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1. Introduction

Ongoing expansion of digital images requires new methods for sorting, browsing, and search-
ing through huge image databases. Content-based image retrieval (CBIR) systems, which are
database search engines for images, typically takes a user selected image or series of images
and tries to retrieve similar images from a large image database. Although image retrieval has
been an active research area for many years (Smeulders et al., 2000) this difficult problem is
still far from being solved. One of the reasons is that common image features do not provide
required discriminability and invariance. Optimal robust features should be geometry and
illumination invariant and still remain highly discriminative, which are often contradictory
requirements.
Simpler CBIR methods are based only on colour features and achieve illumination invariance
by normalising colour bands or using the colour ratio histogram (Gevers & Smeulders, 2001).
However, colour based methods rarely perform sufficiently well in natural visual scenes be-
cause they cannot detect similar objects in different locations, backgrounds or illuminations.
Textures are important clues to specify objects present in a visual scene. Unfortunately, the
visual appearance of natural prevailing textures is highly illumination and view direction de-
pendent. As a consequence, most recent natural texture based classification or segmentation
methods require multiple training images captured under a full variety of possible illumina-
tion and viewing conditions for each class (Suen & Healey, 2000; Varma & Zisserman, 2005).
Such learning is obviously clumsy and very often even impossible if required measurements
are not available. Drbohlav & Chantler (2005) allow a single training image per class, but they
require surfaces of uniform albedo, smooth and shallow relief, the illumination sufficiently
far from the texture macro-normal and most seriously the knowledge of illumination direc-
tion for all involved (trained as well as tested) textures. It was demonstrated by Chen et al.
(2000); Jacobs et al. (1998) that for grey image of an object with Lambertian reflectance there
are no discriminative functions that are invariant to change of illumination direction. How-
ever, multispectral images can also rely on relations of spectral planes and therefore overcome
this theoretical property.
Colour constancy algorithms, represented by Finlayson (1995), attempt to recover the image
illuminated by some standard illumination, which is an unnecessarily complex task and it
induces additional assumptions on a recognised scene. The normalisation of an image before
the recognition proposed in Finlyason & Xu (2002) is able to cancel changes of illumination
colour, lighting changes caused by the object geometry and even a power (gamma) function,
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which is usually applied to image data during the coding process. However, since the method
normalises lighting changes caused by the geometry it completely wipes out the structure of
rough textures and therefore it destroys the possibility to recognise such textures. Simulta-
neously, the invariants to geometry introduced lighting changes tend to be unstable because
of nonlinear transformations usually involved. An interesting approach of quasi-invariants
(Weijer et al., 2005) relieves the condition of full invariance and therefore it is less sensitive
to noise. Parameters of Weibull-distribution of image edges (Geusebroek & Smeulders, 2005)
are proposed as insensitive to illumination brightness. Healey & Wang (1995), Yang & Al-
Rawi (2005) employ properties of correlation functions between different spectral channels to
achieve invariance to illumination spectrum changes. Hoang & Geausebroek (2005), Geuse-
broek et al. (2003) introduced a method based on the logarithm of Gabor filter responses to-
gether with a new Gaussian colour model. However, the Gaussian colour model of RGB
texture is implemented as a simple matrix multiplication and invariance to any linear trans-
formation of texture values is inherent part of the illumination invariant features proposed in
the rest of this article.
Local Binary Patterns (Ojala, Pietikäinen & Mäenpää, 2002) (LBP) are popular illumination
invariant features, which we use for comparison. The texton representation (Varma & Zis-
serman, 2005) based on MR8 filter responses have been extended to incorporate colour infor-
mation and to be illumination invariant (Burghouts & Geusebroek, 2009). Another approach
(Targhi et al., 2008) generates unseen training images using the photometric stereo approach.
Although, it improves classification accuracy, this algorithm has strong requirements of three
mutually registered images with different illumination direction for each material.
We present textural features, which are invariant to illumination brightness and spectrum
changes and which do not require any knowledge of illumination spectrum. The features
are robust to illumination direction changes and do not require knowledge of illumination
direction or mutual texture registration. They can be applied for textured object retrieval if
only a single illumination training image is available for each class.
These properties are verified on Outex database (Ojala, Mäenpää, Pietikäinen, Viertola, Kyl-
lönen & Huovinen, 2002), where texture images are illuminated under three different spectra,
and University of Bonn BTF texture measurements (Meseth et al., 2003), where illumination
sources are spanned over 75% of possible illumination direction above material samples. Pre-
liminary experiments were published in Vacha & Haindl (2008), Vacha & Haindl (2007).
The chapter is organised as follows: The illumination model assumptions are reviewed in
Section 2. Texture model description and derivation of illumination invariant features follow
in Section 3. Experimental results are presented in Section 5 and Section 6 concludes this
chapter.

2. Illumination Model

Illumination conditions can change due to various reasons. In our approach we allow changes
of brightness and spectrum of illumination sources. We assume that positions of viewpoint
and illumination sources remain unchanged and that the illumination sources are far enough
to produce uniform illumination. Furthermore, we assume planar textured Lambertian sur-
faces with varying albedo and surface texture normal.
The previous assumptions are quite strong and they are required to theoretically derive the
illumination invariance of features. However, our experiments with natural surfaces show
that the derived features are very robust even in the setup, which is in contradiction with
previous assumptions (test with eighty different illumination positions).

Let us denote a multiindex r = (r1, r2) where r1 is the row and r2 the column index,
respectively. Value acquired by the j−th sensor at the location r can be expressed as

Yr,j =
∫

ω
E(λ) S(r, λ) Rj(λ) dλ ,

where E(λ) is the spectral power distribution of a single illumination, S(r, λ) is a Lambertian
reflectance coefficient at the position r, Rj(λ) is the j−th sensor response function, and the
integral is taken over the visible spectrum ω. The Lambertian reflectance term S(r, λ) depends
on surface normal, illumination direction, and surface albedo.
Following the work of Finlayson (1995), we approximate the surface reflectance S(r, λ) by a
linear combination of a fixed basis S(r, λ) = ∑C

c=1 dc sc(λ) , where functions sc are optimal
basis functions that represent the data. The method for finding suitable basis was introduced
by Marimont & Wandell (1992), they also conclude that, given the human receptive cones,
a 3-dimensional basis set is sufficient to model colour observations. However, finding such
basis set is not necessary our method, because the key assumption is its existence.
Provided that j = 1, . . . , C sensor measurements are available and the illumination and view
point positions are the same, the images acquired with different illumination spectra can be
transformed to each other by the linear transformation:

Ỹr = B Yr ∀r , (1)

where Ỹ, Y are texture images with different illuminations, and B is a C × C transformation
matrix. The formula (1) is valid even for several illumination sources with variable spectra
provided that the spectra of all sources are the same and the positions of the illumination
sources remain fixed.
More importantly, it can be proved that formula (1) is valid not only for Lambertian surfaces,
but also for surface model with specular reflectance component (e.g. dichromatic reflection
model (Shafer, 1985), which comprise also the well-known Phong reflection model).
If we assume further diagonal transformation (1), then the invariance to illumination colour
change can be achieved by the spectral planes normalisation:

Y′
r,j =

Yr,j

∑s Ys,j
∀j = 1, . . . , C . (2)

Since neither of our methods requires this type of normalisation, it is applied to Gabor fea-
tures, which are further used for comparison purposes, only.
No method that guarantee an illumination invariance to surface geometry effects have been
used. The primary reason is that the invariance to this geometry effects is not desirable be-
cause a surface structure is the inherent part of a surface texture appearance. Moreover, many
images are extremely dark and the normalisation of RGB triplets z

r+g+b , z ∈ {r, g, b} produces
not only a huge amount of noise, but it is also undefined for black pixels (r + g + b = 0). On
the other hand, invariants based on pixel hues are ambiguous on the black-white axis and
again they are not suitable for rough textures with uniform colours.

