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Goodness-of-Fit Disparity Statistics

Obtained by Hypothetical and Empirical Quantizations

P. Boček, I. Vajda and E. C. van der Meulen

Abstract

Goodness-of-fit disparity statistics are defined as appropriately scaled φ-disparities or φ-divergences of
quantized hypothetical and empirical distributions. It is shown that the classical Pearson-type statistics
are obtained if we quantize by means of hypothetical percentiles, and that new spacings-based disparity
statistics are obtained if we quantize by means of empirical percentiles. The main attention is paid to
the asymptotic properties of the new disparity statistics and their comparisons with the spacings-based
statistics known from the literature. First the asymptotic equivalence between them is proved, and then
for the new statistics a general law of large numbers is proved, as well as an asymptotic normality theo-
rem both under local and fixed alternatives. Special attention is devoted to the limit laws for the power
divergence statistics of orders α ∈ R. Parameters of these laws are evaluated for α ∈ (−1,∞) in a closed
form and their continuity in α on the subinterval (−1/2,∞) is proved. These closed form expressions are
used to compare local asymptotic powers of the tests based on these statistics, which allows to extend
previous asymptotic optimality results to the class of power divergence statistics. Tables of values of the
asymptotic parameters are presented for selected representative orders of α > −1/2.

Key words: asymptotic normality, asymptotic optimality, consistency, goodness-of-fit, power diver-
gences, spacings, φ-disparities, φ-divergences.

1 Data and their statistical models

In this chapter we consider the explanation of observed data x1, x2, ..., xn statistically as a sequence
of independent outcomes from a statistical model. Our aim is to review and extend the criteria of
goodness-of-fit of the model and data, and to study their properties and applications in decisions about
the acceptability of concrete models for concrete data.

Let us start with the example of data first studied by Pearson (1894), which represent measurements
of the ratio of the forehead to body of n = 1000 crabs. Pearson partitioned the original domain of
measurements (a, b) = (0.5795, 0.6995) into intervals of equidistant size 0.004 and counted the frequency
for each interval. Table 1.1 gives the measurement values vj represented by midpoints of the intervals
and the corresponding frequencies ϕj for 1 ≤ j ≤ 30.

Table 1.1 Ratio of the forehead to body of 1000 crabs

Value Freq. Value Freq. Value Freq. Value Freq. Value Freq.

0.5815 1 0.5855 3 0.5895 5 0.5935 2 0.5975 7
0.6015 10 0.6055 13 0.6095 19 0.6135 20 0.6175 25
0.6215 40 0.6255 31 0.6295 60 0.6335 62 0.6375 54
0.6415 74 0.6455 84 0.6495 86 0.6535 96 0.6575 85
0.6615 75 0.6655 47 0.6695 43 0.6735 24 0.6775 19
0.6815 9 0.6855 5 0.6895 0 0.6935 1 0.6975 0

As second example we use the data studied recently by Ning, Gao and Dudewicz (2008) which are
results of measurements of cadmium concentrations in the kidney cortex of n = 43 horses. These are
presented in Table 1.2 below.
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Table 1.2 Amounts of cadmium in horse kidneys

11.9 16.7 23.4 25.8 25.9 27.5 28.5 31.1 32.5 35.4 38.3
38.5 41.8 42.9 50.7 52.3 52.5 52.6 54.5 54.7 56.6 56.7
58.0 60.8 61.8 62.3 62.5 62.6 63.0 67.7 68.5 69.7 73.1
76.0 76.9 77.7 78.2 80.3 93.7 101.0 104.5 105.4 107.0 -

Statistical models are probability distributions on data spaces X . A general probability distribution
is specified by a probability measure (briefly, p.m.) P defined on appropriate subsets of X . The data
spaces of the examples in Tables 1.1 and 1.2 are the halflines (0,∞). Throughout this chapter we restrict
ourselves to real valued data with the data space being an interval X = (a, b) ⊆ R. Then each probability
measure P is uniquely specified by the distribution function (briefly, d.f.)

F (x) = P ((−∞, x]), x ∈ R

We restrict ourselves to statistical models with increasing and continuously differentiable d.f.’s F (x) on
the data space . These are uniquely specified by the positive continuous probability density functions
(briefly, p.d.f.’s)

f(x) =
dF (x)

dx
x ∈ (a, b)

as well as by the increasing percentile functions (briefly, p.f.’s)

Q(y) = F−1(y) (i.e. x ∈ [a, b] such that F (x) = y), y ∈ [0, 1]

where
Q(0) = a and Q(1) = b

due to the assumption that F (x) is increasing on (a, b).Therefore the observed data x1, x2, ..., xn are
interpreted as realizations of independent copies X1, X2, ..., Xn of a random variable X which can be
specified equivalently by a p.m. P on X or a d.f. F (x) on R or a p.d.f. f(x) on the data space (a, b), or
by a p.f. Q(y) on the percentile space [0, 1].

The data x1, x2, ..., xn themselves can be represented by the so-called empirical probability mea-
sure (briefly, e.p.m.)

Pn =
1
n

n∑
i=1

δxi (1.1)

on the data space X = (a, b) where δ denotes the Dirac probability measure, or by the related empirical
distribution function (briefly, e.d.f.)

Fn(x) = Pn((−∞, x)) =
1
n

n∑
i=1

I(x ≥ xi) (1.2)

on R where I denotes the indicator function. Both these representations are unique up to the ordering of
the data. In other words, Pn as well as Fn are one-to-one related to the order statistic (xn:1, xn:2, ..., xn:n)
of the data vector (x1, x2, ..., xn). The loss of order means no loss of statistical information, because the
order statistics are known to be statistically sufficient for the statistical models independent identically
distributed (i.i.d.) observations (cf. Lehmann and Romano (2005)).

An alternative form of presentation of the data x1, x2, ..., xn is by the histogram fn(x) on the data
space (a, b). This is the density of the restriction of the e.p.m. Pn on the algebra generated by the k + 1
intervals obtained by slicing (a, b) at the cutpoints

a = c0 < c1 < ... < ck < ck+1 = b.

