








Fig. 3. Simplified Oscillating Search algorithm flowchart.

• Because the solution improves gradually after each oscillation cycle, with the most no-
table improvements at the beginning, it is possible to terminate the algorithm prema-
turely after a specified amount of time to obtain a usable solution. The OS is thus suit-
able for use in real-time systems.

• In some cases the sequential search methods tend to uniformly get caught in certain
local extremes. Running the OS from several different random initial points gives better
chances to avoid that local extreme.

4.6 Experimental Comparison of d-Parametrized Methods
The d-parametrized sub-optimal FS methods as discussed in preceding sections 4.1 to 4.5 have
been listed in the order of their speed-vs-performance characteristics. The BIF is the fastest but
worst performing method, OS offers the strongest optimization ability at the cost of slowest
computation (although it can be adjusted differently). To illustrate this behavior we compare
the output of BIF, SFS, SFFS and OS on a FS task in wrapper (Kohavi et al. (1997a)) setting.

The methods have been used to find best feature subsets for each subset size d = 1, . . . , 34
on the ionosphere data (34 dim., 2 classes: 225 and 126 samples) from the UCI Repository
(Asuncion et al. (2007)). The dataset had been split to 80% train and 20% test part. FS has been
performed on the training part using 10-fold cross-validation, in which 3-Nearest Neighbor
classifier was used as FS criterion. BIF, SFS and SFFS require no parameters, OS had been set
to repeat each search 15× from different random initial subsets of given size, with ∆ = 15.
This set-up is highly time consuming but enables to avoid many local extremes that would
not be avoided by other algorithms.
Figure 4 shows the maximal criterion value obtained by each method for each subset size. It
can be seen that the strongest optimizer in most of cases is OS, although SFFS falls behind just
negligibly. SFS optimization ability is shown to be markedly lower, but still higher than that
of BIF.

Fig. 4. Sub-optimal FS methods’ optimization performance on 3-NN wrapper

Figure 5 shows how the optimized feature subsets perform on independent test data. From
this perspective the differences between methods largely diminish. The effects of feature over-
selection (over-fitting) affect the strongest optimizer – OS – the most. SFFS seems to be the
most reliable method in this respect. SFS yields the best independent performance in this
example. Note that although the highest optimized criterion values have been achieved for
subsets of roughly 6 features, the best independent performance can be observed for subsets
of roughly 7 to 13 features. The example thus illustrates well one of the key problems in FS
– the difficulty to find subsets that generalize well, related to the problem of feature over-
selection (Raudys (2006)).
The speed of each tested method decreases with its complexity. BIF runs in linear time. Other
methods run in polynomial time. SFFS runs roughly 10× slower than SFS. OS in the slow test
setting runs roughly 10 to 100× slower than SFFS.

4.7 Dynamic Oscillating Search – Optimizing Subset Size
The idea of Oscillating Search (Sect. 4.5) has been further extended in form of the Dynamic
Oscillating Search (DOS) (Somol et al. (2008b)). The DOS algorithm can start from any initial
subset of features (including empty set). Similarly to OS it repeatedly attempts to improve
the current set by means of repeating oscillation cycles. However, the current subset size is
allowed to change, whenever a new globally best solution is found at any stage of the oscil-
lation cycle. Unlike other methods discussed in this chapter the DOS is thus a d-optimizing
procedure.
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Fig. 6. The DOS course of search

The course of Dynamic Oscillating Search is illustrated in Fig. 6. See Fig. 2 for comparison
with OS, SFFS and SFS. Similarly to OS the DOS terminates when the current cycle depth
exceeds a user-specified limit ∆. The DOS also shares with OS the same advantages as listed
in Sect. 4.5: the ability to tune results obtained in a different way, gradual result improvement,
fastest improvement in initial search stages, etc.

DOS (Dynamic Oscillating Search) yielding a subset of optimized size k, with optional search-
restricting parameter ∆ ≥ 1):

1. Start with Xk = ADD(ADD(∅)), k=2. Set cycle depth to δ = 1.

2. Compute ADDδ(REMOVEδ(Xt)); if any intermediate subset Xi, i ∈ [k − δ, k] is found
better than Xk, let it become the new Xk with k = i, let δ = 1 and restart step 2.

3. Compute REMOVEδ(ADDδ(Xt)); if any intermediate subset Xj, j ∈ [k, k + δ] is found
better than Xk, let it become the new Xk with k = j, let δ = 1 and go to 2.

4. If δ < ∆ let δ = δ + 1 and go to 2.

A simplified DOS flowchart is given in Fig. 7. In the course of search the DOS generates a se-
quence of solutions with ascending criterion values and, provided the criterion value does not
change, decreasing subset size. The search time vs. closeness-to-optimum trade-off can thus
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Fig. 7. Simplified diagram of the DOS algorithm.

be handled by means of pre-mature search interruption. The number of criterion evaluations
is in the O(n3) order of magnitude. Nevertheless, the total search time depends heavily on the
chosen ∆ value, on particular data and criterion settings, and on the unpredictable number of
oscillation cycle restarts that take place after each solution improvement.

