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This article describes the application of a recently developed method of interactive statistical
database presentation to the 2001 Czech Census. The method is based on estimating the
multivariate probability distribution of the original microdata, which are supposed to be
discrete or discretized continuous. The estimated statistical model in the form of a distribution
mixture of product components can be used as a knowledge base of a probabilistic expert
system. By means of the probabilistic inference mechanism we can derive conditional
distributions of variables for each subpopula-tion interactively without any further access to
the source database. The conditional distributions (histograms) describing the properties of
subpopulations represent the basic form of user information. The statistical model does not
contain the original data and therefore can be distributed without any confidentiality concerns.
The accuracy achievable by the statistical model is comparable with that of the anonymized
subsets of microdata.
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1. Introduction

In our modern networked society there is an increasing demand for dissemination and

sharing of statistical information. To meet the expectations of users, statistical agencies

release two major forms of statistical data: traditional tabular data and the sets of

individual respondent records called microdata. The advantage of releasing microdata

instead of specific precomputed tables and statistics follows from the increased flexibility

and availability of information for the users. With appropriate microdata, the users may

examine unusual hypotheses and find new issues beyond the usual scope of data providers.

In any case, the fundamental obligation of data providers is to protect the privacy of

respondents. For this reason, explicit identifiers such as names, addresses and phone

numbers are commonly removed. However, anonymous respondents may by reidentified

by combining other data such as birth date, sex, and ZIP code which uniquely pertain to

specific individuals. Different statistical disclosure control (SDC) methods have been

proposed to protect the confidentiality of data. With tabular data a disclosure can occur
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if a cell corresponds to a very small group of respondents. This problem can be eliminated by

suppressing cells, aggregating values, removing sensitive variables or by other techniques.

In a case of microdata, easily identifiable quantitative variables may be transformed to

discrete intervals, and sensitive qualitative variables may be combined to produce more

general categories. Rare data can be suppressed, swapped, modified or simulated.

Obviously, disclosure limitation procedures are connected with some information loss.

There is extensive literature on SDC techniques available (for the most frequent

references see, e.g., Dalenius 1977; Bethlehem et al. 1990; Winkler 1998; Fienberg 1994;

Fienberg et al. 1998; Willenborg and de Waal 2001), but the underlying problem is still to be

considered open. Let us recall that a disclosure may be inferential (Duncan and Lambert 1989)

without any actual reidentification of a record and, in a special context, even a modified

erroneous value may be harmful for the reidentified respondent. Much extra work is needed to

produce safe and analytically valid public-use files though there is always a remaining

disclosure risk. Thus, many statistical agencies release microdata for research purposes only,

usually under special licence agreements and through secure data archives. In general the

nondisclosure policy becomes a serious limitation on information dissemination.

In recent years we have developed an alternative approach to the presentation of survey

results based on interactive statistical models (Grim 1992; Grim and Boček 1996; Grim

et al. 2001; Grim et al. 2004a, b). We estimate the joint probability distribution of theQ2

original discrete microdata in the form of a multivariate distribution mixture with product

components using the EM algorithm (Dempster et al. 1977). We assume the variables to be

discrete (ordinal or categorical, qualitative). Continuous variables have to be discretized

by introducing intervals. The estimated product mixture can be used as a knowledge base

of a probabilistic expert system PES (Grim 1990; Grim 1994). We can thus derive the

statistical information from the mixture model without any further access to the original

database. The statistical model provides flexibility and comfort of information analysis

which in some respects is comparable to or even better than, microdata subsets.

The mixture model describes the statistical properties of microdata in terms of

uni-variate component-specific probability distributions. By its nature, any information

derived from the mixture model is a (conditional) probability. Thus, any model-estimated

cell counts are biased by uncertainty, which considerably increases at low probability

values. Even if the estimated cell count approaches unity, there is no guarantee that a

corresponding record uniquely exists in the original database. The final software product

does not contain any original or synthetic microdata, and not even the model parameters

are directly available of users. Since there is no possibility of identifying any concrete

respondent from regular univariate distributions, the model-based interactive software can

be distributed without any confidentiality concerns.

A weak point of the method is the model accuracy. The interactive software does

not provide exact values and it is not suitable for reproducing the statistical properties

of continuous variables or of discrete variables with great number of possible values

(small area identifiers, detailed age groups). Nevertheless, we assume that the limited

applicability of the method is well counterbalanced by the possibility of unrestricted

distribution of the final software product which could improve the information offer of

statistical offices to the public. To our the best of knowledge, in the recent literature there

are no similar results on statistical data models based on distribution mixtures.
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In this article we describe an application of the proposed method to the individual

microdata records from the 2001 Czech Census. The statistical model has been computed

Q1

within the framework of a special cooperation project between the Czech Statistical

Office, Prague University of Economics and the Institute of Information Theory and

Automation. The aim of the project is to verify the applicability of the interactive

statistical model to the next Czech Census in 2011. To illustrate a general possibility of

information fusion from different sources, we have combined the databases of persons and

households that were originally treated separately.

The resulting source database contained 10,230,060 records, with about 1.5 million

incomplete records including nearly three million nonresponse (missing) values. As the

primary purpose of the project has been to demonstrate the accuracy of the method in

the case of ideal complete data, we decided first to estimate the model parameters from the

incomplete records, and then to use the resulting distribution mixture to estimate and

substitute the missing values. The final statistical model has been computed from the

“ideal” set of complete microdata. The accuracy of the final model has been verified by

comparing the model probabilities with the relative frequencies of all statistically relevant

combinations of responses in the completed database. We have established that the

accuracy of model probabilities is comparable to that of the relative frequencies computed

from a randomly chosen one-million subset of the original microdata (without

anonymization). The preliminary version of the final interactive software product can

be downloaded at our web-page http://ro.utia.cas.cz/dem.html, (Data Mining: Interactive

Presentation of Census Results by Probabilistic Models).

The article is organized as follows: In Section 2 we describe the choice of variables for

the statistical model, the EM algorithm and its properties. Section 3 deals with the problem

of missing data and in Section 4 we evaluate the accuracy of the estimated mixture.

In Section 5 we discuss some tools of information analysis and in the concluding section

we summarize advantages and different application aspects of the proposed method.

