prune the vector comparisons during the search
as soon as we achieve the percentile value already found as
the current best in the code-book found. The Nth-percentile of
MSSIM values is consistently computed over all code-books
either from luminance (P2, P1), two chromaticity channels
(C, I2, I1), or all three channels (P4, P3, M).

The decomposition of PDF to levels during insertion of
new code-vectors is natural for the percentile method. For
example, when a code-vector Vx for P4 is constructed from
P3 vectors using the proposed percentile method given a
threshold εP 3, it is assured that the constructed code-vector
Vx has a similarity measure smaller than εP 3. Therefore, there
is no need for a multiplicative factor for thresholds, as is the
case for the MSE method described in the previous section.

4.5. Scalar quantization and compact indices for
code-books

Scalar quantization. During compression, we store the in-
dices and scale values in code-books simply by 32-bits for
an integer index and for floating point in 32-bits in IEEE-754
format. However, the scale values are limited to a small range
of values in the majority of code-books. Therefore, after the
BTF sample is compressed, we apply a simple scalar quan-
tization [GG92] for floating point values. First, we compute
minimum and maximum values stored in each code-book
separately. For simplicity and ease of decompression we use
scalar quantization to 8 bits for LDR BTF samples for all
levels, as the original data also have only 8 bits precision.
For HDR BTF samples it is necessary to increase the preci-
sion for P2 to 16 bits. The maximum relative error of a value
due to the scalar quantization is far below 1% in all cases,
typically the relative error yields values in range from 10−4

to 10−3.

Compact indices. Similarly, the size of code-books is re-
duced. Therefore the index in a code-book Pi pointing to
another code-book Pi−1 of size Si−1 can be represented only
by N = 
log2 (Si−1)� bits.
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Table 1: BTF decompression speed in frames per second on CPU
and two GPUs for point light and three objects. The texture resolution
is 1024 × 1024, window size is 800 × 600 pixels.

CPU ATI Mobility NVIDIA
Intel C2D RadeonTM GeForce

3D model 2 GHz ×1600 8800 GT

Bunny (2k faces) 2.0 18 92
Sphere (7k f.) 1.2 10 170
Dragon (115k f.) 1.1 8 10

The final representation of BTF data comprising scalar
quantized data and compact indices is saved to a file. Both
scalar quantization and shorter indices substantially improve
compression and the impact is shown in the results section,
as documented in Table 2. We verified experimentally that
the used scalar quantization that we used does not reduce the
visual quality for either the LDR or the HDR BTF data.

4.6. CPU/GPU implementation

The BTF reconstruction is similar on CPU as well as on
GPU. The GPU implementation works on both GL shading
language and CUDA platforms. As GPU implementation is
more specific we discuss it more in detail. The individual
code-books were stored in rows forming stripes of widths
nα . . . nθv

in RGBA channels of four 16-bit integer textures
(indices of P6, P4, P3, P2, M, I2, I1) and two 16-bit float-
ing point textures (scales of P6, P4, P3, P2 and data of
P1 and C). Texture resolution depends on sizes of individ-
ual code-books. The textures of 2048 × 2048 pixels were
sufficient for all tested samples. We use two indices for
texture indexing – x specifies which vertical stripe to use
and y specifies the row in the stripe. The reconstruction of
each pixel was implemented by chained indexing and inter-
polation of values from code-books and YCrCb/LogLUV
to RGB conversion in a fragment program as shown in
Figure 6. To avoid visible seams on the rendered objects,
the correct value at each database level for given illumina-
tion/view angle (α, β, θv, ϕv) was computed as linear inter-
polation between the two closest values m, n corresponding
to discretization of individual angles (Figure 6). Due to this,
the reconstruction of a single pixel for arbitrary given illu-
mination/view directions requires 47 reads of integer texture
(1 × P6, 2 × P4, 4 × P3, 8 × M, 8 × P2, 8 × I2, 16 × I1)
and 63 reads of float texture (1 × P6, 2 × P4, 4 × P3, 8 ×
P2, 32 × C, 16 × P1). No further interpolation of illumi-
nation/view directions is required. The performance of our
CPU and GPU implementation is shown in Table 1.