4.7.1 DOS Experiments
We compare the DOS algorithm with the previously discussed methods SFS, SFFS and OS,
here used in d-optimizing manner: each method is run for each possible subset size to eventu-
ally select the subset size that yields the highest criterion value. To mark the difference from
standard d-parametrized course of search we denote these methods SFS�, SFFS�and OS�.
We used the accuracy of various classifiers as FS criterion function: Bayesian classifier assum-
ing Gauss distribution, 3-Nearest Neighbor and SVM with RBF kernel (Chang et al. (2001)).
We tested the methods on wdbc data (30 dim., 2 classes: 357 benign and 212 malignant sam-
ples) from UCI Repository (Asuncion et al. (2007)). The experiments have been accomplished
using 2-tier cross-validation. The outer 10-fold cross-validation loop serves to produce differ-
ent test-train data splits, the inner 10-fold cross-validation loop further splits the train data
part for classifier training and validation as part of the FS process. The results of our experi-
ments are collected in Table 1. (Further set of related experiments can be found in Table 3.)
Each table contains three sections gathering results for one type of classifier (criterion func-
tion). The main information of interest is in the column I-CV, showing the maximum criterion
value (classification accuracy) yielded by each FS method in the inner cross-validation loop,
and O-CV, showing the averaged respective classification accuracy on independent test data.
The following properties of the Dynamic Oscillating Search can be observed: (i) it is able
to outperform other tested methods in the sense of criterion maximization ability (I-CV), (ii)
it tends to produce the smallest feature subsets, (iii) its impact on classifier performance on
unknown data varies depending on data and classifier used – in some cases it yields the best
results, however this behavior is inconsistent.
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be handled by means of pre-mature search interruption. The number of criterion evaluations
is in the O(n3) order of magnitude. Nevertheless, the total search time depends heavily on the
chosen ∆ value, on particular data and criterion settings, and on the unpredictable number of
oscillation cycle restarts that take place after each solution improvement.

4.7.1 DOS Experiments
We compare the DOS algorithm with the previously discussed methods SFS, SFFS and OS,
here used in d-optimizing manner: each method is run for each possible subset size to eventu-
ally select the subset size that yields the highest criterion value. To mark the difference from
standard d-parametrized course of search we denote these methods SFS�, SFFS�and OS�.
We used the accuracy of various classifiers as FS criterion function: Bayesian classifier assum-
ing Gauss distribution, 3-Nearest Neighbor and SVM with RBF kernel (Chang et al. (2001)).
We tested the methods on wdbc data (30 dim., 2 classes: 357 benign and 212 malignant sam-
ples) from UCI Repository (Asuncion et al. (2007)). The experiments have been accomplished
using 2-tier cross-validation. The outer 10-fold cross-validation loop serves to produce differ-
ent test-train data splits, the inner 10-fold cross-validation loop further splits the train data
part for classifier training and validation as part of the FS process. The results of our experi-
ments are collected in Table 1. (Further set of related experiments can be found in Table 3.)
Each table contains three sections gathering results for one type of classifier (criterion func-
tion). The main information of interest is in the column I-CV, showing the maximum criterion
value (classification accuracy) yielded by each FS method in the inner cross-validation loop,
and O-CV, showing the averaged respective classification accuracy on independent test data.
The following properties of the Dynamic Oscillating Search can be observed: (i) it is able
to outperform other tested methods in the sense of criterion maximization ability (I-CV), (ii)
it tends to produce the smallest feature subsets, (iii) its impact on classifier performance on
unknown data varies depending on data and classifier used – in some cases it yields the best
results, however this behavior is inconsistent.



Crit. Meth. I-CV O-CV Size Time(h)

Gauss SFS� 0.962 0.933 10.8 00:00
SFFS� 0.972 0.942 10.6 00:03
OS� 0.970 0.940 9.9 00:06
DOS 0.973 0.951 10.7 00:06
full set 0.945 30

3-NN SFS� 0.981 0.967 15.3 00:01
scaled SFFS� 0.983 0.970 13.7 00:09

OS� 0.982 0.965 14.2 00:22
DOS 0.984 0.965 12.4 00:31
full set 0.972 30

SVM SFS� 0.979 0.970 18.5 00:05
SFFS� 0.982 0.968 16.2 00:23
OS� 0.981 0.974 16.7 00:58
DOS 0.983 0.968 12.8 01:38
full set 0.972 30

Table 1. Performance of FS wrapper methods evaluated on wdbc data, 30-dim., 2-class.