3. Texture Representation

Let us assume each texture to be composed of C spectral planes measured by the corre-
sponding sensors. Texture analysis starts with the factorisation of a texture into K lev-
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the rest of this article.
Local Binary Patterns (Ojala, Pietikäinen & Mäenpää, 2002) (LBP) are popular illumination
invariant features, which we use for comparison. The texton representation (Varma & Zis-
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only a single illumination training image is available for each class.
These properties are verified on Outex database (Ojala, Mäenpää, Pietikäinen, Viertola, Kyl-
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respectively. Value acquired by the j−th sensor at the location r can be expressed as
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reflectance coefficient at the position r, Rj(λ) is the j−th sensor response function, and the
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basis set is not necessary our method, because the key assumption is its existence.
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provided that the spectra of all sources are the same and the positions of the illumination
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More importantly, it can be proved that formula (1) is valid not only for Lambertian surfaces,
but also for surface model with specular reflectance component (e.g. dichromatic reflection
model (Shafer, 1985), which comprise also the well-known Phong reflection model).
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∀j = 1, . . . , C . (2)
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tures, which are further used for comparison purposes, only.
No method that guarantee an illumination invariance to surface geometry effects have been
used. The primary reason is that the invariance to this geometry effects is not desirable be-
cause a surface structure is the inherent part of a surface texture appearance. Moreover, many
images are extremely dark and the normalisation of RGB triplets z
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not only a huge amount of noise, but it is also undefined for black pixels (r + g + b = 0). On
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sponding sensors. Texture analysis starts with the factorisation of a texture into K lev-
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els of the Gaussian pyramid. All C spectral planes are factorised using the same pyra-
mid thus the corresponding multispectral pixels for every pyramid level have C compo-
nents Yr = [Yr,1, . . . , Yr,C]

T . Each pyramid level is either modelled by 3-dimensional Markov
random field (MRF) model or mutually decorrelated by the Karhunen-Loeve transformation
(Principal Component Analysis) and subsequently modelled using a set of C 2-dimensional
MRF models. The MRF model parameters are estimated and finally illumination invariants
are computed from these parameters.

3.1 CAR Model
The CAR representation assumes that the multispectral texture pixel Yr at the k−th Gaussian
pyramid level can be locally modelled by an adaptive simultaneous Causal Autoregressive
Random (CAR) field model. We denote the Cη × 1 data vector

Zr = [YT
r−s : ∀s ∈ Ir]

T (3)

where r = (r1, r2), s, t are multiindices, Zr consists of neighbour pixel values for given r. The
multiindex changes according to the chosen direction of movement on the image plane e.g.
t − 1 = (t1, t2 − 1), t − 2 = (t1, t2 − 2), . . .. Some selected contextual causal or unilateral
neighbour index shift set is denoted Ir and η = cardinality(Ir) . The matrix form of an
adaptive CAR model is:

Yr = γZr + εr , (4)
where γ = [A1, . . . , Aη ] is the C × C η unknown parameter matrix with matrices As. In the
case of C 2D CAR models stacked into the model equation (4) the parameter matrices As are
diagonal otherwise they are full matrices for general 3D CAR models. The white noise vector
εr has zero mean and constant but unknown covariance matrix Σ. Moreover, we assume the
probability density of εr to have the normal distribution independent of previous data and
being the same for every position r. Additionally for 2D CAR model, we assume uncorrelated
noise vector components, i.e.,

E{εr,iεr,j} = 0 ∀r, i, j, i �= j .

The task consists in finding the parameter conditional density p(γ |Y(t−1)) given the known
process history Y(t−1) = {Yt−1, Yt−2, . . . , Y1, Zt, Zt−1, . . . , Z1} and taking its conditional mean
as the textural feature representation. Assuming normality of the white noise component εt,
conditional independence between pixels and the normal-Wishart parameter prior, we have
shown (Haindl & Šimberová, 1992) that the conditional mean value is:

E[γ |Y(t−1)] = γ̂t−1 . (5)

The following notation is used in (5):

γ̂T
t−1 = V−1

zz(t−1)Vzy(t−1) ,

Vt−1 = Ṽt−1 + V0 ,

Ṽt−1 =

(
∑t−1

u=1 YuYu
T ∑t−1

u=1 YuZu
T

∑t−1
u=1 ZuYu

T ∑t−1
u=1 ZuZu

T

)

=

(
Ṽyy(t−1) ṼT

zy(t−1)
Ṽzy(t−1) Ṽzz(t−1)

)
,

λt−1 = Vyy(t−1) − VT
zy(t−1)V

−1
zz(t−1) (6)

and V0 is a positive definite matrix. It is easy to check (see Haindl & Šimberová (1992)) also
the validity of the following recursive parameter estimator:

γ̂T
t = γ̂T

t−1 +
V−1

zz(t−1)Zt(Yt − γ̂t−1Zt)
T

(1 + ZT
t V−1

zz(t−1)Zt)
, (7)

and λt can be evaluated recursively too. For numerical realisation of the model statistics
(5)-(7) see discussion in Haindl & Šimberová (1992).
Textural features for each Gaussian pyramid level k is represented by the parametric matrix
γ̂(k), k = 1, . . . , K. These parametric estimates are combined into the resulting parametric
matrix:

Θ = [γ̂(k) ∀k] . (8)

This matrix contains estimations of the multiresolution CAR model (a set of either 2D or 3D
CAR models) parameters. Illumination invariants are subsequently derived from these pa-
rameters.

3.2 GMRF Factor Model
The alternative representation assumes that spectral planes of the k−th pyramid level are
locally modelled using a 2D Gaussian Markov Random Field model (GMRF). This model is
obtained if the local conditional density of the MRF model is Gaussian:

p(Yr,j|Ys,j ∀s ∈ Ir) =
1

σj
√

2π
exp

{
−
(Yr,j − γjZr,j)

2

2σ2
j

}
, (9)

where Yr,j are mean centred values and j is the spectral plane index j = 1 . . . C. The data vector
is redefined as Zr,j = [Yr+s,j ∀s ∈ Ir]T and the parameter vector is γj = [as,j ∀s ∈ Ir]. The
contextual neighbourhood Ir is non-causal and symmetrical. The GMRF model for centred
values Yr,j can be expressed also in the matrix form (4), but the driving noise εr and its
correlation structure is now more complex:

E{εr,iεr−s,j} =




σ2
j if (s) = (0, 0) and i = j,

−σ2
j as,j if (s) ∈ Ir and i = j,

0 otherwise,

(10)

where σj, as,j ∀s ∈ Ir are unknown parameters. The parameter estimation of the GMRF model
is complicated because either Bayesian or Maximum likelihood estimate requires an itera-
tive minimisation of a nonlinear function. Therefore we use the pseudo-likelihood estimator
which is computationally simple although not efficient. The pseudo-likelihood estimate for
as,j parameters has the form

γ̂T
j = [as,j ∀s ∈ Ir]

T

=

[
∑
∀r∈I

Zr,jZT
r,j

]−1

∑
∀s∈I

Zr,jYr,j , (11)

σ̂2
j =

1
|I| ∑

∀r∈I
(Yr,j − γ̂jZr,j)

2 , (12)
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where j = 1 . . . C, I is an image lattice. Single spectral plane parameters are set up using the
direct sum

γ̂(k) = diag(γ̂1, . . . , γ̂C) = ⊕C
j=1 γ̂j (13)

and the resulting parametric matrix is again (8).