Then for every x ∈ [cj , cj+1)
fn(x) = #xi ∈ [cj , cj+1).

3



For example, the frequencies ϕj of Table 1.1 define the histogram

fn(x) = ϕj for x ∈ [cj , cj+1) (1.3)

where
cj = 0.5795 + 0.004 · j for 0 ≤ j ≤ 30 (1.4)

are uniform cutpoints of the interval (a, b) = (0.5795, 0.6995). The histogram form of presentation of data
is statistically sufficient in exceptional situations only.

Figure 1.1 contrasts the histogram (1.3) presenting the data from Table 1.1 with the p.d.f. f(x) of
the maximum likely normal model N(µ,σ2) of these data where

µ =
1

1000

1000∑
i=1

xi = 0.6447 and σ2 =
1

999

1000∑
i=1

(xi − µ)2 = 0.00036. (1.5)

Figure 1.2 shows the e.d.f. Fn(x) of the data from Table 1.2 together with the d.f. F (x) of the normal
model N(µ,σ2) with sample mean and variance

µ =
1
43

43∑
i=1

xi = 57.2326 and σ2 =
1
42

43∑
i=1

(xi − µ)2 = 574.98. (1.6)

In this chapter we deal with quality criteria for fitting various possible statistical models F (x) to the
data represented by e.d.f.’s Fn(x) including the asymptotic properties of these criteria for n→∞. The
basic concepts and notations introduced in this section are used throughout all what follows below.
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2 Assessment of goodness-of-fit

Intuitively one can expect that all numerical goodness-of-fit criteria will be measures of distance, diver-
gence or disparity between on the one hand the empirical reality represented by a data-based p.m. P
or d.f. F, e.g. the e.p.m. Pn or e.d.f. Fn, and on the other the hypothetical statistical model given
by a p.m. P0 or a d.f. F0. In this chapter the terms distance, divergence and disparity have a specific
mathematical meaning which is specified in the definitions below, where we deal primarily with p.m.’s
P, P0 rather than with d.f.’s F, F0.

Definition 2.1 (i) By a distance D(P, P0) of p.m.’s P, P0 we mean a standard mathematical metric
distance, taking values in the interval [0,∞), which is reflexive (i.e. D(P, P0) = 0 if and only if P = P0),
symmetric (i.e. D(P, P0) = D(P0, P )) and satisfies the triangle inequality (i.e. D(P, P0) ≤ D(P, P1) +
D(P1, P0) for all p.m.’s P, P0, P1).

(ii) A divergence (more precisely, an information-theoretic divergence) D(P, P0) is a reflexive
functional taking values in the interval [0,∞) and satisfying the information processing law. To formulate
this law, let T : X → Y be a mapping describing the results of processing the data x from the observation
space X towards another space Y, with y = T (x). The information processing law says that no processing
rule T can increase the divergence, in symbols

D(PT−1, P0T
−1) ≤ D(P, P0), (2.1)

with the equality being valid if and only if T is statistically sufficient for P, P0.
(iii) A disparity of p.m.’s P, P0 is a nonnegative functional D(P, P0) which is reflexive in the above
sense.

Convention 2.1 Throughout the chapter we denote by P, P0 an arbitrary pair of probability measures
on a general observation space X . They will be represented by means of their p.d.f.’s

p =
dP
dλ

and p0 =
dP0

dλ
(2.2)

with respect to (w.r.t.) a dominating measure λ on X (in symbols, P ∼ p, P0 ∼ p0). The only restriction
imposed on the hypothetical model P0 is the positivity of p0 almost everywhere w.r.t. λ.

Continuous case. If X = (a, b) ⊆ R then the p.m.’s (P, P0) are in a one-to-one manner represented
by the d.f.’s (F, F0), and for absolutely continuous F, F0 and Lebesque measure λ it holds that

p = f and p0 = f0 (2.3)

where (f, f0) are the usual p.d.f.’s of (F, F0) (in symbols, F ∼ f, F0 ∼ f0). As stated above, we assume
f0 > 0 on (a, b).

Discrete case. If X = (1, 2, ..., k), then the densities (p, p0) of (P, P0) w.r.t. the counting measure
λ(1) = λ(2) = ... = λ(k) = 1 reduce to the stochastic vectors

p = (pj ≡ P (j) : 1 ≤ j ≤ k), p0 = (p0j ≡ P0(j) : 1 ≤ j ≤ k), (2.4)

(in symbols, P ∼ p, P0 ∼ p0). As stated above, we assume p0j > 0 for all 1 ≤ j ≤ k.

2.1 Special distances, divergences and disparities

(a) The L1-distance

L1(P, P0) =
∫
|p− p0|dλ for P ∼ p, P0 ∼ p0 (2.5)
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is an example of a distance on the class of all p.m.’s which satisfies only partly the information processing
law. Namely it satisfies inequality (2.1) but fails to satisfy the necessary condition for equality. To see
this it suffices to consider the discrete p.m.’s P ∼ p and P0 ∼ p0 given by (2.4), where

L1(P, P0) = L1(p,p0) = ||p− p0||1 =
k∑
j=1

|pj − p0j |. (2.6)

Example 2.1 The binary coding T : X → Y = {1, 0} of the ternary observations x ∈ X = {1, 2, 3}
defined by

T (1) = 1 and T (2) ≡ T (3) = 0 (2.7)

significantly reduces the information for discrimination between the discrete models

P = (1/10, 5/10, 4/10) and P0 = (9/10, 1/10, 0).

Indeed, the discrimination rule

δ(1) = P0 and δ(2) = δ(3) = P

based on the original uncoded observations from X = {1, 2, 3} is errorless if x = 3 and the discrimination
errors for the remaining observations x take place with the probability 1/10. On the other hand, arbitrary
discrimination rule δ : Y → {P, P0} based on the encoded data from Y = {1, 0} admits discrimination
errors with the probability 9/10. This reduction of discernibility is caused by the loss of information due
to the coding which is evidently not a statistically sufficient transformation. However, this evidence is
not reflected by the L1- distance which remains unaffected by the coding, namely

L1((1/10, 5/10, 4/10), (9/10, 1/10, 0)) = L1((1/10, 9/10), (9/10, 1/10)) = 8/5.