5. Discussion

This section discusses features of the proposed model and its
application for importance sampling of BTF data.

5.1. Vector quantization scheme

There are several advantages of the proposed model. The
reconstruction of BTF values is computed by fast chained in-
dexing in individual code-books. The individual code-books
of luminance and colour slices and their indices can be shared
by an arbitrary number of BTF samples and can therefore en-
able even higher compression. Theoretically, the more BTF
materials are compressed, the higher the compression ra-
tio that could be achieved. Data compression is carried out
on all levels of the proposed model and can be effectively
controlled by dedicated thresholds. We set the thresholds in
such a way that the low-level code-books contain most of the
code-vectors. Note that the higher the compression ratio, the
shorter is the compression time, since individual code-books
have fewer items to be evaluated. In contrast methods based
on PCA [MMK03, VT04] or spherical harmonics [WL03],
which have predefined compression ratios, our approach can
adapt to variance in input data-vectors and can keep the rela-
tive error constant (given by the predefined thresholds ε of the
required MSE or SSIM error). In addition, whenever a new
BTF sample arrives it can be easily processed by our model,
using some scaled variant of already stored code-vectors
if possible, and adding some of its own typical luminance
and/or colour characteristics. This is much more difficult, or
even not feasible, with the other methods mentioned above.
Furthermore, the compressed BTF can be spatially enlarged
using any pixel or patch-based texture synthesis algorithm
applied to the P6 code-book.

5.1.1. Generation of optimized code-books

The order of processing apparent BTFs across a BTF sam-
ple has a large impact on the final results. To guarantee that
code-books describe a perceptual variety of pixels across a
whole BTF sample, and to ensure a sufficient compression
ratio, the individual code-books are generated in a three-
step progressive sampling algorithm. First, a small set (e.g.
1%) of apparent BTFs Fx across the whole BTF sample is
randomly progressively sampled from BTF data with a pre-
defined threshold and is used in the VQ scheme. The samples
are taken from a Halton pattern. Second, the threshold is in-
creased (e.g. by 2.5 times) and the same process is repeated
for a larger set of Fx (e.g. 4%), again for the whole BTF
sample. In the third step we do not modify the code-books
and compress the rest of the pixels (e.g. 95%) in any order.

Let us describe the motivation for the necessity of the
three-step sampling progressive algorithm. The sampling
strategy in the first step samples the material and creates
the representative code-books to capture the visual appear-
ance of the whole BTF sample with sufficient quality. In the
second step we add to the code-books the remaining relevant
visual features that have been undersampled in the first step.
We process only a small portion of the whole BTF material
in the first two steps, and we fix the code-books for the third
step. This way we guarantee that the compression ratio will
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remain sufficiently high, irrespective of the thresholds that
are selected. The selection of the thresholds then influences
the visual quality that is achieved. This appears to be simi-
lar for setting the same thresholds and using different BTF
samples.

The number of generated items in individual data sets can
become so high that finding the closest code-vector can be
very slow. For BRDF data comparison we take advantage of
the fact that we are using MSE, which is a true metric, and so
we address this problem by implementing a dynamic version
of the LAESA method [MOV94] (see book [Sam06] for
other nearest neighbor search algorithms in high dimensional
spaces). For SSIM and 98th-percentile the efficient search
pruning is implemented as described in Section 4.4.

5.1.2. Thresholds setting

A common problem of all VQ algorithms is finding the op-
timal quantization thresholds that provide either a required
compression ratio or satisfy a defined quality measure. In our
case, such a measure is the computational model of perceived
difference between rendered images using the VQ BTF com-
pression scheme and images rendered using the original BTF
data. When MSE is used as similarity measure, the maximum
MSE difference allowed or required for each generation of a
code-book is specified by a user.