5. Hybrid Algorithms – Accelerating the Search

Filter methods for feature selection are general preprocessing algorithms that do not rely on
any knowledge of the learning algorithm to be used. They are distinguished by specific eval-
uation criteria including distance, information, dependency. Since the filter methods apply
independent evaluation criteria without involving any learning algorithm they are computa-
tionally efficient. Wrapper methods require a predetermined learning algorithm instead of an
independent criterion for subset evaluation. They search through the space of feature subsets
using a learning algorithm, calculate the estimated accuracy of the learning algorithm for each
feature before it can be added to or removed from the feature subset. It means, that learning
algorithms are used to control the selection of feature subsets which are consequently better
suited to the predetermined learning algorithm. Due to the necessity to train and evaluate
the learning algorithm within the feature selection process, the wrapper methods are more
computationally expensive than the filter methods.
The main advantage of filter methods is their speed and ability to scale to large data sets.
A good argument for wrapper methods is that they tend to give superior performance. Their
time complexity, however, may become prohibitive if problem dimensionality exceeds several
dozen features.
Hybrid FS algorithms can be defined easily to utilize the advantages of both filters and wrap-
pers (Somol et al. (2006)). In the course of search, in each algorithm step filter is used to reduce
the number of candidates to be evaluated in wrapper. The scheme can be applied in any se-
quential FS algorithms by replacing Definitions 1 and 2 by Definitions 3 and 4 as follows. For
sake of simplicity let JF(.) denote the faster but for the given problem possibly less appropriate
filter criterion, JW(.) denote the slower but more appropriate wrapper criterion. The hybridiza-
tion coefficient, defining the proportion of feature subset evaluations to be accomplished by
wrapper means, is denoted by λ ∈ [0, 1]. In the following �·� denotes value rounding.

Definition 3. For a given current feature set Xd and given λ ∈ [0, 1], let Z+ be the set of candidate
features

Z+ = { fi : fi ∈ Y \ Xd; i = 1, . . . , max{1, �λ · |Y \ Xd|�}} (10)

such that
∀ f , g ∈ Y \ Xd, f ∈ Z+, g /∈ Z+ J+F (Xd, f ) ≥ J+F (Xd, g) , (11)

where J+F (Xd, f ) denotes the pre-filtering criterion function used to evaluate the subset obtained by
adding f ( f ∈ Y \ Xd) to Xd. Let f+ be the feature such that

f+ = arg max
f∈Z+

J+W(Xd, f ) , (12)

where J+W(Xd, f ) denotes the main criterion function used to evaluate the subset obtained by adding
f ( f ∈ Z+) to Xd. Then we shall say that ADDH(Xd) is an operation of adding feature f+ to the
current set Xd to obtain set Xd+1 if

ADDH(Xd) ≡ Xd ∪ { f+} = Xd+1, Xd, Xd+1 ⊂ Y. (13)

Definition 4. For a given current feature set Xd and given λ ∈ [0, 1], let Z− be the set of candidate
features

Z− = { fi : fi ∈ Xd; i = 1, . . . , max{1, �λ · |Xd|�}} (14)

such that
∀ f , g ∈ Xd, f ∈ Z−, g /∈ Z− J−F (Xd, f ) ≥ J−F (Xd, g) , (15)

where J−F (Xd, f ) denotes the pre-filtering criterion function used to evaluate the subset obtained by
removing f ( f ∈ Xd) from Xd. Let f− be the feature such that

f− = arg max
f∈Z−

J−W(Xd, f ), (16)

where J−W(Xd, f ) denotes the main criterion function used to evaluate the subset obtained by removing
f ( f ∈ Z−) from Xd. Then we shall say that REMOVEH(Xd) is an operation of removing feature f−

from the current set Xd to obtain set Xd−1 if

REMOVEH(Xd) ≡ Xd \ { f−} = Xd−1, Xd, Xd−1 ⊂ Y. (17)

The effect of hybridization is illustrated on the example in Table 2. We tested the hybridized
DOS method on waveform data (40 dim., 2 classes: 1692 and 1653 samples) from UCI Reposi-
tory (Asuncion et al. (2007)). In the hybrid setting we used Bhattacharyya distance (Devijver
et al. (1982)) as the fast filter criterion and 3-Nearest Neighbor as the slow wrapper criterion.
The reported wrapper accuracy represents the maximum criterion value found for the se-
lected feature subset. The reported independent accuracy has been obtained on independent
test data using 3-NN. Note that despite considerable reduction of search time for lower λ the
obtained feature subset yields comparable accuracy of the wrapper classifier.
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tory (Asuncion et al. (2007)). In the hybrid setting we used Bhattacharyya distance (Devijver
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Hybridization coeff. λ 0.01 0.25 0.5 0.75 1

Wrapper accuracy 0.907136 0.913116 0.921089 0.921485 0.921485
Independent accuracy 0.916268 0.911483 0.911483 0.910287 0.910287
Determined subset size 11 10 15 17 17
Time 1:12 8:06 20:42 35:21 48:24

Table 2. Performance of the hybridized Dynamic Oscillating Search wrapper FS method eval-
uated on waveform data, 40-dim., 2-class.