Note that, nevertheless, the L1-distance L1(fn, f) is widely used as a goodness-of-fit criterion between
the model p.d.f.’s f and histogram-like representations fn of the observed data, since being introduced
to the nonparametric statistics by Devroye and Györfi (1985).

(b) The L2-distance

L2(P, P0) =
(∫

(p− p0)2dλ
)1/2

for P ∼ p, P0 ∼ p0

does not satisfy the information processing law in the sense that processing of the observations can
increase the L2-distance between the models P, P0. To this end it suffices to consider the discrete p.m.’s
P ∼ p and P0 ∼ p0 given by (2.4) where

L2(P, P0) = L2(p,p0) = ||p− p0||2 =

 k∑
j=1

(pj − p0j)2

1/2

. (2.8)

The mentioned violation of the information processing law can be verified by taking k = 3 and the models
P ∼ p = (0, 1/2, 1/2) and P0 ∼ p0 = (1/2, 1/4, 1/4) on the observation space X = {1, 2, 3}. Applying
the coding (2.7) to the observations x ∈ X we obtain

L2(PT−1, P0T
−1) =

√
1/2 >L2(P, P0) =

√
3/8.

This flaw of the L2- distance justifies the preference of the above-mentioned L1- distance method over
the L2-method and underlines the importance of the L1- method in statistical research.

(c) The Kolmogorov distance

K(F, F0) = sup
x∈R
|F (x)− F0(x)| (2.9)

introduced by Kolmogorov (1933) is the distance in the above stated metric sense and defines the well
known Kolmogorov-Smirnov goodness-of-fit statistic Tn =

√
nK(Fn, F0) (Smirnov (1948); for more see
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Figure 2.1 D.f.’s F, F0 for the p.d.f.’s of (2.10) and (2.11).

Lehmann and Romano (2005)). Applicability of the Kolmogorov distance is restricted by the fact that it
contradicts the information processing law in a similar way as the L2-distance. A simple example where

K(FT−1, F0T
−1) = 1 > K(F, F0) = 1/2

is obtained by using the p.d.f.’s

f(x) = I(−1 < x < −1/2) + I(0 < x < 1/2), (2.10)
f0(x) = I(−1/2 < x < 0) + I(1/2 < x < 1) (2.11)

and the data processing formula

T (x) = x+
1
2

[I(−1/2 < x < 0)− I(0 < x < 1/2)] (2.12)

which transforms the interval (−1/2, 0) on (0, 1/2) and vice versa. This formula is skew symmetric about
x = 0 and thus the data processing is reversible in the sense T−1 = T . The d.f.’s F, F0 for this example
are shown in Figure 2.1 and their modifications resulting from the data processing (2.12) in Figure 2.2.

Figure 2.2 D.f.’s FT−1, F0T
−1 modified by the data processing formula (2.12).

For the special discrete binary p.m.’s

Px ∼ px = (F (x), 1− F (x)) and P0x ∼ p0x = (F0(x), 1− F0(x)) (2.13)

7



(2.9) and (2.6) imply

K(F, F0) =
1
2

sup
x∈R

L1(Px, P0x).

Similar relations take place for other measures of goodness-of-fit between F, F0 and their one-point ap-
proximations F (x), F0(x) formally represented by the binary p.m.’s (2.13). We mention the best known
of them.

(d) The Pearson divergence is given by the formula

χ2(P, P0) =
∫

(p− p0)2

p0
dλ for P ∼ p, P0 ∼ p0 (2.14)

which in the discrete case considered in (2.4) reduces to

χ2(p,p0) =
k∑
j=1

(pj − p0j)2

p0j
. (2.15)

It defines the well-known Pearson goodness-of-fit test statistic

Tn = nχ2(pn,p0) =
k∑
j=1

(npnj − np0j)2

np0j
=

k∑
j=1

(ϕnj − np0j)2

np0j
(2.16)

for testing hypotheses H0 : P0 on the basis of observations represented by the e.p.m. Pn where p0 and
pn are the restrictions of the hypothetical and empirical p.m.’s P0 and Pn on the test cells Cj = [cj , cj+1)
and ϕnj = #xi ∈ Cj are the observed cell frequencies for 1 ≤ j ≤ k. The Pearson divergence is a
divergence in the rigorous sense stated above, but it is not a distance since it is neither symmetric nor
satisfies the triangle inequality.

(e) Another example of a divergence is the LeCam divergence

LC(P, P0) =
∫

(p− p0)2

p+ p0
dλ for P ∼ p, P0 ∼ p0 (2.17)

which in the discrete case considered in (2.4) reduces to

LC(p,p0) =
k∑
j=1

(pj − p0j)2

pj + p0j
. (2.18)

Since it is a divergence in the sense of Definition 2.1, all its roots are divergences in the sense of the same
definition too but, as proved by Kafka, Österreicher and Vincze (1991), the square root

√
LC(P, P0) is

distinguished by being a metric distance in the space of p.m.’s P, P0.

(f) In the discrete case, by (2.15) and (2.13),

χ2(Px, P0x) =
(F (x)− F0(x))2

F0(x)
+

(F (x)− F0(x))2

1− F0(x)
=

(F (x)− F0(x))2

F0(x)(1− F0(x))
.

Since χ2(Px, P0x) is a disparity of binary distributions Px, P0x for all x ∈ R, the integral over R,

AD(F, F0) =
∫
χ2(Px, P0x)dx =

∫
(F (x)− F0(x))2

F0(x)(1− F0(x))
dx, (2.19)

is a disparity of d.f.’s F, F0 in the above stated sense. We call it the Anderson-Darling disparity
because its scaled version

Tn = n ·AD(Fn, F0) = n

∫
(Fn(x)− F0(x))2

F0(x)(1− F0(x))
dx
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is the well known Anderson-Darling goodness-of-fit statistic for testing the hypothesis that the data
represented by the e.d.f. Fn were generated by the d.f. F0 (hypothesis H0).