When SSIM is a similarity measure the situation is also
simple, because the measure directly estimates the perceptual
difference between the original and the modeled data. The big
advantage is that no material-specific setting is required and
we can again set required generic SSIM thresholds for indi-
vidual code-books. To summarize, the setting of thresholds
effectively controls the trade-off between the compression
ratio of the proposed VQ compression scheme and the visual
fidelity of the resulting rendered images. There is an obvi-
ous limitation of our current approach – the SSIM is only a
mathematical model of visual fidelity given two images. So
the visual fidelity achieved is limited by accuracy of SSIM.
The ranking of visual fidelity can be only approximate.

5.1.3. Mipmapping

Since rendering at different scales is important for direct vi-
sualization of BTF data on the visible object, it is necessary to
address an anti-aliasing. In our model, mipmapping [Wil83]
can be used in the same way as for ordinary textures. The re-
flectance data are averaged, and the data are compressed from
fine scale to coarse scale, each level separately. This requires
extension of the spatial index P6. Obviously, the compres-
sion ratio is decreased up to one third as for standard texture
mipmapping. The speed of decompression is also decreased
as more data need to be accessed.

5.2. Importance sampling

Importance sampling is not supported by current BTF mod-
els, but our algorithm design allows it efficiently. It is imple-
mented via a standard inverse transform method for discrete
PDFs [Fis96] directly from the P2 code-book, without the
necessity to compute the 2D PDF, as in for several other
BTF compression methods. The proposed parametrization
over 2D slices guarantees that for strictly positive values Fx,
and given the viewing direction ωv and a couple of random
numbers ξ1,2 ∈ [0 − 1]2, we can generate the illumination
direction ωi . The implementation computes cumulative dis-
tribution functions (CDF) along 1D slices in P1 for ξ1, and
similarly CDF for across particular 2D slices in P2 for ξ2. The
probability density values have to be properly interpolated
because of the discretization in θv and ϕv .

In contrast to [Mat03, LRR04, EBJ∗06] our hemispheri-
cal parametrization of apparent BRDF allows us to preserve
monotonicity between the generated direction and the bivari-
ate uniform variable in the input domain, and avoids discon-
tinuities at the same time (only for the hemisphere). If for
random numbers ξ1, ξ2 the function generating direction is
ωi = DirIS(ξ1, ξ2), then it holds limδ1→0,δ2→0 |DirIS(ξ1 +
δ1, ξ2 + δ2) − DirIS(ξ1, ξ2)| = 0 for ∀ξ1, ξ2 ∈ [0, 1]2. In-
formally, for a small change of input random variables we
get also a small change of the generated direction as a result
of importance sampling. This is important for adaptive im-
portance sampling schemes, in particular for those based on
quasi-Monte Carlo numbers, as the importance sampling al-
gorithm does not increase the intrinsic dimensionality of the
problem solved. Therefore the variance of the mean estimate
is not increased by the importance sampling algorithm.

The sampling from the proposed parametrization allows
fast sampling for a given viewing direction. This is the most
frequent importance sampling required in path-tracing and
photon mapping, when tracing the rays from the camera
towards the scene. For the other case of importance sam-
pling, given the illumination direction, we have two options.
First, we can use a standard inverse transform method for
the values of 2D PDF reconstructed over the hemisphere in
the parametrization as [α, β]. Because importance sampling
given illumination direction is much less frequently used in
rendering algorithms (for example, only for shooting photons
in photon mapping), the proposed data organization is more
efficient for most rendering applications. Second, to achieve
the fast importance sampling for both cases it is possible to
compress the BTF data twice – first for the fixed viewing
direction and second for fixed illumination direction. This
approach decreases the compression ratio by half.