2. Statistical Model of Census Data

The primary purpose of the considered statistical model is to reproduce the statistical

relationships within a given finite set of discrete variables as exactly as possible. The

number of variables and number of their values should be kept in reasonable bounds

because of the well-known trade-off between the complexity of the estimated probability

distribution and its accuracy. For the sake of estimating the statistical model of the 2001

Czech Census we have chosen 24 categorial variables (questions) as listed in Table 1.

We have applied less detailed coding of some variables (regional localization, age

intervals) to decrease the formal complexity of the model. Simultaneously we have also

omitted unambiguous variables, which are less informative and unproductive in

combination with other variables.

To illustrate a general possibility of information fusion from different sources we have

combined two originally separate databases of individuals and households. In particular,

the first ten variables from the database of individuals have been merged with fourteen

variables of the corresponding households. Note that in the resulting database the

household-related response frequency has a different meaning, namely the number
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of respondents living in the respective households. Thus, instead of the properties of flats,

we may analyze the housing conditions of respondents.

For every respondent we have a record of 24 variables. The third column in Table 1

contains the number of possible responses for the respective questions and the fourth

column contains the frequency of missing values as a percentage. The total number of

nonresponse is 2,933,427. Uncertainty of variables expressed in percentage of maximum

Shannon entropy is given in the last column. The highest uncertainty comes with Question

seven (respondent sex implies two nearly equal response frequencies). In contrast,

Question 22 (water supply) implies the most unambiguous response.

Formally, we consider the source database to be a set of independent and identically

distributed observations of a random vector of 24 discrete finite valued random variables:

v ¼ ðv1; v2; : : : ; v24Þ [ X ; X ¼ X 1 £X 2 £ : : : £X 24: ð1Þ

We assume that the unknown multivariate discrete probability distribution P*(x) of the

random vector v can be approximated by a finite distribution mixture of product

components:

Table 1. List of questions included in the statistical model of the 2001 Czech Census. The third column contains

the number of possible responses, the percentage of missing values (nonresponse) is given in the fourth column.

There are 1,524,240 incomplete records, the total number of nonresponses is 2,933,427. Uncertainty of variables

in % of maximum Shannon entropy is given in the last column

Text of question
(name of variable)

Number
of values

Nonresponse
in %

Shannon
entropy in %

1. Region of residence 14 0.00 96.88
2. Type of residence 3 0.00 32.92
3. Economic activity 10 0.80 67.80
4. Birthplace (relatively) 6 1.95 74.65
5. Religion 6 0.00 60.57
6. Occupation type 14 3.89 68.33
7. Sex 2 0.00 99.95
8. Marital status 4 0.55 81.01
9. Education 14 1.11 78.04
10. Age 9 0.03 96.09
11. Category of flat 5 0.53 27.81
12. Bathroom 5 0.59 14.02
13. Size of flat 7 0.64 80.62
14. Internet and PC 4 2.85 49.11
15. Legal relation to flat 9 0.39 72.43
16. Gas supply 3 0.78 64.54
17. Number of rooms over 8 m2 7 0.64 80.57
18. Number of cars in household 4 3.39 71.32
19. Number of persons in flat 6 0.00 93.79
20. Vacational property 6 7.45 42.10
21. Telephone in flat 5 1.80 80.88
22. Water supply 4 0.35 8.02
23. Type of heating 6 0.53 74.81
24. Toilet 6 0.50 16.73
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PðxÞ ¼
XM
m¼1

wmFðxjmÞ; FðxjmÞ ¼
Y24

n¼1

pnðxnjmÞ; x [ X ;
XM
m¼1

wm ¼ 1: ð2Þ

Here wm . 0 is the prior weight of the m-th mixture component, pn(xnjm) are the

conditional (component specific) univariate distributions of the variables vn, and M is the

number of components. Note that the product components do not imply that the involved

variables are independent. In this sense the mixture model (2) is not restrictive. It is easily

verified (cf. Grim and Boček 1996) that by increasing the number of components we can

describe any discrete probability distribution in the form (2).

The standard way to estimate the parameters of the distribution mixture (2) is to use the

EM algorithm (Schlesinger 1968; Dempster et al. 1977; Grim 1982; Grim 1992; Grim and

Boček 1996; Grim et al. 2001; Grim et al. 2004a, b). In particular, let S be a set of K dataQ2

vectors as obtained, e.g., in census:

S ¼ {x ð1Þ; x ð2Þ; : : : ; x ðkÞ}; x ðkÞ [ X ; ðK ¼ jSjÞ: ð3Þ

To estimate the unknown mixture parameters we maximize the log-likelihood function

L ¼
1

jSj x[S

X
logPðxÞ ¼

1

jSj x[S

X
log

XM
m¼1

wmFðxjmÞ

" #
ð4Þ

by means of the following EM iteration equations (m ¼ 1; 2; : : : ;M, n ¼ 1; 2; : : : ; 24):

qðmjxÞ ¼
wm

Q24
n¼1pnðxnjmÞXM

j¼1
wj

Q24
n¼1pnðxnjjÞ

; w 0
m ¼

1

jSj
x[S

X
qðmjxÞ; x [ S; ð5Þ

p 0nðjjmÞ ¼
1X

x[S

qðmjxÞ x[S

X
dðj; xnÞqðmjxÞ; j [ X n: ð6Þ

Here the apostrophe denotes the new parameter values and d(j,xn) is the delta-function in

the usual sense (dðj; xnÞ ¼ 1 for j ¼ xn and dðj; xnÞ ¼ 0 for j – xn).

The EM algorithm monotonously converges to a local or global maximum or to a saddle

point of the log-likelihood function L in the sense that the corresponding sequence of

values {L ðtÞ}
1

t¼0 is nondecreasing (cf. Dempster et al. 1977; Grim 1982). The existence of

local maxima makes the procedure starting-point dependent. In this respect a well-known

difficulty is to specify the number of mixture components and to choose the initial

parameter values (cf., e.g., McLachlan and Peel 2000). However, the problem becomes

less relevant in high-dimensional spaces and with increasing number of components since

the values of different local maxima are similar and therefore the quality of the

corresponding mixture estimates is comparable. For the same reason in all of our

experiments the mixture parameters have been initialized randomly.