(g) Similarly,we call

CM(F, F0) =
∫
χ2(Px, P0x)F0(x)(1− F0(x))dx =

∫
(F (x)− F0(x))2dx (2.20)

the Cramér-von Mises disparity because it is a disparity of p.d.f.’s F, F0 in the above defined sense
and

Tn = n · CM(Fn, F0) = n

∫
X

(Fn(x)− F0(x))2dx

is the Cramér-von Mises goodness-of-fit statistics for testing the hypothesis H0 = F0 under the empirical
evidence Fn.

The goodness-of-fit statistics mentioned in (f) and (g) were introduced by von Mises (1947) and
Anderson and Darling (1954) (see also Darling (1957)). We refer in this respect to Durbin (1973) or to
pp. 58–64 in Serfling (1980).

2.2 Examples

The divergences and disparities will be more systematically studied in the next section. It the remainder
of this section we apply the goodness-of-fit criteria introduced in this section to the data from Tables 1.1
and 1.2.

Example 2.2.1 Consider the discrete e.p.m. pn = (pn1, ..., pn,30) representing the data given by the
frequencies ϕj of Table 1.1 and defined by the formula

pnj = ϕj10−3, 1 ≤ j ≤ 30. (2.21)

In addition to the normal model N(µ,σ2) for these data given by (1.5), we consider the mixed normal
model

MixN(π, µ1, µ2, σ
2
1 , σ

2
2) = πN(µ1, σ

2
1) + (1− π)N(µ2, σ

2
2)

for the parameters

π = 0.5, (µ1, σ
2
1) = (0.6343, 0.000361), (µ2, σ

2
2) = (.6551, 0.00014641)

used by Pearson (1894). The third model considered by us is the mixed generalized lambda model

MixGLD(π, θ, ϑ) = πGLD(θ) + (1− π)GLD(ϑ)

from p. 88 of Ning, Gao and Dudewicz (2008) where the generalized lambda component models are given
by the percentile functions

Qθ(y) = θ1 +
yθ3 − (1− y)θ4

θ2
and Qϑ(y) = ϑ1 +

yϑ3 − (1− y)ϑ4

ϑ2
.

for the parameters

π = 0.802
θ = (0.6415, 13.218, 0.135, 0.205) (2.22)
ϑ = (0.6564, 11.328, 0.55, 0.15).

Each d.f. F0 ∈ {N(µ,σ2), MixN(π, µ1, µ2, σ
2
1 , σ

2
2), MixGLD(π, θ, ϑ)} represents a different hypothesis

about the stochastic source of the data from Table 1.1. Each one defines a hypothetical p.d.f. f0 and
a hypothetical discrete p.m. p0 = (p01, ..., p0k) obtained by quantization of the observation space X =
(a, b) ⊆ R into k cells. In the present example (a, b) = (0.5795, 0.6995) and we consider quantization into
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k = 30 partition intervals symmetric about the centers vj given in Table 1.1 leding to p0 = (p01, ..., p0,30)
with the components

p0j =
∫ vj+0.002

vj−0.002

f0(x)dx = F0(vj + 0.002)− F0(vj − 0.002). (2.23)

Table 2.2.1 presents the values of the distance or divergence criteria L1(p,p0), L2(p,p0), χ2(p,p0) and
LC(p,p0) given by (2.6), (2.8), (2.15) and (2.18) for the e.p.m. p = pn given by (2.21) and hypothetical
p.m.’s p0 given by (2.23).

Model L1 L2 Pearson LeCam
Normal 0.17476 0.047971 0.075765 0.034877

Mix Normal 0.0958 0.025351 0.020596 0.011084
Mix of Lambdas 0.24636 0.063542 0.14132 0.054918

Table 2.2.1 Values of several criteria for the models N, MixN and MixGLD of the data from Table 1.1.

Example 2.2.2 Consider the e.d.f. Fn defined by the data of Table 1.2. In addition to the normal
model N(µ,σ2) for these data given by (1.6), we consider the generalized lambda models GLD(θ) given
by the percentile function

Qθ(y) = θ1 +
yθ3 − (1− y)θ4

θ2

for the parameters
θ = (41.7897, 0.01134, 0.09853, 0.3606) (2.24)

obtained on p. 97 of Karian and Dudewicz (2000). We use also the mixed generalized lambda model

MixGLD(π, θ, ϑ) = πGLD(θ) + (1− π)GLD(ϑ)

with the component generalized lambda models given by the percentile functions

Qθ(y) = θ1 +
yθ3 − (1− y)θ4

θ2
and Qϑ(y) = ϑ1 +

yϑ3 − (1− y)ϑ4

ϑ2
.

for the parameters

π = 0.4
θ = (57.8233, 0.0076, 0.1432, 0.1356) (2.25)
ϑ = (56.2136, 0.0193, 0.4601, 0.4838)

introduced on p. 91 of Ning, Gao and Dudewicz (2008). The present models F0 ∈ {N(µ,σ2), GLD(θ),
MixGLD(π, θ, ϑ)} differ from those considered in the previous example but, similarly as above, they
represent three different hypotheses about the sources of data from Table 1.2. Table 2.2.2 presents values
of the distance or disparity K(F, F0), AD(F, F0) and CM(F, F0) given by (2.9), (2.19) and (2.20) for the
d.f. F (x) = Fn(x) from Figure 1.2 and the present models F0(x).