In addition, the proposed parametrization allows fast com-
putation of albedo [NJH∗77] for a viewing direction using

a(x, ωv) =
∫



Fx(ωi, ωv) cos θidωi (6)
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Table 2: Comparison of our method with three other methods in terms of compression ratio and MSSIMW [WBSS04] values in YCrCb space
for all tested materials. The range of MSSIM is 〈0.0, 1.0〉, where value 1.0 corresponds to equal images. C.R.1 is the compression ratio for
representing code-book indices by 32-bits and floating point values by 32 bits. C.R.2 is the compression ratio for representing indices by
minimum numbers of bits and floating point values by 32 bits. C.R.3 is the compression ratio for representing indices by 32 bits and floating
point values by 8 bits except P2 where 16 bits are used for HDR samples and 8 bits for LDR samples. C.R.4 and size4 is the compression ratio
and the compressed size of BTF sample for representing indices by minimum numbers of bits and floating point values by 8 or 16 bits in the
same way as for C.R.3. Compression ratio C.R.5 uses the same representation as C.R4, but several BTF samples are compressed together for
sharing luminance characteristics. The combined compression yields improvement in compression ratio by 14% for 13 LDR materials and 41%
for 4 HDR materials. The visual quality is not changed for different representations of data in the proposed algorithm.

BTF Our Our Our Our Our Our size4 Time Our PCA LM LPCA‡

No sample C.R.1 C.R.2 C.R.3 C.R.4 C.R.5 (Bytes) (hours) SSIM SSIM SSIM SSIM

1 alu∗ 1:253 1:399 1:453 1:1002 – 80 460 0.39 0.850 0.929 0.882 0.941
2 corduroy 1:128 1:246 1:173 1:418 1:484 3 084 692 19.2 0.748 0.921 0.898 0.916
3 fabric1 1:117 1:181 1:188 1:362 1:419 3 558 788 29.3 0.737 0.915 0.889 0.915
4 fabric2 1:217 1:342 1:353 1:710 1:822 1 815 996 18.1 0.779 0.994 0.987 0.993
5 foil1 1:574 1:918 1:950 1:2040 1:2364 632 352 19.5 0.859 0.924 0.893 0.923
6 foil2 1:334 1:527 1:553 1:1138 1:1319 1 133 896 17.2 0.814 0.995 0.990 0.994
7 impalla 1:162 1:249 1:269 1:522 1:604 2 466 808 21.8 0.730 0.971 0.959 0.970
8 leather 1:366 1:581 1:601 1:1244 1:1441 1 036 352 17.2 0.802 0.994 0.992 0.994
9 proposte 1:236 1:418 1:349 1:806 1:934 1 599 412 18.0 0.710 0.990 0.979 0.988

10 pulli 1:87 1:131 1:141 1:264 1:306 4 873 008 27.1 0.699 0.964 0.950 0.955
11 wallpaper 1:222 1:369 1:340 1:728 1:843 1 771 420 28.8 0.776 0.955 0.940 0.963
12 wood1 1:101 1:247 1:118 1:352 1:408 3 664 060 22.3 0.866 0.827 0.789 0.811
13 wood2 1:75 1:200 1:87 1:278 1:322 4 625 772 17.2 0.886 0.954 0.892 0.957
14 wool 1:77 1:153 1:95 1:233 1:270 5 514 260 50.2 0.684 0.969 0.953 0.964
15 ceiling♦ 1:235 1:451 1:345 1:780 1:1102 2 653 188 20.1 0.711 – – –
16 floortile♦ 1:136 1:217 1:197 1:360 1:509 5 383 352 28.7 0.772 – – –
17 pinktile♦ 1:711 1:1028 1:1258 1:2267 1:3205 853 496 15.6 0.961 – – –
18 walkway♦ 1:102 1:149 1:147 1:257 1:363 7 514 860 37.4 0.884 – – –

1:230 1:378 1:368 1:764 1:924 Average C.R. – 1:14 1:16 1:275

∗Sample size 64 × 64 only, ♦HDR sample.
‡Computed 128 × 128 pixels only due to extreme computational demands.

where  comprises hemisphere (aligned with surface nor-
mal) of applicable illumination directions.