As can be expected, the accuracy of the model increases with the model complexity, on

the other hand, the number of components is the main limiting feature from the

computational point of view. For this reason in the following the choice of the number of

mixture components M is mainly influenced by practical hardware-specific considerations.
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As the main purpose of the mixture model (2) is to reproduce the statistical properties of

the original data, it is important that, in each iteration of the EM algorithm, the univariate

marginal distributions of the estimated mixture are identical with the global marginal

frequencies of the data. In particular, by using Eqs. (5), (6), we can write

P 0
nðjÞ ¼

XM
m¼1

w 0
mp

0
nðjjmÞ ¼

XM
m¼1

1

jSj
x[S

X
qðmjxÞp0nðjjmÞ ¼

¼
1

jSj
x[S

X
dðj; xnÞ

XM
m¼1

qðmjxÞ ¼
1

jSj
x[S

X
dðj; xnÞ; j [ X n; n ¼ 1; 2; : : : ; 24:

ð7Þ

We recall that any marginal distribution of the mixture (2) is easily obtained by ignoring

superfluous terms in the products. In view of this property the discrete distribution mixture

(2) is directly applicable as a knowledge base of the Probabilistic Expert System (PES)

(cf. Grim 1994; Grim and Boček 1996). In this way the inference mechanism of PES

(cf. Appendix I) derives the statistical properties of different sub-populations directly from

the estimated model without any access to the original microdata and without using any

synthetic data.

In particular, considering a given input subvector

xC ¼ ðxi1; xi2; : : : ; xikÞ [ XC; C ¼ {i1; i2; : : : ; ik} , {1; 2; : : : ; 24};

and an output variable xn, (n � C), we can directly write equations for the related marginal

PCðxCÞ ¼
XM
m¼1

wmFCðxCjmÞ; FCðxCjmÞ ¼
i[C

Y
piðxijmÞ; xC [ XC; ð8Þ

and for the corresponding conditional distribution

PnjCðxnjxCÞ ¼
Pn;Cðxn; xCÞ

PCðxCÞ
¼

XM
m¼1

WmðxCÞpnðxnjmÞ; ðPCðxCÞ . 0Þ: ð9Þ

Here Wm(xC) are the conditional component weights for the given subvector xC [ XC:

WmðxCÞ ¼
wmFCðxCjmÞXM

j¼1
wjFCðxCjjÞ

ð10Þ

Let us note that the conditional distributions PnjC(xnjxC) (conditional histograms) describe

the statistical properties of the subpopulation specified by the subvector xC in terms of all

variables xn not included in xC. For a given input xC Formula (9) is applicable to different

variables n � C with identical weights Wm(xC). Thus, for any fixed subvector xC, we

obtain a set of histograms which characterize the corresponding subpopulation. We can

efficiently store extensive lists of subpopulations in terms of the defining subvectors.

In this way different subpopulations can be quickly compared and characterized in terms

of conditional histograms (cf. Figure 1), e.g., by the most apparent differences from the

whole population. From the point of view of a user the conditional histograms describing

the properties of different subpopulations represent basic form of statistical inference.
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In addition, the analytical simplicity of the statistical model suggests some new

possibilities of information analysis (cf. Section 4).

3. Missing Data

A typical feature of census data is the presence of incomplete records. The census database

considered in this article (cf. Table 1) included 1,524,240 incomplete records containing

up to eighteen missing values. The distribution of nonresponse according to variables is

given in Figure 2. The next, Figure 3, displays the distribution of nonresponse by the

number of missing values. The total number of missing values in our database was

2,933,427.

The problem of missing data is traditionally an important area of mathematical

statistics, because most statistical methods cannot be applied to incomplete data. One can

see that by simply omitting the incomplete records we would lose about 15% of the records

in our database. Similarly, only five questions would remain should we ignore incomplete

variables. Since the missing values are denoted as nonresponse in all records, they could

always be treated as a specific additional response. However, in most cases, the

information value of nonresponse is limited because of its latent dependence on the

context (there are multiple modes of nonresponse, e.g., don’t know, refuse). In this sense

the additional value would cause superfluous increase of relationship complexity; it means

we would force the model to describe many meaningless statistical relations.

An important feature of estimating product mixtures is the possibility of modifying the

EM algorithm to be directly applicable to incomplete data. In this sense there is no

Fig. 1. Comparison of age distribution in three different sub-populations (cf. http://ro.utia.cas.cz/dem.html)
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necessity to substitute for the missing values; we estimate the mixture parameters from the

available data only. The type of missing values is nearly irrelevant since the estimated

model can utilize all statistical information in the data. In particular, denoting by N ðxÞ,

the subset of indices of the available variables of x, and Sn , S, the subset of vectors with

the available variable xn:

N ðxÞ ¼ {n : xn available in x}; Sn ¼ {x [ S : n [ N ðxÞ}; ð11Þ

we can write the modified EM iteration equations in the form (m ¼ 1; 2; : : : ;M,

n ¼ 1; 2; : : : ; 24, x [ S):

qðmjxÞ ¼
wm

Q
n[N ðxÞpnðxnjmÞXM

j¼1
wj

Q
n[N ðxÞpnðxnjjÞ

; w 0
m ¼

1

jSj
x[S

X
qðmjxÞ; ð12Þ

p0nðjjmÞ ¼
1X

x[Sn

qðmjxÞx[Sn

X
dðj; xnÞqðmjxÞ; j [ X n: ð13Þ

Roughly speaking, we calculate the values q(mjx) a p 0nðjjmÞ in Eqs. (12), (13) only for the

variables currently available in x.
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Fig. 2. Nonresponse frequency for individual questions. The number of incomplete records is 1,524,240,

the total number of missing values is 2,933,427
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Fig. 3. Distribution of incomplete records according to the number of nonresponse
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From the theoretical point of view we would prefer the direct estimation from

incomplete data, since by replacing the missing values we generally use some typical

values, and in this way, the natural variability of data decreases. Unfortunately, unlike the

standard EM algorithm, the modified iteration Equations (12), (13) do not guarantee that

the univariate marginal distributions of the estimated mixture are identical with the global

marginal frequencies of the data (cf. (7)):

P 0
nðjÞ ¼

XM
m¼1

w 0
mp

0
nðjjmÞ ¼

XM
m¼1

1

jSj
x[S

X
qðmjxÞp 0nðjjmÞ ¼

¼
1

jSj

XM
m¼1

X
x[S

qðmjxÞ

X
x[Sn

qðmjxÞ x[Sn

X
dðj; xnÞqðmjxÞ –

1

jSj
x[S

X
dðj; xnÞ; j [ X n;

ð14Þ

It appears that the mixture model estimated from incomplete data is biased by a

considerable error already at the level of unconditional marginals. In additional

experiments we have established that a model obtained from incomplete data is

approximately twice as inaccurate as the comparable model computed from complete data.