Model K(F, F0) AD(F, F0) CM(F, F0)
Normal 0.45177 0.38039 0.05513
Lambda 0.07917 0.39040 0.06034

Mix of Lambdas 0.21747 78.4530 0.78635
Table 2.2.2 Values of several criteria for the models N, GLD and MixGLD of the data from Table 1.2.
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3 Criteria of goodness-of-fit

This section studies more systematically those criteria of goodness-of-fit between the empirical evidence
represented by the e.d.f. Fn on the one hand and the hypothetical model specified by its d.f. F0 on
the other, that are measures of dissimilarity D(Fn, F0) between the distribution functions Fn and F0.
Since Fn → F0 a.s. for n → ∞ and, consequently, D(Fn, F0) → 0 stochastically as n → ∞ for
reasonable dissimilarity measures D, the statistics Tn for testing the hypothesis H0 : F0 on the basis of
empirical evidence represented by Fn, are considered in the form Tn = mnD(Fn, F0). Here mn → ∞ is
an appropriate scaling sequence for which Tn tends to a limit distribution. The value Q(1−α) of the p.f.
of this distribution is then used as a critical value of Tn for the asymptotically α-level test of hypothesis
H0. Examples were given in Section 2, e.g. the Kolmogorov distance K(Fn, F0) and corresponding
Kolmogorov-Smirnov statistic Tn =

√
nK(Fn, F0).

Similarly, if the empirical evidence is represented by a discrete distribution pn and the hypothetical
model is specified by the discrete distribution p0 then the dissimilarity between the former and the
sequel is D(pn,p0) and the statistic for testing the hypothesis H0 : p0 is Tn = mnD(pn,p0). Examples
were given in Section 2, e.g. the Pearson distance χ2(pn,p0) and the corresponding Pearson statistic
Tn = nχ2(pn,p0).

Goodness-of-fit criteria are not only studied for e.d.f.’s Fn or related e.p.m.’s pn simply representing
the data sets {x1, x2, ..., xn} in a straightforward manner (1.2), but also for more sophisticated models
F and p obtained by data-based statistical inference like e.g. those obtained by maximum likelihood
estimation. Therefore we deal in the rest of this section with arbitrary d.f.’s F and p.m.’s p.

3.1 Disparities, divergences and metric distances

To unify the treatment of the situation when goodness-of-fit is considered for d.f.’s (F, F0) or p.m.’s
(p,p0), it is convenient to represent simultaneously both hypothetical models F0,p0 by the corresponding
general p.m.’s P0, and alternative models F,p by the corresponding general p.m.’s P. Thus we deal in
this subsection primarily with dissimilarity measures D(P, P0). We respect Convention 2.1 and use the
notations (2.2) - (2.4) introduced there.

We define the class of measures of dissimilarity of probability measures P, P0 on X by

Dφ(P, P0) =
∫
X
p0φ

(
p

p0

)
dλ for P ∼ p, P0 ∼ p0 (3.1)

generated by continuous functions φ : (0,∞) 7→ [0,∞) with continuous extension 0 ≤ φ(0) ≤ ∞, such
that the integral (3.1) exists. In particular, for arbitrary d.f. F and hypothetical d.f. F0 on an interval
observation space X = (a, b) ⊆ R,

Dφ(F, F0) =
∫ b

a

f0(x)φ
(
f(x)
f0(x)

)
dx for F ∼ f, F0 ∼ f0, (3.2)

and, in the discrete case, for

P ∼ p = (p1, p2, ..., pk) and P0 ∼ p0 = (p01, p02, ..., p0k) (3.3)

c.f. (2.4),

Dφ(P, P0) ≡ Dφ(p,p0) =
k∑
j=1

p0jφ

(
pj
p0j

)
. (3.4)

Let us clarify for which functions φ the dissimilarities (3.1) - (3.4) are disparities, divergences or
distances in the sense of the previous section. Denote by Φ the class of all differentiable functions
φ : (0,∞) 7→ R with continuous extension φ(0) and the property

(φ′(t)− φ′(1))sign(t− 1) > 0 for all t ∈ (0,∞). (3.5)
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Then the standardized version
φ̃(t) = φ(t)− φ(1)− φ′(1)(t− 1) (3.6)

of φ(t) is increasing in the domain t ≥ 0 and decreasing in the domain t ≤ 0, i.e. is positive for t ∈ (0,∞)
except for t = 1 where φ̃(1) = 0. Therefore the integral

Dφ̃(P, P0) =
∫
X
p0φ̃

(
p

p0

)
dλ = Dφ(P, P0)− φ(1) (3.7)

exists, takes on values in the closed interval [0,∞], and the dissimilarity Dφ̃(P, P0) is reflexive in the sense
that equality holds if and only if P = P0. Hence the expressions Dφ̃(P, P0) are well-defined disparities,
and also the expressions Dφ(P, P0) are disparities up to shifts φ(1). This justifies to speak about all
dissimilarities Dφ(P, P0), Dφ(F, F0) and Dφ(p,p0) given by (3.1) - (3.4) for φ ∈ Φ as disparities in
the wide sense, transformed by constant shifts φ(1) to disparities defined in the precise sense of the
previous section. Of course, the subset

Φdisp = {φ ∈ Φ : φ(1) = 0}, Φdisp ⊂ Φ

defines proper disparities by (3.1) - (3.4).

Let Φdiv be the class of differentiable convex functions φ : (0,∞) 7→ R with continuous extension φ(0)
and strict convexity at t = 1. Then φ(1) + φ′(1)(t − 1) is the support straight line of the function φ(t)
which is strictly smaller than φ(t) at all t 6= 1 due to the strict convexity of φ(t) at t = 1. However,
the assumed convexity of φ(t) on the whole domain (0,∞) means that the function (3.6) is increasing on
(1,∞) and decreasing on (0, 1) so that (3.5) holds. Consequently,

Φdiv ⊂ Φdisp,

i.e. expression (3.7) is reflexive. As proved in Csiszár (1967) or Liese and Vajda (1987) (see also a new
statistical proof in Vajda and Liese (2006)), the disparities (3.7) with φ ∈ Φdiv satisfy the information
processing law, i.e. they are divergences in the sense defined in the previous section.