6. The Problem of Feature Selection Overfitting and Stability

In older literature the prevailing approach to FS method performance assessment was to eval-
uate the ability to find the optimum, or to get as close to it as possible, with respect to some
criterion function defined to distinguish classes in classification tasks or to fit data in approx-
imation tasks. Recently, emphasis is put on assessing the impact of FS on generalization per-
formance, i.e., the ability of the devised decision rule to perform well on independent data.
It has been shown that similarly to classifier over-training the effect of feature over-selection
can hinder the performance of pattern recognition system (Raudys (2006), Raudys (2006)); es-
pecially with small-sample or high-dimensional problems. Compare Figures 4 and 5 to see an
example of the effect.
It has been also pointed out that independent test data performance should not be neglected
when comparing FS methods (Reunanen (2003)). The task of FS methods’ comparison seems
to be understood ambiguously as well. It is very different whether we compare concrete
method properties or the final classifier performance determined by use of particular meth-
ods under particular settings. Certainly, final classifier performance is the ultimate quality
measure. However, misleading conclusions about FS may be easily drawn when evaluating
nothing else, as classifier performance depends on many more different aspects then just the
actual FS method used.
There seems to be a general agreement in literature that wrapper-based FS enables creation
of more accurate classifiers than filter-based FS. This claim is nevertheless to be taken with
caution, while using actual classifier accuracy as FS criterion in wrapper-based FS may lead
to the very negative effects mentioned above (overtraining). At the same time the weaker
relation of filter-based FS criterion functions to particular classifier accuracy may help better
generalization. But these effects can be hardly judged before the building of classification sys-
tem has actually been accomplished. The problem of classifier performance estimation is by
no means simple. Many estimation strategies are available, suitability of which is problem
dependent (re-substitution, data split, hold-out, cross-validation, leave-one-out, etc.). For a
detailed study on classifier training related problems and work-around methods, e.g., stabi-
lizing weak classifiers, see Skurichina (2001).

6.1 The Problem of Feature Selection Stability
It is common that classifier performance is considered the ultimate quality measure, even
when assessing the FS process. However, misleading conclusions may be easily drawn when
ignoring stability issues. Unstable FS performance may seriously deteriorate the properties of
the final classifier by selecting the wrong features. Following Kalousis et al. (2007) we define
the stability of the FS algorithm as the robustness of the feature preferences it produces to dif-
ferences in training sets drawn from the same generating distribution. FS algorithms express
the feature preferences in the form of a selected feature subset S ⊆ Y. Stability quantifies how

different training sets drawn from the same generating distribution affect the feature pref-
erences. Recent works in the area of FS methods’ stability mainly focus on various stability
indices, introducing measures based on Hamming distance, Dunne et al. (2002), correlation
coefficients and Tanimoto distance, Kalousis et al. (2007), consistency index, Kuncheva (2007)
and Shannon entropy, Křížek et al. (2007). Stability of FS procedures depends on the sample
size, the criteria utilized to perform FS, and the complexity of FS procedure, Raudys (2006).
In the following we focus on several new measures allowing to assess the FS stability of both
the d-parametrized and d-optimizing FS methods (Somol et al. (2008a)).

6.1.1 Considered Measures of Feature Selection Stability
Let S = {S1, . . . , Sn} be a system of n feature subsets Sj =

{
fki
| i = 1, . . . , dj, fki

∈ Y, dj ∈
{1, . . . , |Y|}

}
, j = 1, . . . , n, n > 1, n ∈ N, obtained from n runs of the evaluated FS algorithm

on different samplings of a given data set. Let X be the subset of Y representing all features
that appear anywhere in S :

X = { f | f ∈ Y, Ff > 0} =
n⋃

i=1
Si, X �= ∅, (18)

where Ff is the number of occurrences (frequency) of feature f ∈ Y in system S . Let N denote
the total number of occurrences of any feature in system S , i.e.,

N = ∑
g∈X

Fg =
n

∑
i=1

|Si|, N ∈ N, N ≥ n . (19)

Definition 5. The weighted consistency CW(S) of the system S is defined as

CW(S) = ∑
f∈X

w f
Ff − Fmin

Fmax − Fmin
, (20)

where w f =
Ff
N , 0 < w f ≤ 1, ∑ f∈X w f = 1.

Because Ff = 0 for all f ∈ Y \ X, the weighted consistency CW(S) can be equally expressed
using notation (19):

CW(S) = ∑
f∈X

Ff

N
·

Ff − Fmin

Fmax − Fmin
= ∑

f∈Y

Ff

N
·

Ff − 1
n − 1

. (21)

It is obvious that CW(S) = 0 if and only if (iff) N = |X|, i.e., iff Ff = 1 for all f ∈ X. This is
unrealistic in most of real cases. Whenever n > |X|, some feature must appear in more than
one subset and consequently CW(S) > 0. Similarly, CW(S) = 1 iff N = n|X|, otherwise all
subsets can not be identical.
Clearly, for any N, n representing some system of subsets S and for given Y there exists a
system Smin with such configuration of features in its subsets that yields the minimal possible
CW(·) value, to be denoted CWmin(N, n, Y), being possibly greater than 0. Similarly, a system
Smax exists that yields the maximal possible CW(·) value, to be denoted CWmax(N, n), being
possibly lower than 1.
It can be easily seen that CWmin(·) gets high when the sizes of feature subsets in system ap-
proach the total number of features |Y|, because in such system the subsets get necessarily
more similar to each other. Consequently, using measure (20) for comparison of the stability
of various FS methods may lead to misleading results if the methods tend to yield systems
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Hybridization coeff. λ 0.01 0.25 0.5 0.75 1

Wrapper accuracy 0.907136 0.913116 0.921089 0.921485 0.921485
Independent accuracy 0.916268 0.911483 0.911483 0.910287 0.910287
Determined subset size 11 10 15 17 17
Time 1:12 8:06 20:42 35:21 48:24

Table 2. Performance of the hybridized Dynamic Oscillating Search wrapper FS method eval-
uated on waveform data, 40-dim., 2-class.