3.3 MRF Illumination Invariant Features
Illumination invariant feature vectors can be derived from the estimated MRF statistics such
as (8), which is composed of the model parameter matrices Am. On the condition that two
images Y, Ỹ under different illumination are related by Ỹr = B Yr (see (1)), the model data
vectors are also related by the linear transformation Z̃r = ∆ Zr, where ∆ is the Cη ×Cη block
diagonal matrix with blocks B on the diagonal. By substituting Ỹr, Z̃r into the parameter
estimate of the CAR model (4), (6), (7) we can derive that

Ãm = B AmB−1, λ̃r = B λrBT . (14)

The matrices Ãm, Z̃r, λ̃r are related to the model of the same texture, but with different illu-
mination. The similar substitution into the GMRF parameter estimate (4), (11), (12) produces
equations

Ãm = B AmB−1, ˆ̃Σ = B Σ̂BT , (15)

where Σ̂ = diag(σ̂1, . . . , σ̂C). It is easy to prove that the following features are illumination
invariant for both models:

1. trace: tr Am, m = 1, . . . , η K

2. eigenvalues: νm,j of Am, m = 1, . . . , η K, j = 1, . . . , C

for each CAR model (for 2D CAR models the invariants α1, α2, α3 are computed for each spec-
tral plane separately):

3. α1: 1 + ZT
r V−1

zz Zr ,

4. α2:
√

∑r (Yr − γ̂Zr)
T λ−1 (Yr − γ̂Zr) ,

5. α3:
√

∑r (Yr − µ)T λ−1 (Yr − µ) ,
µ is the mean value of vector Yr,

and for each GMRF model with centred Yr,j:

6. α4:

√
∑r σ̂−2

j

(
Yr,j − γ̂jZr,j

)2
,

7. α5:

√
∑r σ̂−2

j

(
Yr,j

)2
.

The feature vector is formed from these illumination invariants. For CAR models we use
traces, eigenvalues, α1, α2, and α3 features because they can be easily evaluated during the pa-
rameters estimation process. For GMRF models we use trace, eigenvalues, α4, and α5 features,
respectively.

3.4 Feature Comparison Distances
The distance between illumination invariant feature vectors of two textures T, S is computed
using the Minkowski norms L1, L0.2, or alternatively with fuzzy contrast FC3 proposed by
Santini & Jain (1999). The Minkowski norm and its σ normalised variant Lpσ, which is used
for comparison of alternative texture features, is defined as follows

Lp(T, S) =
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∣∣∣ f (T)i − f (S)i
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where M is the feature vector size and µ( fi) and σ( fi) are average and standard deviation of
the feature fi computed over all image database, respectively.
Fuzzy contrast FCαβ models features as predicates in fuzzy logic using sigmoid truth function
τ. Subsequently, the feature vector dissimilarity is defined as

FCαβ (T, S) = M−
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It is worth to note that FCαβ is not a metric, because it does not hold FCαβ(T, S) = 0 and it is
not necessary symmetrical. However, we use only its symmetrical form FC3, where α = β = 3.

4. Alternative Features

Our proposed illumination invariant features are compared with the most frequently used
features in image retrieval applications such as the Gabor features, steerable pyramid features
and Local Binary Patterns (LBP).

4.1 Gabor Features
The Gabor filters (Bovik, 1991; Randen & Husøy, 1999) can be considered as orientation and
scale tunable edge and line detectors. The statistics of Gabor filter responses in a given re-
gion are used to characterise the underlying texture information. A two dimensional Gabor
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The feature vector is formed from these illumination invariants. For CAR models we use
traces, eigenvalues, α1, α2, and α3 features because they can be easily evaluated during the pa-
rameters estimation process. For GMRF models we use trace, eigenvalues, α4, and α5 features,
respectively.

3.4 Feature Comparison Distances
The distance between illumination invariant feature vectors of two textures T, S is computed
using the Minkowski norms L1, L0.2, or alternatively with fuzzy contrast FC3 proposed by
Santini & Jain (1999). The Minkowski norm and its σ normalised variant Lpσ, which is used
for comparison of alternative texture features, is defined as follows
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where M is the feature vector size and µ( fi) and σ( fi) are average and standard deviation of
the feature fi computed over all image database, respectively.
Fuzzy contrast FCαβ models features as predicates in fuzzy logic using sigmoid truth function
τ. Subsequently, the feature vector dissimilarity is defined as
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It is worth to note that FCαβ is not a metric, because it does not hold FCαβ(T, S) = 0 and it is
not necessary symmetrical. However, we use only its symmetrical form FC3, where α = β = 3.

4. Alternative Features

Our proposed illumination invariant features are compared with the most frequently used
features in image retrieval applications such as the Gabor features, steerable pyramid features
and Local Binary Patterns (LBP).

4.1 Gabor Features
The Gabor filters (Bovik, 1991; Randen & Husøy, 1999) can be considered as orientation and
scale tunable edge and line detectors. The statistics of Gabor filter responses in a given re-
gion are used to characterise the underlying texture information. A two dimensional Gabor
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function g(r) : R2 → C and its Fourier transform can be specified as

g(r) =
1

2πσr1 σr2
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+
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2
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]
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σ2
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+
r2

2
σ2

r2

]}
,

where σr1 , σr2 , V are filter parameters. The convolution of the Gabor filter and a texture image
extracts edges of given frequency and orientation range. The whole filter set was obtained by
four dilatations and six rotations of the function g(r), the filter set is designed so that Fourier
transformations of filters cover most of image spectrum, see Manjunath & Ma (1996) for de-
tails. The Gabor features (Manjunath & Ma, 1996) are defined as the mean µl and the standard
deviation σl of the magnitude of filter responses computed separately for each spectral plane
and concatenated into the feature vector. The suggested distance between feature vectors of
textures T, S is L1σ(T, S) normalised Minkowski norm (18).
The Opponent Gabor features (Jain & Healey, 1998) are the extension to colour textures, which
analyses also relations between spectral channels. The monochrome part of these features is:

ηi,m,n =
√

∑
r

W2
i,m,n(r) ,

where Wi,m,n is the response to Gabor filter of orientation m and scale n, i is i−th spectral
band of the colour texture T, while the opponent part of features is:

ψi,j,m,m′ ,n =

√√√√∑
r

(
Wi,m,n(r)

ηi,m,n
−

Wj,m′ ,n(r)
ηj,m′ ,n

)2

,

for all i, j with i �= j and |m − m′ | ≤ 1. The previous formula could be also expressed as
correlation between spectral planes responses. The distance between textures T, S using the
Opponent Gabor features is measured with L2σ(T, S) normalised Minkowski norm (18), as
suggested by Jain & Healey (1998).
In order to achieve illumination invariance, it is possible to normalise spectral channels us-
ing (2) normalisation prior to computation of features. We have tested Gabor features and
Opponent Gabor features, the both options with and without the normalisation.

4.2 Steerable Pyramid Features
The steerable pyramid (Portilla & Simoncelli, 2000) is an over complete wavelet decomposi-
tion similar to the Gabor decomposition. The pyramid is built up of responses to steerable
filters, where level of pyramid extracts certain frequency range. All pyramid levels (except
the highest and the lowest one) are further decomposed to different orientations. The trans-
formation is implemented using the set of oriented complex analytic filters Bl that are polar
separable in the Fourier domain (see details in Simoncelli & Portilla (1998), Portilla & Simon-
celli (2000)):

Bl(R, θ) = H(R)Gl(θ), l ∈ [0, L − 1],

H(R) =




cos
(

π
2 log2

(
2R
π

))
, π

4 < R < π
2

1, R ≥ π
2

0, R ≤ π
4

Gl(θ) =

{
αl

[
cos

(
θ − πl

L

)]L−1
,

∣∣∣θ − πl
L

∣∣∣ < π
2 ,

0, otherwise,

where αl = 2l−1 (L−1)!√
L[2(L−1)!]

, R, θ are polar frequency coordinates, L = 4 is the number of

orientation bands, and K = 4 is the number of pyramid levels. The used steerable pyramid
features was skewness, kurtosis, mean, variance, minimum and maximum values of image
function, and scale-based auto-correlations and subband cross-correlations of filter responses,
respectively, which were proposed for texture synthesis in Portilla & Simoncelli (2000). The
feature vectors are compared using the L1σ norm (18). Again, we have tested steerable pyra-
mid features with and without the channel normalisation.