Example 3.1.1 The functions defined on (0,∞) by

φ0(t) = − ln t and φ1(t) = t ln t (3.8)

with extensions φ0(0) =∞ and φ1(t) = 0 satisfy condition (3.5). Thus they belong to Φ and define the
wide-sense disparities

D1(P, P0) ≡ Dφ1(P, P0) =
∫
X
p ln

(
p

p0

)
dλ (3.9)

and

D0(P, P0) ≡ Dφ0(P, P0) =
∫
X
p0 ln

(
p0

p

)
dλ = D1(P0, P ). (3.10)

Since φi(1) = 0, both these functions belong to the subset Φdisp ⊂ Φ, so that (3.9) and (3.10) are proper
disparities. Further, both functions φi(t) are differentiable and strictly convex on the domain (0,∞).
Therefore they belong to Φdiv and (3.9) and (3.10) are divergences. In fact, D1(P, P0) is known as
the information divergence or Kullback divergence, and D0(P, P0) is usually called the reversed
information divergence or reversed Kullback divergence. Note that

Tn = nD1(pn,p0) =
k∑
j=1

npnj ln
npnj
np0j

=
k∑
j=1

ϕnj ln
ϕnj
np0j

(3.11)

is the well-known likelihood ratio test statistic for testing the hypothesis H0 : P0 on the basis of observa-
tions represented by the e.p.m. Pn, where p0 and pn are restrictions of the hypothetical and empirical
p.m.’s P0 and Pn to the test cells Cj = [cj , cj+1), and ϕnj = #xi ∈ Cj are the observed cell frequencies
for 1 ≤ j ≤ k.
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Example 3.1.2 The functions defined on (0,∞) by

φ0,−1(t) =
1
t

and φ0,2(t) = t2

with extensions φ0,−1(0) =∞ and φ0,2(t) = 0 satisfy condition (3.5). Thus they belong to Φ and define
the wide-sense disparities

D0,−1(P, P0) ≡ Dφ0,−1(P, P0) =
∫
X

p2
0

p
dλ

and

D0,2(P, P0) ≡ Dφ0,2(P, P0) =
∫
X

p2

p0
dλ = D0,−1(P0, P ).

Since φ0,−1(1) = φ0,2(1) = 1, the functions φ−1(t) = φ0,−1(t)−1 and φ2(t) = φ0,2(t)−1 define the proper
disparities

D̃0,−1(P, P0) = D0,−1(P, P0)− 1 =
∫
X

p2
0

p
dλ− 1 =

∫
X

(p− p0)2

p
dλ (3.12)

and

D̃0,2(P, P0) = D0,2(P, P0)− 1 =
∫
X

p2

p0
dλ− 1

=
∫
X

(p− p0)2

p
dλ = D̃0,−1(P0, P ). (3.13)

The same proper disparities are defined by the standardized versions

φ̃0,−1(t) =
1
t
− 2 + t =

(1− t)2

t
and φ̃0,2(t) = t2 − 1− 2t = (t− 1)2

belonging to Φdisp ⊂ Φ. Further, both functions φ̃0,−1(1) and φ̃0,2(1) are differentiable and strictly
convex on the domain (0,∞). Therefore they belong to Φdiv and (3.12), (3.13) are divergences. In fact,
D̃0,2(P, P0) = χ2(P, P0) is the Pearson divergence defined in 2.1.(d) and D̃0,−1(P, P0) = χ2(P0, P ) is the
reversed Pearson divergence.

Example 3.1.3 Power divergences The functions defined on (0,∞) by

φα(t) =
tα − 1
α(α− 1)

for the powers α ∈ R− {0, 1} (3.14)

and for the remaining powers by

φ1(t) = t ln t and φ0(t) = − ln t (3.15)

belong to Φ defined in Example 3.1.1. They satisfy the condition φα(1) = 0 so that they belong also to
the subset Φdisp ⊂ Φ. Since they are differentiable and strictly convex on (0,∞), they belong in fact also
to Φdiv and define the divergences

Dα(P, P0) ≡ Dφα(P, P0) =

∫
X p

αp1−α
0 dλ− 1

α(α− 1)
for α ∈ R− {0, 1}. (3.16)

Remarks (i) It holds that

D1(P, P0) ≡ Dφ1(P, P0) =
∫
X
p ln

(
p

p0

)
dλ = D0(P0, P ) ≡ Dφ0(P0, P ) (3.17)

since the functions (3.15) are the same as in Example 3.1.1. Hence the members D1(P, P0) and D0(P, P0)
of the power divergence family are the Kullback and reversed Kullback divergences introduced in
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Example 3.1.1.
(ii) Further,

Dα(P, P0) = D̃α(P, P0)/2 for α = −1 and α = 2

where the right-hand side consists of the disparities introduced in Example 3.1.2. Therefore 2D2(P, P0)
and 2D−1(P, P0) are the well known Pearson and reversed Pearson divergences of Example 3.1.2, intro-
duced already in Section 2.1, part (d) (briefly, 2.1(d)).
(iii) Another well-known member of the family of power divergences not mentioned before is the
Hellinger divergence

D1/2(P, P0) = 4H(P, P0) = 4
∫
X

(
√
p−√p0)2 dλ, (3.18)

which in the discrete case (2.4) reduces to

D1/2(p,p0) = 4 = 4
k∑
j=1

(√
pj −

√
p0j

)2
. (3.19)

The divergence H(p,p0) was introduced by Matusita (1956) but it is better known as squared Hellinger
distance. Indeed, √

H(P, P0) = ||√p−√p0||2
is the L2-distance of the square roots of p.d.f.’s and, as such, is a metric distance. Of course,

√
D1/2(p,p0)

is a metric distance too.
(iv) The expression

Tn = nD1/2(pn,p0)/2 = 2n
k∑
j=1

(√
pj −

√
p0j

)2
is known as the Freeman-Tukey statistic for testing the hypothesis H0 : P0 on the basis of observations
represented by the e.p.m. Pn, where p0 and pn are the restrictions of the hypothetical and empirical
p.m.’s P0 and Pn on the test cells Cj = [cj , cj+1) for 1 ≤ j ≤ k.
(v) The square root

√
D1/2(p,p0) is the only member among all powers of all power divergences which

is a distance in the sense introduced above (cf Definition 2.1) because D1/2(P, P0) is the only power
divergence which is symmetric in the variables P, P0.
(vi) The nonnegative standardized versions of the functions (3.14) are