Let us recall that the main purpose of our project has been to verify the possibility of

reproducing the statistical properties of a large set of microdata and therefore the model

accuracy is of primary importance. For this reason we decided to solve the estimation

problem in two steps. First we estimated the distribution mixture (2) from incomplete data

by means of the modified EM algorithm (12), (13). The resulting mixture (M ¼ 10,000)

has been used to replace missing values by estimates. In particular, we have replaced each

missing value by the response xn, which is most probable in the sense of the conditional

distribution pn(xnjxc) (cf. (9)):

xn ¼ arg
j[X n

max {pnðjjxCÞ} ð15Þ

In other words, we have replaced each nonresponse by the value xn [ X n, which is the

most probable response with respect to the known part xC of the record. In the second step

we have used the completed database to estimate the final distribution mixture.

Generally, the computing time of the EM algorithm is proportional to the model

complexity; therefore, in the case of the given large database, the number of mixture

components is the most relevant practical limitation. We have chosen M ¼ 15,000

components for the final experiment. Again, we generated the initial parameters randomly

and the computation has been stopped at the point of sufficient convergence after

approximately thirty iterations. It took about eight hours per iteration (on a standard PC),

which corresponds to the total computing time of about ten days. As a stopping rule for EM

iterations we have used the threshold 1 ¼ 1024 for the relative increment of the log-

likelihood criterion (4). Nevertheless, in the final stages of convergence the model accuracy

does not change very much and the algorithm can be stopped manually.

It is obvious that the imputation of missing values may affect the final model accuracy.

There is no direct possibility of verifying if the replacement of missing values has been

done correctly but we can simulate an analogous situation by estimating the known values
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(cf. Williams 2005). In particular, for each variable separately, we have randomly chosen

105 records for which the value of the tested variable was available. Then for each record

we have computed the corresponding estimate of this value and compared it with the true

original. The results of the imputation test are summarized in the Table 2, which provides

additional information about the accuracy of the final statistical model (M ¼ 15,000). The

third column contains the number of nonresponses and in the fourth column we list the

percentage of the correctly estimated values. The number in parentheses corresponds to

the trivial global imputation of the most frequent response. As one would expect, the

imputation accuracy is variable-dependent. In some cases the success of global imputation

of the most frequent value is comparable with the statistical model (Nos. 2, 4, 5, 12, 14, 20, 22)

but the improvement achieved by using the maximum-likelihood estimate is often

considerable (Nos. 1, 3, 8, 9, 10, 13, 15, 17, 19, 23). On average, 73% of missing values

would be correctly identified by the maximum-likelihood estimates. The last column

contains the number of nonresponses from the third column that are expected to be

replaced correctly.

Table 2. Accuracy of the estimation of missing values. The third column contains the number of nonresponses.

In the fourth column we list the percentage of correctly estimated responses. The numbers in parentheses

correspond to the trivial global imputation of the most frequent response. In the mean, 73% of missing values

would be correctly identified by the maximum-likelihood imputation procedure. The last column lists expected

numbers of the correctly replaced nonresponse from the column

Text of question
(name of variable)

Number of
nonresponses

Successful
imputation in %

Successful
imputation

1. Region of residence 0 27.49 (12.41) 0
2. Type of residence 0 90.35 (89.48) 0
3. Economic activity 82,195 88.02 (44.08) 72,348
4. Birth place (relatively) 199,516 56.36 (53.52) 112,447
5. Religion 0 66.27 (59.04) 0
6. Occupation type 397,835 67.64 (50.62) 269,096
7. Sex 0 67.91 (51.30) 0
8. Marital status 56,514 82.91 (46.63) 46,856
9. Education 113,127 48.36 (19.29) 54,708
10. Age 3,483 59.22 (16.71) 2,063
11. Category of flat 53,861 97.48 (89.37) 52,504
12. Bathroom 50,987 98.90 (95.91) 50,426
13. Size of flat 65,554 63.22 (38.48) 41,443
14. Internet and PC 291,281 81.12 (79.15) 236,287
15. Legal relation to flat 40,490 63.49 (39.70) 25,707
16. Gas supply 79,631 75.94 (63.84) 60,472
17. Number of rooms over 8 m2 65,525 63.48 (38.76) 41,595
18. Number of cars in household 346,471 66.97 (51.77) 232,032
19. Number of persons in flat 0 49.48 (29.27) 0
20. Vacational property 762,707 80.39 (78.11) 613,140
21. Telephone in flat 183,714 57.36 (43.93) 105,378
22. Water supply 35,415 99.39 (98.08) 35,199
23. Type of heating 53,861 76.90 (41.45) 41,419
24. Toilet 51,350 97.98 (94.32) 50,313

Total 2,933,427 73.06 (61.35) 2,143,326
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4. Accuracy of the Statistical Model

Let us recall that the primary purpose of the estimated model is to reproduce the statistical

properties of the modeled data. In the domain of statistical surveys, we usually specify the

subpopulations by combining responses. Therefore the statistical model should reproduce

the empirical frequencies of different properties as precisely as possible. In particular, in

order to verify the model accuracy, we compare the empirical frequencies of different

combinations of responses with the estimates derived from the statistical model. The

accuracy of the final model has been verified by the underlying completed data set, to

demonstrate the performance of the method in the “ideal situation” without any

unpredictable influence of missing data.

Considering an elementary property defined by a subvector of responses xC,

we denote

SðxCÞ ¼ {y [ S : yC ¼ xC}; NðxCÞ ¼ jSðxCÞj; xC ¼ ðxi1; : : : ; xikÞ [ XC ð16Þ

where SðxCÞ is the subset of respondents (a subpopulation) with the property xC and

N(xC) is the (empirical) frequency of the property xC in the census population S.

Obviously, the frequency N(xC) can be estimated from the statistical model (2) as the

product of the probability P(xC) and the population size jSj:

N̂ðxCÞ ¼ jSjPðxCÞ; PðxCÞ ¼
XM
m¼1

wm

Yk
j¼1

pij ðxij jmÞ ð17Þ

It appears that, ideally, we should compare the estimated frequency N̂ðxCÞ with the

empirical value N(xC) for all possible elementary combinations of values xC.