6. Results

For our experiments we have used BTF data from the Uni-
versity of Bonn [SSK03]. Individual BTF measurements in
low dynamic range (LDR) and high dynamic range (HDR)
have spatial resolution 256 × 256 and angular resolution
|ωi | × |ωv| = 81 × 81. Single BTF material in RGB for LDR
data (8 bits per colour channel) takes up to 1.2 GBytes. HDR
data are considered to have resolution 12 bits per colour
channel (1.8 GBytes per material).

During BTF rendering for arbitrary viewing and illumi-
nation directions a linear interpolation between sampled Fx

points is carried out in each code-book separately. All re-
sults presented in the paper were computed for discretiza-
tion nα = 11, nβ = 11, nθv

= 7 and nϕv
= 16. We used this

discretization to capture original BTF measurements accu-
rately enough (81 × 81 = 6561 < 13552 = 11 × 11 × 7 ×
16). We report here the results without the mipmapping de-
scribed in Section 5.1.3

The model synthesis is fast as it implements conditional
look-ups into stored code-books with additional interpolation
for arbitrary ωi, ωv and conversion from YCrCb to RGB
colour-space (4). We use linear interpolation between two
closest values in all code-books. Implemented on a CPU, our
model yields 310 000–1 360 000 BTF evaluations per sec-
ond, depending on the coherence of queries. According to
our comparison, it is about 1.5 times faster than the stan-
dard single-lobe Lafortune model [LFTG97] computed sep-
arately in all RGB channels and for individual ωv [FH05].
All the tests in this section were performed on a single core
of PC with the processor 2.83 GHz, Intel(R) Xeon(R) CPU,
6 MBytes L2 cache and 16 GBytes RAM DDR2 400 MHz.

The performance of the proposed model GPU implemen-
tation was tested on two graphics cards and their results for
various 3D objects are shown in Table 1, side-by-side with
reference speed of our CPU (single core) implementation.
The implementations performs BTF decoding for a single
point light. We can obtain interactive frame-rates even for
complex 3D objects. Results suggest that performance on
GPU is dependent on surface curvature complexity as well
as on GPU texture caching algorithms.
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Table 3: The maximum sizes of code-books and achieved compression ratios for individual code-books for the proposed method. C.R. represents
overall sample’s compression ratio. The discretization used: nα = 11, nβ = 11, nθv = 7, and nϕv = 16.

BTF sample Size C.R. P1 P2 C I1 I2 M P3 P4

# Uncompressed code-vectors 5.0 × 106 4.5 × 105 5.5 × 107 5.0 × 106 4.5 × 105 4.5 × 105 6.5 × 104 4.1 × 103

alu 642 1:1002 1:3.7 × 103 1:2.7 × 103 1:2.8 × 107 1:1.0 × 106 1:1.1 × 105 1:2.6 × 102 1:1.2 × 102 1:1.2 × 102

# Uncompressed code-vectors 8.1 × 107 7.3 × 106 8.8 × 108 8.0 × 107 7.3 × 106 7.3 × 106 1.0 × 106 6.6 × 104

corduroy 2562 1:418 1:7.1 × 103 1:1.7 × 102 1:3.1 × 107 1:2.7 × 103 1:2.0 × 102 1:1.5 × 102 1:8.3 × 102 1:7.7 × 101

fabric1 2562 1:362 1:4.8 × 103 1:1.0 × 102 1:5.6 × 107 1:9.1 × 104 1:1.1 × 104 1:1.0 × 102 1:5.0 × 101 1:5.0 × 101

fabric2 2562 1:710 1:7.7 × 103 1:2.0 × 102 1:1.0 × 108 1:7.7 × 104 1:1.2 × 104 1:2.0 × 102 1:8.3 × 101 1:8.3 × 101