6. The Problem of Feature Selection Overfitting and Stability
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relation of filter-based FS criterion functions to particular classifier accuracy may help better
generalization. But these effects can be hardly judged before the building of classification sys-
tem has actually been accomplished. The problem of classifier performance estimation is by
no means simple. Many estimation strategies are available, suitability of which is problem
dependent (re-substitution, data split, hold-out, cross-validation, leave-one-out, etc.). For a
detailed study on classifier training related problems and work-around methods, e.g., stabi-
lizing weak classifiers, see Skurichina (2001).

6.1 The Problem of Feature Selection Stability
It is common that classifier performance is considered the ultimate quality measure, even
when assessing the FS process. However, misleading conclusions may be easily drawn when
ignoring stability issues. Unstable FS performance may seriously deteriorate the properties of
the final classifier by selecting the wrong features. Following Kalousis et al. (2007) we define
the stability of the FS algorithm as the robustness of the feature preferences it produces to dif-
ferences in training sets drawn from the same generating distribution. FS algorithms express
the feature preferences in the form of a selected feature subset S ⊆ Y. Stability quantifies how

different training sets drawn from the same generating distribution affect the feature pref-
erences. Recent works in the area of FS methods’ stability mainly focus on various stability
indices, introducing measures based on Hamming distance, Dunne et al. (2002), correlation
coefficients and Tanimoto distance, Kalousis et al. (2007), consistency index, Kuncheva (2007)
and Shannon entropy, Křížek et al. (2007). Stability of FS procedures depends on the sample
size, the criteria utilized to perform FS, and the complexity of FS procedure, Raudys (2006).
In the following we focus on several new measures allowing to assess the FS stability of both
the d-parametrized and d-optimizing FS methods (Somol et al. (2008a)).

6.1.1 Considered Measures of Feature Selection Stability
Let S = {S1, . . . , Sn} be a system of n feature subsets Sj =

{
fki
| i = 1, . . . , dj, fki

∈ Y, dj ∈
{1, . . . , |Y|}

}
, j = 1, . . . , n, n > 1, n ∈ N, obtained from n runs of the evaluated FS algorithm

on different samplings of a given data set. Let X be the subset of Y representing all features
that appear anywhere in S :

X = { f | f ∈ Y, Ff > 0} =
n⋃

i=1
Si, X �= ∅, (18)

where Ff is the number of occurrences (frequency) of feature f ∈ Y in system S . Let N denote
the total number of occurrences of any feature in system S , i.e.,

N = ∑
g∈X

Fg =
n

∑
i=1

|Si|, N ∈ N, N ≥ n . (19)

Definition 5. The weighted consistency CW(S) of the system S is defined as

CW(S) = ∑
f∈X

w f
Ff − Fmin

Fmax − Fmin
, (20)

where w f =
Ff
N , 0 < w f ≤ 1, ∑ f∈X w f = 1.

Because Ff = 0 for all f ∈ Y \ X, the weighted consistency CW(S) can be equally expressed
using notation (19):

CW(S) = ∑
f∈X

Ff

N
·

Ff − Fmin

Fmax − Fmin
= ∑

f∈Y
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·

Ff − 1
n − 1

. (21)

It is obvious that CW(S) = 0 if and only if (iff) N = |X|, i.e., iff Ff = 1 for all f ∈ X. This is
unrealistic in most of real cases. Whenever n > |X|, some feature must appear in more than
one subset and consequently CW(S) > 0. Similarly, CW(S) = 1 iff N = n|X|, otherwise all
subsets can not be identical.
Clearly, for any N, n representing some system of subsets S and for given Y there exists a
system Smin with such configuration of features in its subsets that yields the minimal possible
CW(·) value, to be denoted CWmin(N, n, Y), being possibly greater than 0. Similarly, a system
Smax exists that yields the maximal possible CW(·) value, to be denoted CWmax(N, n), being
possibly lower than 1.
It can be easily seen that CWmin(·) gets high when the sizes of feature subsets in system ap-
proach the total number of features |Y|, because in such system the subsets get necessarily
more similar to each other. Consequently, using measure (20) for comparison of the stability
of various FS methods may lead to misleading results if the methods tend to yield systems



of differently sized subsets. We will refer to this problem as to "the problem of subset-size
bias". Note that most of available stability measures are affected by the same problem. For
this reason we introduce another measure, to be called the relative weighted consistency, which
suppresses the influence of the sizes of subsets in system on the final value.