However, there are two important limitations.

Recall first that we are not interested in reproducing small frequencies. On the

contrary, the decreasing accuracy of the model at low probabilities is an important

confidentiality-protecting property. We decided for this reason to evaluate the accuracy

of the estimates N̂ðxCÞ only for the empirical frequencies N(xC) greater than a suitably

chosen threshold N1. In order to specify the threshold frequency N1 we confine ourselves

only to “statistically relevant” properties xC, the frequency of which may differ from the

assumed “true” unknown frequency N*(xC) by less than 1 ¼ 5% (cf. Appendix II).

In particular, if we confine ourselves to the properties xC satisfying the inequality

N(xC) . 1,612 (i.e., N1 ¼ N0:05 ¼ 1;612), then, according to the central limit theorem

of probability theory, the empirical frequency N(xC) of the property xC in the population

S may differ from the unknown “true” frequency N*(xC) by less than 5% (at the

confidence level 0.95).

The second limitation has a computational origin. The number of all properties

xC specified by all possible combinations of responses is too high and the evaluation would

be too time-consuming. For this reason we decided to verify the model accuracy

by considering combinations of a maximum of five responses. As a result we obtained a

list A5 of about 26 million “statistically relevant” properties xC along with the

corresponding empirical frequencies

A5 ¼ {xC ¼ ðxi1; : : :; xi5Þ : NðxCÞ . 1; 612}; jA5j ¼ 26; 425; 727: ð18Þ

JOS 2194—29/11/2010—HARIPRASAD—380028

Grim et al.: Czech Census for Interactive Presentation 11



A natural way to measure the accuracy of the statistical model (2) is to compute the mean

absolute error Ea of the estimated frequencies N̂ðxCÞ for the properties xC [ A5:

Ea ¼
1

jA5jxC[A5

X
jPðxCÞjSj2 NðxCÞj; PðxCÞ ¼

XM
m¼1

wm

Y5

j¼1

pijðxij jmÞ ð19Þ

where P(xC) is the probability of the combination xC computed by means of the mixture

model (2). However, as can be seen, the criterion Ea does not differentiate between errors

of large and small estimates. Therefore we have introduced the following mean relative

error criterion

Er ¼
100

jA5jxC[A5

X jPðxCÞ2
NðxCÞ

jSj
j

NðxCÞ

jSj

¼
100

jA5j xC[A5

X jPðxCÞjSj2 NðxCÞj

NðxCÞ
; ð20Þ

which is more sensitive in this respect since the same absolute difference of frequencies

is less important if the empirical frequency N(xC) is high and more important for

lower N(xC).

We have used the criteria Ea and Er to evaluate the accuracy of the final distribution

mixture (2). Table 3 contains the results obtained by applying both criteria to the list of

properties A5 (third column) and, for comparison, to the list A4 of properties specified by

maximally four responses (second column). For both of the considered tests, Table 3

shows the mean relative and mean absolute error and the corresponding standard

deviations. In addition we have computed the maximum relative and absolute errors and

also the number of relative errors exceeding 100%. The mean relative error was 4.2% in

the case of the list A5 and 4.1% in the case of the list A4; the corresponding absolute error

was 338 and 460 respondents, respectively. Since all other results are also comparable, we

may assume that a more extensive test would not yield substantially different values. We

recall that by combining more than five responses we would mostly obtain very small

frequencies N(xC) that would fall below the threshold N1, and therefore the resulting list

would not be much longer than A5.

Let us recall that the relative error in the criterion Er is invariant with respect to arbitrary

norming. Consequently, the mean error of any displayed histogram column is 4.17%.

Table 3. Mean relative and mean absolute error of the statistical model with M ¼ 15,000 components. Results

obtained by applying both criteria to the list of properties A5 (third column) and to the list A4 of properties

specified by a maximum of four responses (second column)

List of test combinations: A4 A5

Mean relative error in %: 4.07 4.17
Standard deviation of the relative error: 6.33 5.80
Maximum relative error of the model in %: 240.84 240.84
Number of relative errors exceeding 100%: 925 4,092
Mean absolute error: 470 348
Standard deviation of the absolute error: 951 655
Maximum absolute error of the tested: 45,779 45,779
Number of combinations tested: 3,468,134 26,425,727
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In order to illustrate the distribution of relative errors in more detail we include Table 4. As

it can be seen, for very small empirical frequencies (1,612 , N(xC) , 3,000) the mean

relative error is 6.10% and quickly decreases for greater values of N(xC) (larger

subpopulations). In the case of estimates based on the 10%-subset of microdata (last

column) the first value 5.16% is smaller but the distribution of relative errors is similar.

Our interactive software disables evaluation of subpopulations SðxCÞ smaller than the

threshold value N0:05 ¼ 1;612 (see Appendix II) and indicates any histogram column that

corresponds to a subthreshold frequency.

Obviously, the results in Table 3 strongly depend on the chosen subpopulation threshold

N1. It is therefore unclear whether the achieved mean relative error 4.2% is to

beconsidered too high or low enough. To answer this question we have compared the

accuracy of our mixture model with the reproduction accuracy of a randomly chosen

subset of 1 million individual microdata records (10% of S). Note that the standard method

of disseminating statistical information by means of subsets of anonymized microdata

provides the same comfort and flexibility as does the interactive statistical model. In

particular, we can estimate the empirical frequencies N(xC) by using a representative

subset of microdata. For the sake of comparison with the statistical model, we have

evaluated the accuracy of the microdata subset in the same way as in the Table 3. As we

can see in Table 5, the accuracy of the 10% microdata subset is marginally better than the

statistical model at reproducing the empirical frequencies. However, if the randomly

chosen subset of microdata records should be used as a public-use file then it would be

necessary to apply some sort of anonymization procedure to the data. Probably, after

Table 4. Distribution of relative errors of estimates according to the empirical frequency N(xC) (subpopulation

size). Comparison of the statistical model and 10%-subset of microdata. In the first two columns we specify the

lower and upper bounds of the frequency intervals, respectively. The third column contains the number of

properties falling into the given interval of empirical frequencies. The last two columns contain the

corresponding mean relative errors for the statistical model and subset of microdata, respectively