4.3 Local Binary Patterns
Local Binary Patterns (LBP) (Ojala, Pietikäinen & Mäenpää, 2002) are histograms of texture
micro patterns. For each pixel, a circular neighbourhood around the pixel is sampled, then
sampled points values are thresholded by the central pixel value and the pattern number is
formed as follows:

LBPP,R =
P−1

∑
q=0

sign
(
Yq − Yc

)
2q, sign (x) =

{
1, x ≥ 0
0, x < 0,

(20)

where P is the number of samples and R is the radius of the circle, sign is the signum
function, Yq is a grey value of the sampled pixel, and Yc is a grey value of the central pixel.
Subsequently, the histogram of patterns is computed. Because of thresholding, the features
are invariant to any monotonic grey scale change. The multiresolution analysis is done by
growing the circular neighbourhood size. However, complex patterns do not have enough
occurrences in a texture, therefore uniform LBP features denoted as LBPu2 distinguish only
among patterns that include only 2 or less transitions between 0 and 1 at neighbouring bits
(20), all other patterns are considered to be the same. Moreover, the features can be also made
rotation invariant (Ojala, Pietikäinen & Mäenpää, 2002). All LBP histograms were normalised
to have a unit L1 norm. The similarity between texture feature vectors T, S is defined as

LG(T, S) =
M

∑
i=1

f (T)i log
f (T)i

f (S)i

. (21)

We have tested features: LBP8,1+8,3 and LBPu2
16,2 which demonstrated the best performance

in the test with illumination changes (Maenpaa et al., 2002; Pietikainen et al., 2002) (test set
Outex 14). We have also comprised rotation invariant feature LBPriu2

16,2 . The features were
computed either on grey-scale images or on each spectral plane separately and concatenated
to form the feature vector. A normalisation to change of illumination brightness or spectrum
change is not necessary.
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where σr1 , σr2 , V are filter parameters. The convolution of the Gabor filter and a texture image
extracts edges of given frequency and orientation range. The whole filter set was obtained by
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for all i, j with i �= j and |m − m′ | ≤ 1. The previous formula could be also expressed as
correlation between spectral planes responses. The distance between textures T, S using the
Opponent Gabor features is measured with L2σ(T, S) normalised Minkowski norm (18), as
suggested by Jain & Healey (1998).
In order to achieve illumination invariance, it is possible to normalise spectral channels us-
ing (2) normalisation prior to computation of features. We have tested Gabor features and
Opponent Gabor features, the both options with and without the normalisation.

4.2 Steerable Pyramid Features
The steerable pyramid (Portilla & Simoncelli, 2000) is an over complete wavelet decomposi-
tion similar to the Gabor decomposition. The pyramid is built up of responses to steerable
filters, where level of pyramid extracts certain frequency range. All pyramid levels (except
the highest and the lowest one) are further decomposed to different orientations. The trans-
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orientation bands, and K = 4 is the number of pyramid levels. The used steerable pyramid
features was skewness, kurtosis, mean, variance, minimum and maximum values of image
function, and scale-based auto-correlations and subband cross-correlations of filter responses,
respectively, which were proposed for texture synthesis in Portilla & Simoncelli (2000). The
feature vectors are compared using the L1σ norm (18). Again, we have tested steerable pyra-
mid features with and without the channel normalisation.

4.3 Local Binary Patterns
Local Binary Patterns (LBP) (Ojala, Pietikäinen & Mäenpää, 2002) are histograms of texture
micro patterns. For each pixel, a circular neighbourhood around the pixel is sampled, then
sampled points values are thresholded by the central pixel value and the pattern number is
formed as follows:
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where P is the number of samples and R is the radius of the circle, sign is the signum
function, Yq is a grey value of the sampled pixel, and Yc is a grey value of the central pixel.
Subsequently, the histogram of patterns is computed. Because of thresholding, the features
are invariant to any monotonic grey scale change. The multiresolution analysis is done by
growing the circular neighbourhood size. However, complex patterns do not have enough
occurrences in a texture, therefore uniform LBP features denoted as LBPu2 distinguish only
among patterns that include only 2 or less transitions between 0 and 1 at neighbouring bits
(20), all other patterns are considered to be the same. Moreover, the features can be also made
rotation invariant (Ojala, Pietikäinen & Mäenpää, 2002). All LBP histograms were normalised
to have a unit L1 norm. The similarity between texture feature vectors T, S is defined as
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in the test with illumination changes (Maenpaa et al., 2002; Pietikainen et al., 2002) (test set
Outex 14). We have also comprised rotation invariant feature LBPriu2

16,2 . The features were
computed either on grey-scale images or on each spectral plane separately and concatenated
to form the feature vector. A normalisation to change of illumination brightness or spectrum
change is not necessary.
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experiment
method 1 2 3
Gabor features 144 144 144
Gabor features, grey img. 48 48 48
Opponent Gabor features 252 252 252
Steerable pyramid 2904 2904 2904
Gabor features, norm. 144 144 144
Gabor features, grey img., norm. 48 48 48
Opponent Gabor features, norm. 252 252 252
LBP8,1+8,3 1536 1536 1536
LBPu2

16,2 729 729 729
LBPriu2

16,2 54 54 54
LBP8,1+8,3, grey img. 512 512 512
LBPu2

16,2, grey img. 243 243 243
LBPriu2

16,2 , grey img. 18 18 18
2D CAR-KL 260 132 325
2D CAR 260 132 325
GMRF-KL 248 120 310
3D CAR 236 108 295

Table 1. The size of feature vectors.

5. Experiments

We demonstrate the performance of the proposed illumination invariant MRF features on
two image databases, each with different variations in illumination conditions. The first, BTF
database is acquired with a fixed illumination spectrum and with 91 different illumination di-
rections, which drastically violates our restrictive assumption of fixed illumination position.
On the other hand, the Outex texture database is acquired with three illuminations with dif-
ferent spectra and only with slight differences in illumination positions, which complies with
our assumptions.
We tested three proposed MRF models: 2D CAR (2-dimensional), 3D CAR (3-dimensional)
and GMRF. The models were computed over K levels of the Gaussian pyramids, which were
built either directly on C spectral planes or on spectral planes decorrelated by the Karhunen-
Loeve transformation (indicated with ’-KL’ suffix).
The proposed features were compared with the following alternatives: Gabor features, Oppo-
nent Gabor features, Steerable pyramid features, all with and without spectral channels nor-
malisations (2), and also the LBP features (see details in Section 4). The grey value based fea-
tures as Gabor features and LBP were computed not only on grey images, but also separately
on each spectral plane of colour images and concatenated subsequently. Tab. 1 compares the
sizes of feature vectors used in our experiments.

5.1 Experiment 1
We have designed the first experiment to test the feature robustness against illumination di-
rection changes, which is in contradiction with our theoretical assumptions. The experiment
is performed on three different sets of BTF texture images. These BTF data are from the Uni-
versity of Bonn database (Meseth et al., 2003) and consists of fifteen BTF colour measurements

Fig. 1. BTF material measurements, row-wise from left to right: ceiling, corduroy, fabric1,
fabric2; walk way, foil, floor tile, pink tile; impalla, proposte, pulli, wallpaper; wool, and two
lacquered wood textures.

Fig. 2. Illumination variance of BTF materials, the top row is wood with different azimuth of
illumination, bottom is ceiling with changing declination of illumination.
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experiment
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Table 1. The size of feature vectors.