φ̃α(t) =
tα − α(t− 1)− 1

α(α− 1)
for α ∈ R− {0, 1} (3.20)

and those corresponding to (3.15) are the limits

φ̃1(t) = t ln t− t+ 1 and φ̃0(t) = − ln t+ t− 1 (3.21)

of φ̃α(t) for α→ 0 and α→ 1. Obviously

Dφ̃α
(P, P0) = Dφα(P, P0) = Dα(P, P0) for all α ∈ R. (3.22)

(vii) The classes of modified power divergences αDα(P, P0), α > 0 are one-to-one related to the loga-
rithmic power divergences

Rα(P, P0) =
ln[α(α− 1)Dα(P, P0) + 1]

α− 1
=

ln
∫
X p

αp1−α
0 dλ

α− 1
, α > 0 (3.23)

of Rényi (1961) where R1(P, P0) = limα→1Rα(P, P0) = D1(P, P0). They were studied e.g. by Perez
(1967). The more significant modified versions

Hα(P, P0) = α(α− 1)Dα(P, P0) + 1 =
∫
X
pαp1−α

0 dλ, α ∈ R, (3.24)
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sometimes called Hellinger integrals, were studied e.g. by Chernoff (1952), Vajda (1971) and Liese
(1982). The Hellinger integrals are skew symmetric about α = 1/2 in the sense that

Hα(P, P0) = H1−α(P0, P ), α ∈ R. (3.25)

The power divergences (3.16),(3.17) are skew symmetric in the same sense, i.e.

Dα(P, P0) = D1−α(P0, P ), α ∈ R. (3.26)

The skew-symmetrization of the formerly used power divergences αDα(P, P0), α > 0, was proposed
by Cressie and Read (1984), and the skew symmetric divergences (3.16),(3.17) are used as standard
representatives of the whole class of divergences Dφ(P, P0), φ ∈ Φdiv. A similar skew-symmetrization

Rα(P, P0) =
ln
∫
X p

αp1−α
0 dλ

α(α− 1)
, α ∈ R (3.27)

of the Rényi divergences was introduced by Liese and Vajda (1987) who used them to establish a number
of properties of the power divergences (3.26).

3.2 Metricity and robustness

The power divergences Dα(P, P0), α ∈ R, do not represent all aspects of the class of all divergences
Dφ(P, P0), φ ∈ Φdiv. For example,

√
D1/2(P, P0) is the only power divergence which is a metric distance.

This might suggest that the metricity of a divergence is a rare property. But, in fact, the class of all
divergences contains uncountably many of them with this property. For example, all functions

ϕβ(t) =
sign β

1− β

[
(t1/β + 1)β − 2β−1(t+ 1)

]
for −∞ < β ≤ 2 (3.28)

with the terms for β = 0 and β = 1 obtained by the continuous extension rule as

ϕ0(t) = |t− 1|/2 and ϕ1(t) = t ln t+ (t+ 1) ln
2

t+ 1
(3.29)

belong to Φdiv. The square roots
√
Dφβ (P, P0) of the corresponding divergences are metric distances (see

Vajda (2009)). LeCam’s divergence of 2.1.(g) is among them, since

Dϕ−1(P, P0) = LC(P, P0).

The total variation function ϕ0(t) formally does not belong to Φdiv because it is not differentiable at
t = 1, but this may be cured by defining this derivative as the mean of the left- and right-hand derivatives,

ϕ′0(1) =
ϕ′0(1+) + ϕ′0(1−)

2
=

1
2
− 1

2
= 0. (3.30)

Let us now look at the robustness of the testing or estimation based on the disparity statistics

Tφ,n = nDφ(Pn, P0), φ ∈ Φdisp

reflecting the proximity of the hypothetical p.m. P0 and e.p.m. Pn, or their special forms

Tφ,n = nDφ(pn,p0) =
k∑
j=1

np0jφ

(
npnj
np0j

)
=

k∑
j=1

np0jφ

(
ϕnj
np0j

)
, φ ∈ Φdisp

using restrictions p0 and pn of P0 and Pn on the test cells Cj = [cj , cj+1) where ϕnj = #xi ∈ Cj are the
observed cell frequencies for 1 ≤ j ≤ k.

If φ ∈ Φdiv, i.e. if Dφ(P, P0) is a divergence then φ(t) is always unbounded and its derivative φ′(t)
is usually unbounded on the domain (0,∞). For example, all power divergence functions φα(t) as well
as their derivatives φ′α(t) are unbounded. The statistical disparity measures were introduced by Lindsay
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(1994) and more systematically investigated by Menéndes et al. (1998). In these papers it is argued
that the robustness of statistical inference based on minimization of disparities between models requires
bounded generating functions φ ∈ Φdisp, or at least bounded derivatives φ′, because these two functions
represent the criterion function and the influence function of robust statistics. Thus, from the point
of robustness of statistical decisions based on disparity statistics, the attention is concentrated on the
functions ρ(t − 1) ∈ Φdisp for the classical criterial ρ-functions of robust statistics leading to bounded
influence functions ψ(t) proportional to the derivatives ρ′(t).

Example 3.2.1 A classical example is the family of Huber ρ-functions

ρk(t) = I(|t| ≤ k)t2, k > 0

smoothly extended as linear functions in the domain {t ∈ R : |t| > k} with the constantly bounded
influences ψk(t) = ρ′k(t) = 2k of the observations t from this domain (see Hampel et al. (1986) or
Jurečková and Sen (1996)). The Huber functions define the family

φk(t) = ρk(t− 1), k > 0 (3.31)

of functions from Φdiv with the bounded derivatives

ψk(t) = φ′k(t) = 2[(t− 1)I(|t− 1| ≤ k) + kI(|t− 1| > k), k > 0. (3.32)

These functions generate the family of robust divergences Dφk(P, P0), k > 0.

Example 3.2.2 Another classical example is the family of ρ-functions

ρα(t) = (α− 1)tI(t < 0) + αtI(t > 0), 0 < α < 1

leading to the robust statistical inference based on the so-called regression quantiles (see Jurečková
and Sen (1996)). The total variation generating function is the special case

ϕ0(t) = ρ1/2(t− 1).