Interval
Lower
bound

Upper
bound

Number of
combinations

Mean relative
error in %

Mean relative
error in %

1. 1,612 3,000 7,688,027 6.10 5.16
2. 3,000 5,000 5,011,625 4.88 3.86
3. 5,000 7,500 3,220,931 4.04 3.07
4. 7,500 10,000 1,906,156 3.50 2.58
5. 10,000 15,000 2,213,787 3.04 2.17
6. 15,000 30,000 2,695,817 2.38 1.67
7. 30,000 50,000 1,296,118 1.80 1.23
8. 50,000 100,000 1,075,615 1.37 0.94
9. 100,000 150,000 372,570 1.03 0.70
10. 150,000 300,000 358,112 0.78 0.55
11. 300,000 500,000 125,103 0.55 0.39
12. 500,000 1,000,000 71,104 0.39 0.28
13. 1,000,000 1,500,000 15,324 0.29 0.20
14. 1,500,000 3,000,000 8,511 0.22 0.14
15. 3,000,000 5,000,000 1,349 0.12 0.08
16. 5,000,000 10,300,000 200 0.02 0.04
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anonymization, the accuracy of the resulting public use file would decrease due to errors

introduced by the anonymization process. In our comparison experiment the anonymiza-

tion of microdata has been omitted.

5. Model-Based Information Analysis

Another possible way to utilize the latent information potential of the statistical model is to

analyze the properties of subpopulations (cf. Grim et al. 2004a, b). A natural basis ofQ2

information analysis is a virtual list A of statistically relevant subpopulations, which can

be specified by combining variables (cf. (18)). The general scheme of the considered

information analysis can be summarized as follows: we order, e.g., the virtual list A4 of

3.5 million statistically relevant subpopulations (specified by combinations of responses)

according to a chosen statistical criterion and display the ordered list to the user. In some

cases the ascending ordering of subpopulations (instead of the descending one) could also

be of interest. In this section we suggest some criteria which may be useful for different

purposes.

A very simple criterion applicable to ordering the subpopulations A is the conditional

probability of a specific value xn [ X n. We can order the subpopulations SðxCÞ from the

list A according to the highest conditional probability PnjC(xnjxC) (cf. (9)). By displaying

the initial part of the ordered subpopulation list we can identify, e.g., social groups or

subpopulations which are particularly hit by unemployment, if the variable xn defines

unemployed respondents. Obviously, we should exclude from evaluation the “trivial”

subpopulations SðxCÞ for which n [ C since in these cases the probability PnjC(xnjxC) is

trivially only 1 or 0.

A simple modification of the conditional distribution PnjC(xnjxC) is to use the

unconditional probability

PnCðxn; xCÞ ¼ PnjCðxnjxCÞPðxCÞ ¼
XM
m¼1

wmpnðxnjmÞFCðxCjmÞ ð21Þ

The preceding criterion can be easily generalized to a pair of specified values

xn [ X n; xr [ X r:

Table 5. Relative and absolute accuracy of the estimates computed from the randomly chosen subset of 10%

of microdata from the original database S. The test has been obtained by applying both criteria to the list

of properties A5 (third column) and to the list A4 (second column) in the same way as in the Table 3

List of test combinations: A4 A5

Mean relative error in %: 2.94 3.60
Standard deviation of the relative error: 3.00 3.23
Maximum relative error of the model in %: 35.19 36.34
Number of relative errors exceeding 100%: 0 0
Mean absolute error: 307 409
Standard deviation of the absolute error: 450 1,913
Maximum absolute error of the model: 12,348 59,815
Number of combinations tested: 3,503,448 26,425,727
Number of microdata in the subset: 1,022,666 1,022,666
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PnrjCðxn; xrjxCÞ ¼
XM
m¼1

wmðxCÞpnðxnjmÞprðxrjmÞ ð22Þ

In this way the subpopulations can be ordered with respect to the highest relative

frequency of a pair of values, for example we can identify subpopulations with a high

unemployment of young people. Analogously a natural alternative to this criterion is to use

the unconditional probability

PnrCðxn; xr; xCÞ ¼ PnrjCðxn; xrjxCÞPðxCÞ
XM
m¼1

wmpnðxnjmÞprðxrjmÞFCðxCjmÞ ð23Þ

which corresponds to the estimated frequency jSjPnrCðxn; xr; xCÞ of the values xn, xr, xC.

Again, in the evaluation process we should exclude the combinations xC for which

n,r [ C, because the corresponding conditional probabilities PnrjCðxn; xrjxCÞ are equal

to 1 or 0.

In some cases we could be interested in subpopulations where the conditional

distribution of a variable is concentrated on an arbitrary single value (or a small subset of

values). For example, we could look in general for subpopulations having a typical

(prevailing) type of occupation. In such a case, a suitable choice would be to use the

minimum entropy criterion

HxC ðX nÞ ¼
xn[X n

X
2 PnjCðxnjxCÞ logPnjCðxnjxCÞ ð24Þ

In other words, in the subpopulations characterized by a low entropy HxC ðX nÞ, the answer

to the nth question is almost unique. Note that it would be rather difficult to identify such

sub-populations by other means, e.g., by calculating the relative frequencies.

The statistical model also provides a general possibility of identifying dependence

between categorial variables. Recall that the standard tool to characterize a relationship

between two real random variables is the correlation coefficient computed by means of the

expected value of the normalized product of the involved variables. Unfortunately, in

cases of discrete nominal variables like eye color, profession, marital status, etc., the

product of two variables is not defined and there is no generally acceptable way to

introduce a reasonable definition.

One possibility available for analyzing the statistical dependence between nominal

(qualitative) random variables is to use the statistical information. If Xn,Xr, n; r;[ N are

two discrete random variables, then their mutual statistical information can be expressed

by means of the Shannon formula

IðXn;XrÞ ¼ HðXnÞ þ HðXrÞ2 HðXn;XrÞ ð25Þ

where H(Xn), H(Xr), H(Xn,Xr) are the respective Shannon entropies:
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HðXnÞ ¼
xn[Xn

X
2 PnðxnÞ logPnðxnÞ; PnðxnÞ ¼

XM
m¼1

wmpnðxnjmÞ; n [ N ; ð26Þ

HðXn;XrÞ ¼
xr[Xr

X
xn[Xn

X
2 Pnrðxn; xrÞ logPnrðxn; xrÞ; n; r [ N ; ð27Þ

Pnrðxn; xrÞ ¼
XM
m¼1

wmpnðxnjmÞprðxrjmÞ: ð28Þ

The value of Shannon information is zero if the two variables Xn, Xr are statistically

independent and it is maximum if one of the two variables uniquely defines the value of the

other one. The information criterion (25) can be used, e.g., to order the subpopulation list

A according to the statistical dependence between two chosen variables.