5. Experiments

We demonstrate the performance of the proposed illumination invariant MRF features on
two image databases, each with different variations in illumination conditions. The first, BTF
database is acquired with a fixed illumination spectrum and with 91 different illumination di-
rections, which drastically violates our restrictive assumption of fixed illumination position.
On the other hand, the Outex texture database is acquired with three illuminations with dif-
ferent spectra and only with slight differences in illumination positions, which complies with
our assumptions.
We tested three proposed MRF models: 2D CAR (2-dimensional), 3D CAR (3-dimensional)
and GMRF. The models were computed over K levels of the Gaussian pyramids, which were
built either directly on C spectral planes or on spectral planes decorrelated by the Karhunen-
Loeve transformation (indicated with ’-KL’ suffix).
The proposed features were compared with the following alternatives: Gabor features, Oppo-
nent Gabor features, Steerable pyramid features, all with and without spectral channels nor-
malisations (2), and also the LBP features (see details in Section 4). The grey value based fea-
tures as Gabor features and LBP were computed not only on grey images, but also separately
on each spectral plane of colour images and concatenated subsequently. Tab. 1 compares the
sizes of feature vectors used in our experiments.

5.1 Experiment 1
We have designed the first experiment to test the feature robustness against illumination di-
rection changes, which is in contradiction with our theoretical assumptions. The experiment
is performed on three different sets of BTF texture images. These BTF data are from the Uni-
versity of Bonn database (Meseth et al., 2003) and consists of fifteen BTF colour measurements

Fig. 1. BTF material measurements, row-wise from left to right: ceiling, corduroy, fabric1,
fabric2; walk way, foil, floor tile, pink tile; impalla, proposte, pulli, wallpaper; wool, and two
lacquered wood textures.

Fig. 2. Illumination variance of BTF materials, the top row is wood with different azimuth of
illumination, bottom is ceiling with changing declination of illumination.
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Fig. 3. Correct classification [%], in the left picture for random training samples, in the right
picture for training image fixed to top illumination.

(Fig. 1), ten of these measurements are now publicly available1. Each BTF material is mea-
sured in 81 illumination angles as a RGB image (C = 3). Fig. 2 shows examples of material
appearance under varying illumination direction. We have three image test sets, which differs
in viewpoint direction. The declination angles of viewing direction from surface normal are
0◦, 30◦, and 60◦, in plane rotation is not included. Each test set consists in 1215 images, all
cropped to the same size 256 × 256.
In this experiment, single training image per each material was randomly chosen and the re-
maining images were classified using the nearest neighbour approach. The MRF models were
computed with the sixth order hierarchical neighbourhood and four levels of the Gaussian
pyramid, the size of feature vectors is listed in Tab. 1. The results of correct classification are
in Tab. 2, all averaged over 105 random choices of training images. Bold typeset rows from
Tab. 2 are shown in Fig. 3. We can see that the far best performance (90.3%) was achieved
with 2D CAR-KL model and L1 distance. The best alternative features were Opponent Gabor
features with average performance 77.4%, the best of LBP features achieved 65.6%. Standard
deviation is bellow 4% for Gabor features and LBP features, and below 3% for CAR and GMRF
models. Although the LBP features are invariant to brightness changes, these results demon-
strate their inefficiency to handle illumination direction variations. Rotation invariant LBP
features are more capable, however rotating illumination cannot be modeled as a simple im-
age rotation. For the MRF features, the worst classification result were for ceiling and fabric2
materials. Ceiling material was misclassified as floor tile (for illumination near surface), and
fabric2 was sometimes misclassified as fabric1, because they have very similar structures.
We have also explored, how the performance of features depends on light source declina-
tion from surface normal. The test set with viewpoint fixed at 0◦ declination was used and
single training sample per each material was selected. All selected training samples were il-
luminated under 0◦ declination angle, other 1200 images were classified. Tab. 3 depicts how
correct classification decreases as the illumination position of test sample move away from
training sample position. Again, bold typeset rows from Tab. 3 are shown in Fig. 3. The best
result were achieved by 3D CAR model and FC3 dissimilarity with average accuracy 89.8%,
similar results 88.7% were achieved by 2D CAR model with FC3.

1 http://btf.cs.uni-bonn.de/

viewpoint declination angle
method 0◦ 30◦ 60◦ avg.
Gabor features 71.7 64.6 60.1 65.5
Gabor features, grey img. 69.8 62.9 55.6 62.8
Opponent Gabor features 82.5 77.7 71.7 77.3
Steerable pyramid 72.3 65.5 60.4 63.1
Gabor features, norm. 60.1 58.1 57.9 58.7
Gabor features, grey img., norm. 50.8 50.1 51.3 50.7
Opponent Gabor features, norm. 80.5 77.6 74.2 77.4
LBP8,1+8,3 65.7 64.2 67.0 65.6
LBPu2

16,2 62.5 61.6 64.6 62.9
LBPriu2

16,2 68.4 60.7 57.4 62.2
LBP8,1+8,3, grey img. 61.2 61.1 65.4 62.6
LBPu2

16,2, grey img. 55.7 56.3 60.7 57.6
LBPriu2

16,2 , grey img. 58.6 52.1 52.5 54.4
2D CAR-KL, L1 92.4 91.1 87.5 90.3
3D CAR, L1 87.4 84.3 78.9 83.5
GMRF-KL, L1 89.6 86.3 81.0 85.6
2D CAR, FC3 88.7 87.3 82.9 86.3
GMRF-KL, FC3 86.5 82.6 78.7 82.6
GMRF-KL, L0.2 87.1 83.7 79.6 83.5
2D CAR-KL, FC3 92.3 89.6 85.7 89.2
2D CAR-KL, L0.2 91.8 89.5 85.8 89.0
3D CAR, FC3 89.8 86.1 80.2 85.4
3D CAR, L0.2 89.2 85.7 81.0 85.3

Table 2. Correct classification [%], using single training image per texture. The results are
averages over 105 random choices of training images, the last column consists in averages of
previous columns.

5.2 Experiment 2
In the second experiment, we demonstrate the performance of the proposed illumination in-
variant MRF features on the Outex database (Ojala, Mäenpää, Pietikäinen, Viertola, Kyllönen
& Huovinen, 2002), which consists of natural material images acquired, under three different
illuminations. The illumination sources were 2856K incandescent CIE A light source, 2300K
horizon sunlight, and 4000K fluorescent TL84, the illumination positions are very close. All
the images were acquired with a fixed camera position.
The experiment was performed on the Outex classification test set number 14 (Ojala, Mäen-
pää, Pietikäinen, Viertola, Kyllönen & Huovinen, 2002). In this test set, 68 materials selected
from the Outex database were treated in the following manner. Twenty subsamples with size
128 × 128 were extracted from each material image. The train set consists of 10 samples per
material, all illuminated with the 2586K incandescent CIE A light source. The test set con-
sists of 10 remaining subsamples for each material, all of them illuminated with other two
illuminants. Consequently, the train set consists of 680 images, while the test set is composed
of 1360 images. The classification was performed using 3 nearest neighbours as in Maenpaa
et al. (2002), Pietikainen et al. (2002).
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Fig. 3. Correct classification [%], in the left picture for random training samples, in the right
picture for training image fixed to top illumination.