foil1 2562 1:2040 1:2.3 × 104 1:9.1 × 102 1:1.3 × 108 1:7.7 × 105 1:2.2 × 105 1:9.1 × 102 1:1.2 × 102 1:8.3 × 101

foil2 2562 1:1138 1:1.1 × 104 1:3.8 × 102 1:9.1 × 107 1:1.8 × 105 1:4.0 × 104 1:3.8 × 102 1:9.1 × 101 1:8.3 × 101

impalla 2562 1:522 1:3.4 × 103 1:1.7 × 102 1:6.2 × 107 1:3.6 × 104 1:1.5 × 103 1:1.6 × 102 1:6.2 × 101 1:8.3 × 101

leather 2562 1:1244 1:1.3 × 104 1:4.5 × 102 1:1.3 × 108 1:1.4 × 105 1:2.4 × 104 1:4.3 × 102 1:8.3 × 101 1:8.3 × 101

proposte 2562 1:806 1:1.4 × 104 1:2.8 × 102 1:8.3 × 107 1:1.2 × 104 1:7.1 × 102 1:2.4 × 102 1:8.3 × 101 1:8.3 × 101

pulli 2562 1:264 1:2.4 × 103 1:7.1 × 101 1:1.0 × 108 1:2.6 × 104 1:1.5 × 103 1:7.1 × 101 1:5.0 × 101 1:5.0 × 101

wallpaper 2562 1:728 1:9.1 × 103 1:2.3 × 102 1:4.8 × 107 1:1.9 × 104 1:1.0 × 103 1:2.1 × 102 1:8.3 × 101 1:8.3 × 101

wood1 2562 1:352 1:1.3 × 104 1:2.1 × 102 1:1.6 × 107 1:7.7 × 102 1:1.6 × 102 1:1.5 × 102 1:8.3 × 101 1:8.3 × 101

wood2 2562 1:278 1:5.3 × 103 1:2.0 × 102 1:1.5 × 107 1:4.5 × 102 1:1.4 × 102 1:1.4 × 102 1:8.3 × 101 1:8.3 × 101

wool 2562 1:233 1:7.7 × 103 1:1.1 × 102 1:4.0 × 107 1:1.3 × 103 1:8.3 × 101 1:7.7 × 101 1:5.0 × 101 1:5.0 × 101

ceiling♦ 2562 1:780 1:4.5 × 103 1:2.3 × 102 1:2.7 × 107 1:3.4 × 103 1:4.3 × 102 1:2.2 × 102 1:9.1 × 101 1:6.2 × 101

floortile♦ 2562 1:360 1:2.0 × 103 1:9.1 × 101 1:2.1 × 107 1:3.8 × 103 1:4.5 × 102 1:9.1 × 101 1:5.0 × 101 1:5.0 × 101

pinktile♦ 2562 1:2267 1:5.3 × 103 1:9.1 × 102 1:5.6 × 107 1:1.4 × 105 1:2.4 × 104 1:8.3 × 102 1:1.7 × 102 1:9.1 × 101

walkway♦ 2562 1:257 1:1.0 × 103 1:6.7 × 101 1:2.3 × 107 1:3.0 × 103 1:4.2 × 102 1:6.7 × 101 1:5.0 × 101 1:5.0 × 101

♦HDR sample.

Compression ratios achieved for individual BTF samples
with corresponding compression times are shown in columns
2–6 of Table 2 and for individual code-books in Table 3.
From the results we can conclude, that lower compression
ratios correspond to textile materials having higher structural
variability and complex occlusion/translucency effects, such
as corduroy, impalla, proposte and pulli.

The average compression time of a BTF sample (size 2562)
using unoptimized implementation of the proposed VQ algo-
rithm on a single CPU core, was about 23.4 hours, including
BTF data resampling to the proposed parametrization. The
numbers of data-vectors in individual code-books depend
on the variability of BTF material, as shown in Table 3.
This shows how the proposed compression model adapts to
various characteristics of different BTF samples. When we
compress 13 BTF LDR samples (except alu) to a shared rep-
resentation, the compression ratio is increased further by a
factor from 15%. When compressing 4 HDR samples to a
shared representation, the compression ratio is increased by
40% (these figures are not reported in Table 3).