6. Concluding Remarks

To date, one of the most informative known ways to disseminate statistical information is

to release representative subsets of anonymized microdata. With appropriate micro-data

the users have the full freedom to examine arbitrary hypotheses and issues beyond the

usual scope of data providers. Unfortunately, both the choice of a subset of the original

microdata (typically about one million individual records) and the indispensable

anonymization procedures may negatively influence the statistical validity of the

contained information. Moreover, there is always some residual risk of disclosure and, for

this reason, statistical agencies release microdata for research purposes only, usually under

special license agreements and through secure data archives.

In view of these facts, the primary purpose of the considered statistical model has been

to make the census results freely available in a new, user-friendly way with a guaranteed

confidentiality of data. However, the high level of confidentiality protection suggests also

other application areas like medical registers and databases. The resulting interactive

software provides flexibility and user comfort analogous to those sets of anonymized

microdata at a comparable or even higher level of accuracy. In addition, the analytical

simplicity of the underlying distribution mixture opens up new possibilities of

information-oriented data analysis (data mining) based on efficient evaluation of a virtual

list of several hundred thousand sub-populations.

Appendix I. Probabilistic Inference Mechanism

Note that any marginal distribution of the mixture (2) is easily obtained by deleting

superfluous terms in the products F(xjm). Actually, in view ofthis property, the discrete

distribution mixture (2) can be used as a knowledge base of the Probabilistic Expert

System (PES). Considering a basic situation, we assume vi1; vi2; : : : ; vik to be a subset of

input variables. Then, for any given input vector

xC ¼ ðxi1; xi2; : : : ; xikÞ � XC; C ¼ {i1; i2; : : : ; ik} , {1; 2; : : : ;N}

and an output variable xn, (n � C), we can directly write equations for the related

marginals
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PCðxCÞ ¼
XM
m¼1

wmFCðxCjmÞ; FCðxCjmÞ ¼
i[C

Y
piðxijmÞ; xC [ XC; ð29Þ

Pn;Cðxn; xCÞ ¼
XM
m¼1

wmFn;Cðxn; xCjmÞ; Fn;Cðxn; xCjmÞ ¼
i[C<{n}

Y
piðxijmÞ; ð30Þ

and for the desired conditional distribution

PnjCðxnjxCÞ ¼
Pn;Cðxn; xCÞ

PCðxCÞ
¼

XM
m¼1

WmðxCÞpnðxnjmÞ; ðPCðxCÞ . 0Þ; ð31Þ

Here Wm(xC) are the component weights corresponding to the given input vector

xC [ XC:

WmðxCÞ ¼
wmFCðxCjmÞXM

j¼1
wjFCðxCj jÞ

: ð32Þ

The conditional distributions PnjC(xnjxC) (conditional histograms) describe the statistical

properties of the subpopulation specified by the subvector xC in terms of all variables xn
not included in xC.

The interactive inference mechanism of the expert system PES can be extended to

a more general case when each of the input variables xij is confined to a subset of values

xij [ Dij , X ij ; ij [ C: ð33Þ

Thus, instead of an input subvector xC [ XC, we are given a subset of input vectors

DC , XC:

DC ¼ Di1 £Di2 £ : : : £Dik , XC: ð34Þ

Analogously to equations (29)–(30), we can write

FCðDCjmÞ ¼
xC[DC

X
FCðxCjmÞ ¼

xi1[Di1

X
· · ·
xik[Dik

X
ij[C

Y
pij ðxij jmÞ ¼

ij[C

Y
pijðDij jmÞ; ð35Þ

and finally we can compute the conditional probability PnjCðxnjDCÞ by Eq.

PnjCðxnjDCÞ ¼
Pn;Cðxn;DCÞ

PCðDCÞ
¼

XM
m¼1

WmðDCÞpnðxnjmÞ: ð36Þ

Here WmðDCÞ are the component weights corresponding to the given subset of input

vectors DC , XC :

WmðDCÞ ¼
wmFCðDCjmÞXM

j¼1
wjFCðDCjjÞ

: ð37Þ

The conditional distribution (31) represents an exact response to the definite input

vC ¼ xC [ XC. In a case of uncertain input information which is generally described by

the probability distribution ~PCðxCÞ on the subspace of input variables XC, we obtain
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~PnðxnÞ ¼
xC[XC

X
PnjCðxnjxCÞ ~PCðxCÞ ¼

XM
m¼1

~WmpnðxnjmÞ; ð38Þ

where

~Wm ¼
xC[XC

X
WmðxCÞ ~PCðxCÞ: ð39Þ

Let us remark that the formula (38) realizes the so-called memoryless information channel

with noise – a well-known object of information theory.

The processing of uncertain information is a typical feature of expert systems as

decision-supporting tools. In the present context, the uncertain information on input can be

used to analyse the properties of hypothetical subsets or sub-populations. Note that the

choice of input and output variables is affected only by their meaning or availability –

without any formal restrictions implied by the knowledge base. Thus, unlike the rule-

based systems, the expert system PES is fully symmetrical with respect to the role of

variables.

Appendix II. Statistical Validity of Census Data

The standard census is a statistical investigation of extreme extent that includes the entire

population. All individuals have to answer a set of questions and for any combination of

possible answers we can specify the exact number of respondents having the

corresponding property. This number is fixed and uniquely given by the current state of

the population. Nevertheless, for theoretical reasons, any statistical property of the census

population specified by means of empirical frequency has a limited validity.