(Fig. 1), ten of these measurements are now publicly available1. Each BTF material is mea-
sured in 81 illumination angles as a RGB image (C = 3). Fig. 2 shows examples of material
appearance under varying illumination direction. We have three image test sets, which differs
in viewpoint direction. The declination angles of viewing direction from surface normal are
0◦, 30◦, and 60◦, in plane rotation is not included. Each test set consists in 1215 images, all
cropped to the same size 256 × 256.
In this experiment, single training image per each material was randomly chosen and the re-
maining images were classified using the nearest neighbour approach. The MRF models were
computed with the sixth order hierarchical neighbourhood and four levels of the Gaussian
pyramid, the size of feature vectors is listed in Tab. 1. The results of correct classification are
in Tab. 2, all averaged over 105 random choices of training images. Bold typeset rows from
Tab. 2 are shown in Fig. 3. We can see that the far best performance (90.3%) was achieved
with 2D CAR-KL model and L1 distance. The best alternative features were Opponent Gabor
features with average performance 77.4%, the best of LBP features achieved 65.6%. Standard
deviation is bellow 4% for Gabor features and LBP features, and below 3% for CAR and GMRF
models. Although the LBP features are invariant to brightness changes, these results demon-
strate their inefficiency to handle illumination direction variations. Rotation invariant LBP
features are more capable, however rotating illumination cannot be modeled as a simple im-
age rotation. For the MRF features, the worst classification result were for ceiling and fabric2
materials. Ceiling material was misclassified as floor tile (for illumination near surface), and
fabric2 was sometimes misclassified as fabric1, because they have very similar structures.
We have also explored, how the performance of features depends on light source declina-
tion from surface normal. The test set with viewpoint fixed at 0◦ declination was used and
single training sample per each material was selected. All selected training samples were il-
luminated under 0◦ declination angle, other 1200 images were classified. Tab. 3 depicts how
correct classification decreases as the illumination position of test sample move away from
training sample position. Again, bold typeset rows from Tab. 3 are shown in Fig. 3. The best
result were achieved by 3D CAR model and FC3 dissimilarity with average accuracy 89.8%,
similar results 88.7% were achieved by 2D CAR model with FC3.

1 http://btf.cs.uni-bonn.de/

viewpoint declination angle
method 0◦ 30◦ 60◦ avg.
Gabor features 71.7 64.6 60.1 65.5
Gabor features, grey img. 69.8 62.9 55.6 62.8
Opponent Gabor features 82.5 77.7 71.7 77.3
Steerable pyramid 72.3 65.5 60.4 63.1
Gabor features, norm. 60.1 58.1 57.9 58.7
Gabor features, grey img., norm. 50.8 50.1 51.3 50.7
Opponent Gabor features, norm. 80.5 77.6 74.2 77.4
LBP8,1+8,3 65.7 64.2 67.0 65.6
LBPu2

16,2 62.5 61.6 64.6 62.9
LBPriu2

16,2 68.4 60.7 57.4 62.2
LBP8,1+8,3, grey img. 61.2 61.1 65.4 62.6
LBPu2

16,2, grey img. 55.7 56.3 60.7 57.6
LBPriu2

16,2 , grey img. 58.6 52.1 52.5 54.4
2D CAR-KL, L1 92.4 91.1 87.5 90.3
3D CAR, L1 87.4 84.3 78.9 83.5
GMRF-KL, L1 89.6 86.3 81.0 85.6
2D CAR, FC3 88.7 87.3 82.9 86.3
GMRF-KL, FC3 86.5 82.6 78.7 82.6
GMRF-KL, L0.2 87.1 83.7 79.6 83.5
2D CAR-KL, FC3 92.3 89.6 85.7 89.2
2D CAR-KL, L0.2 91.8 89.5 85.8 89.0
3D CAR, FC3 89.8 86.1 80.2 85.4
3D CAR, L0.2 89.2 85.7 81.0 85.3

Table 2. Correct classification [%], using single training image per texture. The results are
averages over 105 random choices of training images, the last column consists in averages of
previous columns.

5.2 Experiment 2
In the second experiment, we demonstrate the performance of the proposed illumination in-
variant MRF features on the Outex database (Ojala, Mäenpää, Pietikäinen, Viertola, Kyllönen
& Huovinen, 2002), which consists of natural material images acquired, under three different
illuminations. The illumination sources were 2856K incandescent CIE A light source, 2300K
horizon sunlight, and 4000K fluorescent TL84, the illumination positions are very close. All
the images were acquired with a fixed camera position.
The experiment was performed on the Outex classification test set number 14 (Ojala, Mäen-
pää, Pietikäinen, Viertola, Kyllönen & Huovinen, 2002). In this test set, 68 materials selected
from the Outex database were treated in the following manner. Twenty subsamples with size
128 × 128 were extracted from each material image. The train set consists of 10 samples per
material, all illuminated with the 2586K incandescent CIE A light source. The test set con-
sists of 10 remaining subsamples for each material, all of them illuminated with other two
illuminants. Consequently, the train set consists of 680 images, while the test set is composed
of 1360 images. The classification was performed using 3 nearest neighbours as in Maenpaa
et al. (2002), Pietikainen et al. (2002).
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light source declination
method 0:30◦ 45:65◦ 75◦ avg.
Gabor features 96.3 71.4 28.9 64.2
Gabor features, grey img. 95.2 64.7 34.7 62.6
Opponent Gabor features 95.6 83.9 50.0 76.4
Steerable pyramid 90.7 69.5 36.1 64.3
Gabor features, norm. 81.9 49.1 19.4 47.6
Gabor features, grey img., norm. 81.9 38.8 13.9 41.0
Opponent Gabor features, norm. 95.6 85.3 73.6 84.1
LBP8,1+8,3 89.3 63.0 38.6 61.6
LBPu2

16,2 84.4 51.4 35.6 54.1
LBPriu2

16,2 84.4 44.6 31.9 49.8
LBP8,1+8,3, grey img. 86.3 57.4 38.3 58.2
LBPu2

16,2, grey img. 79.3 50.7 34.7 52.3
LBPriu2

16,2 . grey img. 74.1 36.8 16.7 39.2
2D CAR-KL, L1 96.3 87.5 78.3 86.7
3D CAR, L1 97.8 89.6 75.6 87.2
GMRF-KL 95.9 82.6 65.3 80.4
2D CAR, FC3 96.7 91.6 78.1 88.7
GMRF-KL, FC3 93.3 86.5 72.2 83.7
GMRF-KL, L0.2 94.4 82.3 68.3 80.8
2D CAR-KL, FC3 97.8 90.5 79.4 88.8
2D CAR-KL, L0.2 96.7 85.4 78.3 85.8
3D CAR, FC3 99.3 93.6 76.7 89.8
3D CAR, L0.2 97.8 91.2 72.8 87.2

Table 3. Correct classification [%] with traning image fixed to top illumination. The perfor-
mance is grouped for different intervals of illumination declination angles of test images, the
last column is average for all test images. Viewpoint declination angle was 0◦ all images.

The highest reported classification accuracy on the test set (Maenpaa et al., 2002) was 69%
for LBPu2

16,2 features, which outperformed Gabor features with 66% of accuracy (unfortunately
our implementation of Gabor features reached only 54.5% in Tab. 4), both features were com-
puted on grey-scale images. Moreover, Pietikainen et al. (2002) reported 68.4% accuracy for
LBP8,1+8,3 also on grey-scale images, and 53.3% of accuracy achieved by Opponent Gabor
features on colour images preceded by comprehensive colour normalisation.
In addition to the previously described experiment, we have also degraded test set images
with an additive Gaussian noise. The experiment was performed directly on noisy images,
without any noise removal method. The application of such method might increase classifica-
tion accuracy, but only on condition that it would not introduce any artificial micro structures
into the images.
Because of small image size, the neighbourhood of MRF models have to be restricted to the
third order hierarchical neighbourhood. As a consequence the feature vector of 2D CAR, is
about four times smaller than the vector of LBP8,1+8,3 features. The best result on the original
test set was achieved with LBP8,1+8,3 on grey images with 71.6% followed by the best of
MRF features with 67.5% classification accuracy. However, the results change dramatically

added noise σ

method 0 2 4 8
Gabor features 37.5 37.0 36.2 35.6
Gabor features, grey img. 44.3 43.3 43.2 41.3
Opponent Gabor features 50.7 49.3 45.3 37.3
Steerable pyramid 37.5 35.9 34.9 32.6
Gabor features, norm. 57.0 59.9 60.3 57.1
Gabor features, grey img., norm. 54.5 61.3 63.3 62.9
Opponent Gabor features, norm. 56.7 55.8 54.3 47.9
LBP8,1+8,3 66.8 56.6 48.8 36.7
LBPu2