Definition 6. The relative weighted consistency CWrel(S , Y) of system S characterized by N, n
and for given Y is defined as

CWrel(S , Y) =
CW(S)− CWmin(N, n, Y)

CWmax(N, n)− CWmin(N, n, Y)
, (22)

where CWrel(S , Y) = CW(S) for CWmax(N, n) = CWmin(N, n, Y).
Denoting D = N mod |Y| and H = N mod n for simplicity, it has been shown in Somol et al.
(2008a) that

CWmin(N, n, Y) =
N2 − |Y|(N − D)− D2

|Y|N(n − 1)
(23)

and

CWmax(N, n) =
H2 + N(n − 1)− Hn

N(n − 1)
. (24)

The relative weighted consistency then becomes:

CWrel(S , Y) =
|Y|

(
N − D + ∑ f∈Y Ff (Ff − 1)

)
− N2 + D2

|Y| (H2 + n(N − H)− D)− N2 + D2 . (25)

The weighted consistency bounds CWmax(N, n) and CWmin(N, n, Y) are illustrated in Fig. 8.

Fig. 8. Illustration of CW measure bounds

Note that CWrel may be sensitive to small system changes if N approaches maximum (for
given |Y| and n).
It can be seen that for any N, n representing some system of subsets S and for given Y it is
true that 0 ≤ CWrel(S , Y) ≤ 1 and for the corresponding systems Smin and Smax it is true that
CWrel(Smin) = 0 and CWrel(Smax) = 1.
The measure (22) does not exhibit the unwanted behavior of yielding higher values for sys-
tems with subset sizes closer to |Y|, i.e., is independent of the size of feature subsets selected
by the examined FS methods under fixed Y. We can say that this measure characterizes for
given S , Y the relative degree of randomness of the system of feature subsets on the scale
between the maximum and minimum values of the weighted consistency (20).

Next, following the idea of Kalousis et al. (2007) we define a conceptually different measure.
It is derived from the Tanimoto index (coefficient) defined as the size of the intersection divided
by the size of union of the subsets Si and Sj, Duda et al. (2000):

SK(Si, Sj) =
|Si ∩ Sj|
|Si ∪ Sj|

. (26)

Definition 7. The Average Tanimoto Index of system S is defined as follows:

ATI(S) = 2
n(n − 1)

n−1

∑
i=1

n

∑
j=i+1

SK(Si, Sj) . (27)

ATI(S) is the average similarity measure over all pairs of feature subsets in S . It takes val-
ues from [0, 1] with 0 indicating empty intersection between all pairs of subsets Si, Sj and 1
indicating that all subsets of the system S are identical.

FS Classif. rate Subset size CW CW ATI FS time
Wrap. Meth. Mean S.Dv. Mean S.Dv. rel h:m:s

Gauss. rand .908 .059 14.90 8.39 .500 .008 .296 00:00:14
BIF� .948 .004 27.15 4.09 .927 .244 .862 00:04:57
SFS� .963 .003 11.95 5.30 .506 .181 .332 01:02:04
SFFS� .969 .003 12.17 4.66 .556 .259 .387 09:13:03
DOS .973 .002 8.85 2.36 .584 .419 .429 12:49:59

3NN rand .935 .061 14.9 8.30 .501 .009 .297 00:00:45
BIF� .970 .002 24.78 3.70 .912 .513 .840 00:38:39
SFS� .976 .002 15.45 5.74 .584 .148 .401 07:27:39
SFFS� .979 .002 17.96 5.67 .658 .149 .481 33:53:55
DOS .980 .001 13.27 4.25 .565 .227 .393 116:47:

SVM rand .942 .059 14.94 8.58 .502 .008 .295 00:00:50
BIF� .974 .003 21.67 2.71 .929 .774 .875 01:01:48
SFS� .982 .002 9.32 4.12 .433 .185 .283 07:13:02
SFFS� .983 .002 10.82 4.58 .472 .179 .310 30:28:02
DOS .985 .001 8.70 3.42 .442 .222 .295 74:28:51

Table 3. Stability of wrapper FS methods evaluated on wdbc data, 30-dim., 2-class.

6.1.2 Experiments With Stability Measures
To illustrate the discussed stability measures we have conducted several experiments on wdbc
data (30 dim., 2 classes: 357 benign and 212 malignant samples) from UCI Repository (Asun-
cion et al. (2007)). The results are collected in Table 3. We focused on comparing the stability
of principally different FS methods discussed in this chapter: BIF, SFS and SFFS and DOS in
d-optimizing setting; d-parametrized methods are run for each possible subset size to eventu-
ally select the subset size that yields the highest criterion value. To mark the difference from
standard d-parametrized course of search we denote these methods BIF�, SFS�and SFFS�. We
used the classification accuracy of three conceptually different classifiers as FS criteria: Gaus-
sian classifier, 3-Nearest Neighbor (majority voting) and SVM with RBF kernel (Chang et al.
(2001)). In each setup FS was repeated 1000× on randomly sampled 80% of the data (class size
ratios preserved). In each FS run the criterion was evaluated using 10-fold cross-validation,
with 2/3 of available data randomly sampled for training and the remaining 1/3 used for
testing.
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of differently sized subsets. We will refer to this problem as to "the problem of subset-size
bias". Note that most of available stability measures are affected by the same problem. For
this reason we introduce another measure, to be called the relative weighted consistency, which
suppresses the influence of the sizes of subsets in system on the final value.