Images rendered using our BTF model for point light and
environment lighting (Grace Cathedral, St. Peter’s Basil-
ica courtesy of Paul Debevec (http://www.debevec.org),
and grassplain) are depicted in Figure 1.

The proposed BTF compression method can also be used
for BRDF when the BRDF samples are understood as appar-

ent BRDFs. We compressed 100 isotropic BRDF measured
samples (courtesy of Wojciech Matusik and MERL BRDF
database [Mat03]) with an original data size of each sample
of 90 × 90 × 180 × 3 numbers (= 16.69 MBytes of data) for
various discretizations. For example, for the discretization
nα = 91, nβ = 91, nθv

= 45 and nϕv
= 1 we compressed

100 BRDF samples with a negligible average MSE error to
41 MBytes (compression ratio C.R. ≈ 1:42). For another
setting and nα = 45, nβ = 45, nθv

= 35 with visually in-
distinguishable error we can compress these BRDF samples
to 11.1 MBytes (C.R. ≈ 1:150). The shared data in the code-
books are luminance characteristics in the code-books P1 and
P2.

We have measured the speed of the importance sam-
pling algorithm using the proposed model for a single pro-
cess. Given a viewing direction and the pair of random
numbers we computed illumination direction at rates of
450 000–1 600 000 samples per second, depending on the
coherence of queries in the spatial domain. To test the func-
tionality of the importance sampling algorithm we attached
our BTF compression framework to a CPU-based rendering
system that implements ray tracing and path tracing. Exam-
ples of rendered images are shown in Figure 7. Further, in
Figure 8(a) a 2D PDF slice of original data of a particular Fx

is depicted for fixed ωv viewing direction (yellow line on the
left). A visualization of the compressed data and importance
sampling algorithm is shown in Figure 8(b).
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Figure 7: Example images from software-based renderer for
Phlegmatic dragon in Cornell Box: (a) path tracing with BTF
model for five BTF materials (except ceiling), (b) ray casting
with BTF model for five BTF materials. For path tracing
200 paths per pixel were computed, for both algorithms five
shadow rays were cast towards the area light source at each
bounce of eye paths.

Figure 8: Example a 2D PDF stored in P2 for the anisotropic
apparent BRDF of wood. (a) original data (b) compressed
data with visualization of importance sampling. Yellow line
represents ωv , red line normal, green line tangent and blue-
line bi-tangent.

7. Comparison with Other Methods

We have compared the proposed method in terms of data
compression with three different BTF compression tech-
niques described in Section 3: PCA of each view [SSK03]
using five components/view direction (PCA for C.R. 1:14);
Lafortune reflectance model [FH05] (LM with C.R. 1:16);
and PCA representing BTF clusters [MMK03] using seven
clusters, five components/cluster (LPCA).

While LM and PCA do not reach the compression ratio of
our method, the LPCA has been proven to be efficient com-
pression method for BTF data. Figure 9 shows compression
of the most challenging BTF samples (corduroy, proposte,
pulli) by means of the LPCA (left) and the proposed technique
(right), compared with image rendered from original uncom-
pressed data (middle). In average the proposed method pro-
vided subjectively comparable overall visual quality across
all tested samples, however, in average provides compression
ratio more than twice higher than the LPCA method (settings

Figure 9: Example comparison of the methods for 3 BTF
samples: (top row) corduroy, (middle row) proposte, and
(bottom row) pulli. (a) LPCA based compression (b) refer-
ence uncompressed data (c) the proposed method.

seven clusters with five components per cluster – C.R. 1:275,
our method on average C.R. 1:764). Let us remind that in our
compression method we have used the SSIM index, which
is focused on preserving overall texture structure, but cannot
be calibrated precisely in terms of visibility thresholds as
perceived by the human observer. Even less reliable results
can be obtained using MSE and CIE LAB metrics [WB02].