16,2 62.0 52.9 41.2 28.7
LBPriu2

16,2 44.6 30.8 22.6 15.3
LBP8,1+8,3, grey img. 71.6 62.2 54.6 38.6
LBPu2

16,2, grey img. 67.6 60.4 49.8 33.0
LBPriu2

16,2 , grey img. 56.9 45.2 34.2 19.7
2D CAR-KL, L1 67.6 60.8 55.7 52.3
GMRF-KL, L1 61.5 57.0 51.1 46.1
3D CAR, L1 63.6 61.3 60.6 54.9
2D CAR, FC3 67.5 62.2 61.0 56.6
2D CAR-KL, FC3 67.5 63.3 55.8 51.0
2D CAR-KL, L0.2 66.3 60.5 55.2 51.0
3D CAR, FC3 65.3 60.4 58.0 51.3
3D CAR, L0.2 63.5 59.7 55.4 47.4

Table 4. Results [%] of the Outex classification test set number 14. The classification was
performed using three nearest neighbours.

with added noise, the LBP8,1+8,3 features drop down to 38.6% showing their vulnerability to
noise degradation. The MRF based features are not so noise sensitive, because Gaussian noise
is inherent part of the model and the Gaussian pyramid suppresses noise at its higher levels.
The MRF features without KL transform performed better on noisy images than features with
KL transform, which was deflected by uncorrelated noise. In this experiment, Gabor features
performed better than Opponent Gabor Features, especially on noisy images.

5.3 Experiment 3
The last test is an illumination invariant image retrieval from the Outex texture database. In
this task, a CBIR system tries to retrieve images similar with a given query image, it differs
from the previous experiment in two major points. At first, all 318 materials were used and at
second, the task of image retrieval do not allow more training samples per material (previous
experiment used 20 training samples per each of 68 materials).
The test set consists of 3 different illuminations for each material, without any rotation and
with 100 dpi resolution, which is 954 images in total. All images were cropped to size 512× 512
pixels. We have tested image retrieval using every image from the test set. The relevant images
were defined as images of the same material with the other two illuminations. Therefore there
were 2 relevant images present in the test set for each query image, a total amount of 3 images
were retrieved. Furthermore, images were again corrupted with an additive Gaussian noise
to test the noise robustness of the features. The retrieval performance was measured using the
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light source declination
method 0:30◦ 45:65◦ 75◦ avg.
Gabor features 96.3 71.4 28.9 64.2
Gabor features, grey img. 95.2 64.7 34.7 62.6
Opponent Gabor features 95.6 83.9 50.0 76.4
Steerable pyramid 90.7 69.5 36.1 64.3
Gabor features, norm. 81.9 49.1 19.4 47.6
Gabor features, grey img., norm. 81.9 38.8 13.9 41.0
Opponent Gabor features, norm. 95.6 85.3 73.6 84.1
LBP8,1+8,3 89.3 63.0 38.6 61.6
LBPu2

16,2 84.4 51.4 35.6 54.1
LBPriu2

16,2 84.4 44.6 31.9 49.8
LBP8,1+8,3, grey img. 86.3 57.4 38.3 58.2
LBPu2

16,2, grey img. 79.3 50.7 34.7 52.3
LBPriu2

16,2 . grey img. 74.1 36.8 16.7 39.2
2D CAR-KL, L1 96.3 87.5 78.3 86.7
3D CAR, L1 97.8 89.6 75.6 87.2
GMRF-KL 95.9 82.6 65.3 80.4
2D CAR, FC3 96.7 91.6 78.1 88.7
GMRF-KL, FC3 93.3 86.5 72.2 83.7
GMRF-KL, L0.2 94.4 82.3 68.3 80.8
2D CAR-KL, FC3 97.8 90.5 79.4 88.8
2D CAR-KL, L0.2 96.7 85.4 78.3 85.8
3D CAR, FC3 99.3 93.6 76.7 89.8
3D CAR, L0.2 97.8 91.2 72.8 87.2

Table 3. Correct classification [%] with traning image fixed to top illumination. The perfor-
mance is grouped for different intervals of illumination declination angles of test images, the
last column is average for all test images. Viewpoint declination angle was 0◦ all images.

The highest reported classification accuracy on the test set (Maenpaa et al., 2002) was 69%
for LBPu2

16,2 features, which outperformed Gabor features with 66% of accuracy (unfortunately
our implementation of Gabor features reached only 54.5% in Tab. 4), both features were com-
puted on grey-scale images. Moreover, Pietikainen et al. (2002) reported 68.4% accuracy for
LBP8,1+8,3 also on grey-scale images, and 53.3% of accuracy achieved by Opponent Gabor
features on colour images preceded by comprehensive colour normalisation.
In addition to the previously described experiment, we have also degraded test set images
with an additive Gaussian noise. The experiment was performed directly on noisy images,
without any noise removal method. The application of such method might increase classifica-
tion accuracy, but only on condition that it would not introduce any artificial micro structures
into the images.
Because of small image size, the neighbourhood of MRF models have to be restricted to the
third order hierarchical neighbourhood. As a consequence the feature vector of 2D CAR, is
about four times smaller than the vector of LBP8,1+8,3 features. The best result on the original
test set was achieved with LBP8,1+8,3 on grey images with 71.6% followed by the best of
MRF features with 67.5% classification accuracy. However, the results change dramatically

added noise σ

method 0 2 4 8
Gabor features 37.5 37.0 36.2 35.6
Gabor features, grey img. 44.3 43.3 43.2 41.3
Opponent Gabor features 50.7 49.3 45.3 37.3
Steerable pyramid 37.5 35.9 34.9 32.6
Gabor features, norm. 57.0 59.9 60.3 57.1
Gabor features, grey img., norm. 54.5 61.3 63.3 62.9
Opponent Gabor features, norm. 56.7 55.8 54.3 47.9
LBP8,1+8,3 66.8 56.6 48.8 36.7
LBPu2

16,2 62.0 52.9 41.2 28.7
LBPriu2

16,2 44.6 30.8 22.6 15.3
LBP8,1+8,3, grey img. 71.6 62.2 54.6 38.6
LBPu2

16,2, grey img. 67.6 60.4 49.8 33.0
LBPriu2

16,2 , grey img. 56.9 45.2 34.2 19.7
2D CAR-KL, L1 67.6 60.8 55.7 52.3
GMRF-KL, L1 61.5 57.0 51.1 46.1
3D CAR, L1 63.6 61.3 60.6 54.9
2D CAR, FC3 67.5 62.2 61.0 56.6
2D CAR-KL, FC3 67.5 63.3 55.8 51.0
2D CAR-KL, L0.2 66.3 60.5 55.2 51.0
3D CAR, FC3 65.3 60.4 58.0 51.3
3D CAR, L0.2 63.5 59.7 55.4 47.4

Table 4. Results [%] of the Outex classification test set number 14. The classification was
performed using three nearest neighbours.

with added noise, the LBP8,1+8,3 features drop down to 38.6% showing their vulnerability to
noise degradation. The MRF based features are not so noise sensitive, because Gaussian noise
is inherent part of the model and the Gaussian pyramid suppresses noise at its higher levels.
The MRF features without KL transform performed better on noisy images than features with
KL transform, which was deflected by uncorrelated noise. In this experiment, Gabor features
performed better than Opponent Gabor Features, especially on noisy images.