Definition 6. The relative weighted consistency CWrel(S , Y) of system S characterized by N, n
and for given Y is defined as

CWrel(S , Y) =
CW(S)− CWmin(N, n, Y)

CWmax(N, n)− CWmin(N, n, Y)
, (22)

where CWrel(S , Y) = CW(S) for CWmax(N, n) = CWmin(N, n, Y).
Denoting D = N mod |Y| and H = N mod n for simplicity, it has been shown in Somol et al.
(2008a) that

CWmin(N, n, Y) =
N2 − |Y|(N − D)− D2

|Y|N(n − 1)
(23)

and

CWmax(N, n) =
H2 + N(n − 1)− Hn

N(n − 1)
. (24)

The relative weighted consistency then becomes:

CWrel(S , Y) =
|Y|

(
N − D + ∑ f∈Y Ff (Ff − 1)

)
− N2 + D2

|Y| (H2 + n(N − H)− D)− N2 + D2 . (25)

The weighted consistency bounds CWmax(N, n) and CWmin(N, n, Y) are illustrated in Fig. 8.

Fig. 8. Illustration of CW measure bounds

Note that CWrel may be sensitive to small system changes if N approaches maximum (for
given |Y| and n).
It can be seen that for any N, n representing some system of subsets S and for given Y it is
true that 0 ≤ CWrel(S , Y) ≤ 1 and for the corresponding systems Smin and Smax it is true that
CWrel(Smin) = 0 and CWrel(Smax) = 1.
The measure (22) does not exhibit the unwanted behavior of yielding higher values for sys-
tems with subset sizes closer to |Y|, i.e., is independent of the size of feature subsets selected
by the examined FS methods under fixed Y. We can say that this measure characterizes for
given S , Y the relative degree of randomness of the system of feature subsets on the scale
between the maximum and minimum values of the weighted consistency (20).

Next, following the idea of Kalousis et al. (2007) we define a conceptually different measure.
It is derived from the Tanimoto index (coefficient) defined as the size of the intersection divided
by the size of union of the subsets Si and Sj, Duda et al. (2000):

SK(Si, Sj) =
|Si ∩ Sj|
|Si ∪ Sj|

. (26)

Definition 7. The Average Tanimoto Index of system S is defined as follows:

ATI(S) = 2
n(n − 1)

n−1

∑
i=1

n

∑
j=i+1

SK(Si, Sj) . (27)

ATI(S) is the average similarity measure over all pairs of feature subsets in S . It takes val-
ues from [0, 1] with 0 indicating empty intersection between all pairs of subsets Si, Sj and 1
indicating that all subsets of the system S are identical.

FS Classif. rate Subset size CW CW ATI FS time
Wrap. Meth. Mean S.Dv. Mean S.Dv. rel h:m:s

Gauss. rand .908 .059 14.90 8.39 .500 .008 .296 00:00:14
BIF� .948 .004 27.15 4.09 .927 .244 .862 00:04:57
SFS� .963 .003 11.95 5.30 .506 .181 .332 01:02:04
SFFS� .969 .003 12.17 4.66 .556 .259 .387 09:13:03
DOS .973 .002 8.85 2.36 .584 .419 .429 12:49:59

3NN rand .935 .061 14.9 8.30 .501 .009 .297 00:00:45
BIF� .970 .002 24.78 3.70 .912 .513 .840 00:38:39
SFS� .976 .002 15.45 5.74 .584 .148 .401 07:27:39
SFFS� .979 .002 17.96 5.67 .658 .149 .481 33:53:55
DOS .980 .001 13.27 4.25 .565 .227 .393 116:47:

SVM rand .942 .059 14.94 8.58 .502 .008 .295 00:00:50
BIF� .974 .003 21.67 2.71 .929 .774 .875 01:01:48
SFS� .982 .002 9.32 4.12 .433 .185 .283 07:13:02
SFFS� .983 .002 10.82 4.58 .472 .179 .310 30:28:02
DOS .985 .001 8.70 3.42 .442 .222 .295 74:28:51

Table 3. Stability of wrapper FS methods evaluated on wdbc data, 30-dim., 2-class.

6.1.2 Experiments With Stability Measures
To illustrate the discussed stability measures we have conducted several experiments on wdbc
data (30 dim., 2 classes: 357 benign and 212 malignant samples) from UCI Repository (Asun-
cion et al. (2007)). The results are collected in Table 3. We focused on comparing the stability
of principally different FS methods discussed in this chapter: BIF, SFS and SFFS and DOS in
d-optimizing setting; d-parametrized methods are run for each possible subset size to eventu-
ally select the subset size that yields the highest criterion value. To mark the difference from
standard d-parametrized course of search we denote these methods BIF�, SFS�and SFFS�. We
used the classification accuracy of three conceptually different classifiers as FS criteria: Gaus-
sian classifier, 3-Nearest Neighbor (majority voting) and SVM with RBF kernel (Chang et al.
(2001)). In each setup FS was repeated 1000× on randomly sampled 80% of the data (class size
ratios preserved). In each FS run the criterion was evaluated using 10-fold cross-validation,
with 2/3 of available data randomly sampled for training and the remaining 1/3 used for
testing.