Obviously, a census is unique and cannot be repeated as a random experiment under

identical conditions. On the other hand, the census questionnaire can be viewed formally

as a vector of discrete finite-valued random variables

v ¼ ðv1; v2; : : : ; vNÞ; vn [ X n;

and every respondent can be assumed to provide an independent observation x of this

random vector

x ¼ ðx1; x2; : : : ; xNÞ [ X ; X ¼ X 1 £X 2 £ : : : £XN :

From a theoretical point of view, statistical properties of a random vector can be described

in full generality by a joint probability distribution P*(x) of the involved random

variables. We can assume that for a given property specified by a combination of values

xC ¼ ðxi1; : : : ; xikÞ there is an unknown “hypothetical” probability

p* ¼ P*ðxCÞ; xC ¼ ðxi1 ; : : : ; xik Þ [ X i1 £X i2 £ : : : £X ik ¼ XC ð40Þ

of this property. The probability P*(xC) represents a statistical property of the

subpopulation characterized by xC and can be estimated by means of the corresponding

relative frequency. Typically, speaking about the statistical properties, we refer to large

sub-populations; let us recall that a statistical property becomes questionable if the related

sub-population is small.
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We can formally view the number of respondents sn satisfying the considered property

xC as a random result of n independent observations of a random event (so-called Bernoulli

trials) with probability p* ¼ P*ðxCÞ. We recall that, in the case of a census, the number

sn is fixed and uniquely defined and P*(xC) is a hypothetical and unknown probability

which cannot be verified by repeated experiments. Despite these facts, the relationship

between the observed number of respondents sn with the property xC, the population size n

and the probability P*(xC) can be used to characterize the reliability of the empirical

frequency sn. In other words we can decide whether the statistical property is statistically

significant or not. We recall first the well-known De Moivre-Laplace limit theorem of

probability in the following simple form (cf. Feller 1962):

Theorem Let sn stands for the number of successes in n Bernoulli trials with probability

p*, (0 , p* , 1) for success. Then for each fixed a, (0 , a , 1) the probability

P j
sn

n
2 p*j , a

n o
¼ P j

sn 2 np*ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np*ð1 2 p*Þ

p j , a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

p*ð1 2 p*Þ

r� �
ð41Þ

satisfies the relation

n!1
lim P j

sn

n
2 p*j , a

n o
2

2ffiffiffiffiffiffi
2p

p

ða ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

p*ð1 2 p�Þ

r
0

exp 2
z2

2

� �
dz

2
64

3
75 ¼ 0: ð42Þ

This Theorem provides an asymptotic approximation of the probability that the observed

relative frequency sn/n of a random event and the related unknown probability p* differ

from each other by less than a fixed upper bound a, (0 , a , 1). From the Theorem it

follows that for large values of n the error bound probability (41) can be approximated by

the integral expression:

P j
sn

n
2 p*j , a

n o
<

2ffiffiffiffiffiffi
2p

p

ða ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

p*ð1 2 p*Þ

r
0

exp 2
z2

2

� �
dz: ð43Þ

In particular, if we intend to clarify the conditions implying that the probability (41) is high

enough, e.g., at the confidence level 0.95, we have to guarantee the inequality

P j
sn

n
2 p*j , a

n o
$ 0:95; ð0 , a , 1Þ: ð44Þ

In other words, from inequality (44) it follows that (at the confidence level 0.95) the

unknown true probability p* belongs to the interval

sn

n
2 a , p* ,

sn

n
þ a ð45Þ

or, equivalently, the relative frequency sn/n falls between the bounds

p* 2 a ,
sn

n
, p* þ a: ð46Þ
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In view of the limit theorem we can analyze, for large values of n, the inequality

2ffiffiffiffiffiffi
2p

p

ða ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

p*ð1 2 p*Þ

r
0

exp 2
z2

2

� �
dz $ 0:95: ð47Þ

The integral on the left-hand side (sometimes called the error function) is an increasing

function of the upper bound. It can be proven that inequality (47) is satisfied if it holds:

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

p*ð1 2 p*Þ

r
$ 1:96: ð48Þ

Now, as we are interested in the relative accuracy of estimates, we choose the threshold

a in the dependence of p*, e.g., by setting a ¼ ap*, (0 , a , 1). Here a ¼ a=p* is the

required relative accuracy of the probability p*. Substituting for a in (46) we can write

j
sn

n
2 p*j

p*
¼

jsn 2 np*j

np*
, a ð49Þ

or equivalently

ð1 2 aÞnp* , sn , ð1 þ aÞnp*: ð50Þ

Making substitution for a in (48), we obtain

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np*

ð1 2 p*Þ

r
$ 1:96 ð51Þ

and further we obtain the lower bound for the probability p* as a function of its required

accuracy a:

p* $
ð1:96Þ2

ð1:96Þ2 þ a2n
: ð52Þ

In other words, if we want to guarantee the relative accuracy a, (0 , a , 1) then the

estimated probability p* must be greater than the expression on the right hand

side. In particular, for the Czech census 2001 we can fix the number of respondents to

n ¼ 10,230,060 and, by making substitution, we can describe the underlying relation

between p* and a by Table 6.

If we choose the “admissible” relative error a ¼ 0:05 then, for the true unknown frequency

satisfying the inequality

np* . 1;536 ð53Þ

Table 6. Relationship between the relative accuracy a of the probalility p* of a specific property of respondents,

and of the related subpopulaton size np* (at the confidence level 0.95), in the case of a census population of size

10,230,060

a 0.01 0.02 0.05 0.10

p* . 0.0037412 0.0009379 0.0001502 0.0000376
np* . 38,272 9,595 1,536 384
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the corresponding empirical frequency sn is bounded by the inequality (cf. (49))

0:95np* , sn , 1:05np*: ð54Þ

From inequality (54) it follows that, in turn, the unknown frequency np* is bounded by

means of the empirical frequency sn:

sn

1:05
, np* ,

sn

0:95
: ð55Þ

However, the last inequality holds only if np* . 1,536. As the true unknown frequencies

np* are not available, we consider only the empirical frequencies sn which guarantee the

above condition (53). In particular, we confine ourselves to the empirical frequencies

sn satisfying the inequality

sn

1:05
. 1;536 ð56Þ

which implies the condition (53)

np* .
sn

1:05
. 1;536 ð57Þ

Consequently, if the empirical frequency sn is greater than 1,612:

sn . 1:05 *1;536 ¼ 1;612:8; ð58Þ

then the unknown true frequency np* is greater than 1,536 (cf. (53)) and cannot differ from

sn by more than 5%. We can conclude that, by using the lower bound N0:05 ¼ 1;612, we

guarantee the 5% accuracy of the empirical frequencies sn (at the confidence level 0.95) for

the census population size jSj ¼ 10,230,060.
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