5.3 Experiment 3
The last test is an illumination invariant image retrieval from the Outex texture database. In
this task, a CBIR system tries to retrieve images similar with a given query image, it differs
from the previous experiment in two major points. At first, all 318 materials were used and at
second, the task of image retrieval do not allow more training samples per material (previous
experiment used 20 training samples per each of 68 materials).
The test set consists of 3 different illuminations for each material, without any rotation and
with 100 dpi resolution, which is 954 images in total. All images were cropped to size 512× 512
pixels. We have tested image retrieval using every image from the test set. The relevant images
were defined as images of the same material with the other two illuminations. Therefore there
were 2 relevant images present in the test set for each query image, a total amount of 3 images
were retrieved. Furthermore, images were again corrupted with an additive Gaussian noise
to test the noise robustness of the features. The retrieval performance was measured using the
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added noise σ

method 0 8
Gabor features 14.0 13.4
Gabor features, grey img. 42.8 42.4
Opponent Gabor features 38.8 30.5
Steerable pyramid 19.4 18.9
Gabor features, norm. 40.4 27.5
Gabor features, grey img, norm. 53.4 56.1
Opponent Gabor features, norm. 46.9 37.8
LBP8,1+8,3 51.5 20.0
LBPu2

16,2 47.3 11.7
LBPriu2

16,2 24.3 3.1
LBP8,1+8,3, grey img. 83.1 50.3
LBPu2

16,2, grey img. 80.6 40.8
LBPriu2

16,2 , grey img. 61.5 21.3
2D CAR-KL L1 83.4 60.8
GMRF-KL, L1 73.4 50.4
3D CAR, L1 79.6 61.5
2D CAR, FC3 94.0 83.0
GMRF-KL, FC3 81.3 55.9
GMRF-KL, L0.2 80.7 60.2
2D CAR-KL, FC3 90.2 68.0
2D CAR-KL, L0.2 87.8 69.4
3D CAR, FC3 82.7 63.0
3D CAR, L0.2 79.1 58.8

Table 5. Illumination invariant retrieval from the Outex texture database. The performance is
measured as recall rate [%] of 3 retrieved images.

recall rate

rr =
retrieved and relevant

all retrieved
,

the results are summarised in Tab. 5.
In this test, the proposed illumination invariant MRF features achieved retrieval recall rate
94%, which clearly present their insensitivity to illumination spectrum variations. The MRF
models were computed with the sixth order hierarchical neighbourhood and five levels of the
Gaussian pyramid, since the images are large enough. This experiment also confirms that
MRF features without Karhunen-Loeve transform are more robust to noise degradation. The
LBP features also show their illumination invariance property with 83% recall rate. However,
their performance drops with added Gaussian noise increase. This results also demonstrate
that the spectral channel normalisation is essential for Gabor and steerable pyramid features,
nevertheless, any variant of Gabor or steerable pyramid features did not performed satisfac-
tory in this test.
Some examples of retrieved textures are presented in Fig. 4. The first two retrieved images
are both correct, however, more interesting are images retrieved at the further positions. We
can observe that the proposed features managed to recognise visual similarity of various can-
vas materials, and at the bottom, it is obvious that MRF features with pyramids prefer over-

Fig. 4. Illumination invariant image retrieval from Outex database for materials canvas034
(top), seed013 (bottom). Screenshots are from our online demonstration at http://cbir.
utia.cas.cz or http://ro.utia.cz/dem.html.
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added noise σ

method 0 8
Gabor features 14.0 13.4
Gabor features, grey img. 42.8 42.4
Opponent Gabor features 38.8 30.5
Steerable pyramid 19.4 18.9
Gabor features, norm. 40.4 27.5
Gabor features, grey img, norm. 53.4 56.1
Opponent Gabor features, norm. 46.9 37.8
LBP8,1+8,3 51.5 20.0
LBPu2

16,2 47.3 11.7
LBPriu2

16,2 24.3 3.1
LBP8,1+8,3, grey img. 83.1 50.3
LBPu2

16,2, grey img. 80.6 40.8
LBPriu2

16,2 , grey img. 61.5 21.3
2D CAR-KL L1 83.4 60.8
GMRF-KL, L1 73.4 50.4
3D CAR, L1 79.6 61.5
2D CAR, FC3 94.0 83.0
GMRF-KL, FC3 81.3 55.9
GMRF-KL, L0.2 80.7 60.2
2D CAR-KL, FC3 90.2 68.0
2D CAR-KL, L0.2 87.8 69.4
3D CAR, FC3 82.7 63.0
3D CAR, L0.2 79.1 58.8

Table 5. Illumination invariant retrieval from the Outex texture database. The performance is
measured as recall rate [%] of 3 retrieved images.

recall rate

rr =
retrieved and relevant

all retrieved
,

the results are summarised in Tab. 5.
In this test, the proposed illumination invariant MRF features achieved retrieval recall rate
94%, which clearly present their insensitivity to illumination spectrum variations. The MRF
models were computed with the sixth order hierarchical neighbourhood and five levels of the
Gaussian pyramid, since the images are large enough. This experiment also confirms that
MRF features without Karhunen-Loeve transform are more robust to noise degradation. The
LBP features also show their illumination invariance property with 83% recall rate. However,
their performance drops with added Gaussian noise increase. This results also demonstrate
that the spectral channel normalisation is essential for Gabor and steerable pyramid features,
nevertheless, any variant of Gabor or steerable pyramid features did not performed satisfac-
tory in this test.
Some examples of retrieved textures are presented in Fig. 4. The first two retrieved images
are both correct, however, more interesting are images retrieved at the further positions. We
can observe that the proposed features managed to recognise visual similarity of various can-
vas materials, and at the bottom, it is obvious that MRF features with pyramids prefer over-

Fig. 4. Illumination invariant image retrieval from Outex database for materials canvas034
(top), seed013 (bottom). Screenshots are from our online demonstration at http://cbir.
utia.cas.cz or http://ro.utia.cz/dem.html.
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all structure contrary to micro patterns (such as lines) preferred by the LBP features. These
screenshots were taken from our online demonstration,2 where it is possible to try perfor-
mance of the proposed features on images from Outex database.

6. Conclusions

We have proposed new illumination invariant features, which are suitable for content based
image retrieval systems and other analysis of natural scene images. These features are de-
rived from the underlying Markov random field texture representation and they are invariant
to brightness and illumination spectrum variations. We have experimentally verified that in-
troduced MRF features are considerably robust to illumination direction changes and they are
simultaneously robust to image degradation by an additive Gaussian noise. Moreover, the
MRF features are also fast to compute and the feature vector has low dimension. The dis-
advantage is that reliable estimation of MRF parameters requires sufficient size of training
data.
The proposed methods were compared with Gabor features, Opponent Gabor features, steer-
able pyramid and LBP features, respectively. Although the LBP features confirmed their illu-
mination spectrum invariance, they had significant difficulties with natural materials illumi-
nated with different directions and images degraded by an additive noise. The best results
were achieved with invariants based on the 2-dimensional CAR model with Fuzzy contrast
dissimilarity.
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all structure contrary to micro patterns (such as lines) preferred by the LBP features. These
screenshots were taken from our online demonstration,2 where it is possible to try perfor-
mance of the proposed features on images from Outex database.

6. Conclusions

We have proposed new illumination invariant features, which are suitable for content based
image retrieval systems and other analysis of natural scene images. These features are de-
rived from the underlying Markov random field texture representation and they are invariant
to brightness and illumination spectrum variations. We have experimentally verified that in-
troduced MRF features are considerably robust to illumination direction changes and they are
simultaneously robust to image degradation by an additive Gaussian noise. Moreover, the
MRF features are also fast to compute and the feature vector has low dimension. The dis-
advantage is that reliable estimation of MRF parameters requires sufficient size of training
data.
The proposed methods were compared with Gabor features, Opponent Gabor features, steer-
able pyramid and LBP features, respectively. Although the LBP features confirmed their illu-
mination spectrum invariance, they had significant difficulties with natural materials illumi-
nated with different directions and images degraded by an additive noise. The best results
were achieved with invariants based on the 2-dimensional CAR model with Fuzzy contrast
dissimilarity.
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