The results are collected in Table 3. All measures, CW, CWrel and ATI indicate BIF�as the most
stable FS method, what confirms the conclusions in Kuncheva (2007). Note that CWrel is the
only measure to correctly detect random feature selection (values close to 0). Note that apart
from BIF�, with 3-NN and SVM the most stable FS method appears to be SFFS�, with Gaussian
classifier it is DOS. Very low CWrel values may indicate some pitfall in the FS process - either
there are no clearly preferable features in the set, or the methods overfit, etc. Note that low
stability measure values are often accompanied by higher deviations in subset size.

7. Summary

The current state of art in feature selection based dimensionality reduction for decision prob-
lems of classification type has been overviewed. A number of recent feature subset search
strategies have been reviewed and compared. Following the analysis of their respective ad-
vantages and shortcomings, the conditions under which certain strategies are more pertinent
than others have been suggested.
Concerning our current experience, we can give the following recommendations. Floating
Search can be considered the first tool to try for many FS tasks. It is reasonably fast and yields
generally very good results in all dimensions at once, often succeeding in finding the global
optimum. The Oscillating Search becomes better choice whenever: 1) the highest quality of
solution must be achieved but optimal methods are not applicable, or 2) a reasonable solution
is to be found as quickly as possible, or 3) numerical problems hinder the use of sequential
methods, or 4) extreme problem dimensionality prevents any use of sequential methods, or
5) the search is to be performed in real-time systems. Especially when repeated with different
random initial sets the Oscillating Search shows outstanding potential to overcome local ex-
tremes in favor of global optimum. Dynamic Oscillating Search adds to Oscillating Search the
ability to optimize both the subset size and subset contents at once.
No FS method, however, can be claimed the best for all problems. Moreover, any FS method
should be applied cautiously to prevent the negative effects of feature over-selection (over-
training) and to prevent stability issues.
Remark: Source codes can be partly found at http://ro.utia.cas.cz/dem.html.

7.1 Does It Make Sense to Develop New FS Methods?
Our answer is undoubtedly yes. Our current experience shows that no clear and unambigu-
ous qualitative hierarchy can be established within the existing framework of methods, i.e.,
although some methods perform better then others more often, this is not the case always and
any method can show to be the best tool for some particular problem. Adding to this pool of
methods may thus bring improvement, although it is more and more difficult to come up with
new ideas that have not been utilized before. Regarding the performance of search algorithms
as such, developing methods that yield results closer to optimum with respect to any given
criterion may bring considerably more advantage in future, when better criteria may have
been found to better express the relation between feature subsets and classifier generalization
ability.
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The results are collected in Table 3. All measures, CW, CWrel and ATI indicate BIF�as the most
stable FS method, what confirms the conclusions in Kuncheva (2007). Note that CWrel is the
only measure to correctly detect random feature selection (values close to 0). Note that apart
from BIF�, with 3-NN and SVM the most stable FS method appears to be SFFS�, with Gaussian
classifier it is DOS. Very low CWrel values may indicate some pitfall in the FS process - either
there are no clearly preferable features in the set, or the methods overfit, etc. Note that low
stability measure values are often accompanied by higher deviations in subset size.

7. Summary

The current state of art in feature selection based dimensionality reduction for decision prob-
lems of classification type has been overviewed. A number of recent feature subset search
strategies have been reviewed and compared. Following the analysis of their respective ad-
vantages and shortcomings, the conditions under which certain strategies are more pertinent
than others have been suggested.
Concerning our current experience, we can give the following recommendations. Floating
Search can be considered the first tool to try for many FS tasks. It is reasonably fast and yields
generally very good results in all dimensions at once, often succeeding in finding the global
optimum. The Oscillating Search becomes better choice whenever: 1) the highest quality of
solution must be achieved but optimal methods are not applicable, or 2) a reasonable solution
is to be found as quickly as possible, or 3) numerical problems hinder the use of sequential
methods, or 4) extreme problem dimensionality prevents any use of sequential methods, or
5) the search is to be performed in real-time systems. Especially when repeated with different
random initial sets the Oscillating Search shows outstanding potential to overcome local ex-
tremes in favor of global optimum. Dynamic Oscillating Search adds to Oscillating Search the
ability to optimize both the subset size and subset contents at once.
No FS method, however, can be claimed the best for all problems. Moreover, any FS method
should be applied cautiously to prevent the negative effects of feature over-selection (over-
training) and to prevent stability issues.
Remark: Source codes can be partly found at http://ro.utia.cas.cz/dem.html.

7.1 Does It Make Sense to Develop New FS Methods?
Our answer is undoubtedly yes. Our current experience shows that no clear and unambigu-
ous qualitative hierarchy can be established within the existing framework of methods, i.e.,
although some methods perform better then others more often, this is not the case always and
any method can show to be the best tool for some particular problem. Adding to this pool of
methods may thus bring improvement, although it is more and more difficult to come up with
new ideas that have not been utilized before. Regarding the performance of search algorithms
as such, developing methods that yield results closer to optimum with respect to any given
criterion may bring considerably more advantage in future, when better criteria may have
been found to better express the relation between feature subsets and classifier generalization
ability.
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