To objectively compare visual fidelity of these two meth-
ods we performed a simple psychological experiment with
19 participants. The subjects with normal or corrected vision
of average age 27 years were shown 14 animated sequences
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Figure 10: Evaluation of the psychological experiment for
19 participants and 14 LDR BTF samples. The error bars
represent twice the standard error across subjects.

of the rotating tablecloth objects with mapped BTF as shown
in Figure 9, i.e. the video rendered from original data always
in the middle and from the compressed data by the proposed
method and the LPCA, side-by-side in random order. The
video for each BTF sample has been shown for 25 seconds,
the whole test took between 7 and 9 minutes for each sub-
ject. The subjects’ task was to evaluate which of the method
provides more realistic visual experience given the reference
data in the middle. For each person 14 LDR BTF samples
were shown, which gave 266 individual answers.

As can be seen in Figure 10 summarizing our percep-
tual experiment the LPCA works better for materials with
relatively small spatial appearance variations across images
(please refer to a list of materials in Table 2). This is typical
for such materials as alu, fabric2, foil1, foil2 and leather.
Our compression allows better adaptation to complex ma-
terials having large variety of non-typical features such as
corduroy, impalla, proposte, pulli, wood1 and wool. This
is to be expected because our approach assumes a similar-
ity on the level of apparent BRDFs allowing the efficient
representation of irregularities thanks to the multi-level de-
composition of data, while in LPCA the features are easier
to represent by limited set of basis functions. The very small
p-value (p = 2.2 × 10−16) of ANOVA test indicates that dif-
ferences between samples’ means are highly significant. The
mean evaluation is 5.15, where 5 means undecided and 6 very
low preference of the LPCA. This means that the proposed
method is comparable with the tested methods in terms of
visual performance. However, it has much lower memory re-
quirements during sample analysis, it compresses each sam-
ple according to its variability, it allows more materials to be
compressed efficiently into one data set, and it performs fast
importance sampling.

We can also compare the proposed method based on multi-
level vector quantization with standard (i.e. one-level) vector
quantization, with the results are shown in the last column
of Table 3. The standard vector quantization for the same
parametrization reaches compression ratios up to 1:80, which
is significantly lower than that achieved by the multi-level
approach proposed by our technique.

8. Conclusion and Future Work

The main contribution of this paper is a novel BTF com-
pression method based on vector quantization enabling high
compression ratios between 1:233 and 1:2267 (on average
1:764) depending on material sample variability. This is fur-
ther increased by 15–40% when several BTF materials are
compressed to a common representation. The method can
also be used for compression of multiple BRDF data. For
compression of BTF samples we directly use the SSIM met-
ric to control the estimated visual similarity between the
original and the compressed data. For compression of BRDF
data we can specify the maximum MSE of the compressed
BRDF. The proposed algorithm can therefore efficiently con-
trol quality versus a compression ratio, and the quality metric
can be changed in future to a more efficient one. In addition,
the proposed method allows fast importance sampling of
BTF/BRDF data, which is a desirable feature of high-quality
rendering applications exploiting path tracing techniques. We
verified this by implementation on a CPU.

We tested the functionality of the algorithm for 18 distinct
BTF materials in HDR and LDR format, and have thoroughly
compared the achieved results with results from three other
recently published compression methods. High fidelity of
the results was also verified against true measured data in
a z-buffer based renderer for both point and environment
lighting. In addition, we have implemented the BTF decoding
algorithm on the standard GPU with framerates up to 170 FPS
depending on the scene complexity.

The proposed BTF framework can be elaborated in sev-
eral ways in future work. First, other similarity measures
among apparent BRDFs that better exploit known perceptual
properties of human vision can be researched. Second, when
multi-spectral BTF measurements are available, we believe
that our model can be simply extended by a more accurate
colour models.
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