We put
φα(t) = ρα(t− 1), 0 < α < 1 (3.33a)

and similarly as in (3.30), we use the generalized form

φ′α(1) =
φ′α(1+) + φ′α(1−)

2
= α− 1

2
(3.34)

to extend the derivative φ′α(t) of the family of robust divergence generating functions to t = 1 in order
to achieve the formal validity for including this family in Φdiv. The derivatives

ψα(t) = φ′α(t) = (α− 1)I(t < 1) + αI(t > 1), 0 < α < 1 (3.35)

of these functions are bounded on the domain (0,∞) so that the functions (3.33a) generate the family of
robust divergences Dφα(P, P0), 0 < α < 1.

4 Disparities based on partitions

In the previous section we assessed goodness-of-fit between two statistical models given by p.m.’s P and
P0 by the disparity, divergence or distance

Dφ(P, P0) =
∫
X
p0φ

(
p

p0

)
dλ (4.1)
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where the concrete type depends on the extended real valued function φ ∈ Φ and, according to Convention
2.1, p, p0 are densities of P, P0 given by (2.2) and p0 is positive on X . Definition (2.2) of the densities
p, p0 means that for every A ⊂ X

P (A) =
∫
A

pdλ and P0(A) =
∫
A

p0dλ for λ = P + P0. (4.2)

In some situations it is necessary to restrict the p.m.’s P and P0 on a partition P = {C1, ..., Ck} of
X into disjoint cells Cj , resulting into the quantizations

p = (pj ≡ P (Cj) : 1 ≤ j ≤ k) and p0 = (p0j ≡ P0(Cj) : 1 ≤ j ≤ k) (4.3)

of these p.m.’s and to the reduced disparity, divergence or distance

Dφ(p,p0) =
k∑
j=1

p0jφ

(
pj
p0j

)
. (4.4)

Partitioning of the observation space means that observations x ∈ X are replaced by the indices of the
partition sets containing these observations, i.e. by

T (x) ∈ {1, 2, ..., k} where T−1(j) = Cj for 1 ≤ j ≤ k. (4.5)

Among other this means that if φ generates the divergence Dφ(P, P0) , then the information processing
law implies that

Dφ(p,p0) ≤ Dφ(P, P0) (4.6)

where the equality holds if and only if the partition P is statistically sufficient for (P, P0).

The situation described above takes place when the first of the p.m.’s is an e.p.m., i.e. when it is
uniform on the observation support set Sn = {x1, x2, ..., xn} according to (1.1). Then (4.2) holds for

p(x) = pn(x) ≡ I(x ∈ Sn) and p0(x) ≡ I(x /∈ Sn)

because

(Pn + P0)(Sn ∩A) = Pn(A) and (Pn + P0)((X − Sn) ∩A) = Pn(A) for every A ⊂ X .

This, together with the fact that Pn is supported by Sn and P0 is supported by X − Sn implies that

Dφ(Pn, P0) =
∫
X
p0 φ

(
pn
p0

)
d(Pn + P0)

=
∫
Sn

I(x /∈ Sn) φ
(

I(x ∈ Sn)
I(x /∈ Sn)

)
dPn

+
∫
X−Sn

I(x /∈ Sn) φ
(

I(x ∈ Sn)
I(x /∈ Sn)

)
dP0

=
∫
Sn

0 φ
(

1
0

)
dPn +

∫
X−Sn

1 φ
(

0
1

)
dP0

= lim
t→∞

φ (t)
t

+ φ (0) , (4.7)

where in the last line we replaced the undefined expression by the limit on the basis of the principle of
continuous extension. The existence of the limit is guaranteed only for convex φ, i.e. for divergences,
but even then the value (4.7) is constant, often infinite (for the power divergences it is finite only for the
powers 0 < α < 1). Thus, without any further specification or restriction, the disparities, divergences or
distances Dφ(Pn, P0) are meaningless for statistical inference. Hence for the rest of the chapter we adopt
the following convention.
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Convention 4.1 The disparities, divergences or distances Dφ(Pn, P0) are replaced by their discrete
versions (4.4) resulting from finite partitions P = {C1, ..., Ck} of the observation space X by the quan-
tization rule (4.3). Further, we restrict ourselves to real valued observations and assume interval
observation spaces X = (a, b) ⊆ R on which statistical models Pn, P, P0 are given by d.f.’s Fn, F, F0

where both F and F0 are assumed to have positive densities f > 0 and f0 > 0. Moreover, we restrict
ourselves to the interval partitions

P = {Cj ≡ (cj−1, cj ] : 1 ≤ j ≤ k} for a = c0 < c1 < ... < ck−1 < ck = b (4.8)

where the quantization rule (4.3) takes on the form

p = (pj ≡ F (cj)− F (cj−1) : 1 ≤ j ≤ k) , (4.9)
pn = (pnj ≡ Fn(cj)− Fn(cj−1)) : 1 ≤ j ≤ k) (4.10)
p0 = (p0j ≡ F0(cj)− F0(cj−1) : 1 ≤ j ≤ k) . (4.11)

By (4.4), the disparities, divergences or distances Dφ(pn,p0) depend on the frequencies of the observa-
tions x1, x2, ..., xn in the intervals of the partition P but not on the order of these observations. Therefore
the vector (x1, x2, ..., xn) of observations can be replaced by the order statistics (xn:1, xn:2, ..., xn:n). Fur-
ther, the hypothetical model F0, which is compared with the alternative model F or the empirical model
Fn, is known and by the assumptions the function F0(y) is strictly increasing on the observation space
X = (a, b). Hence it can be used to transform in a one-to-one manner this observation space into the
simple standardized observation space Y = (F0(a), F0(b)) = (0, 1) commonly used in the literature deal-
ing with testing hypotheses H0 : F0 against alternatives A : F. The d.f. F governs in an i.i.d. manner
the random observations X1, X2, ..., Xn generating the realizations x1, x2, ..., xn. In this new observation
space we deal with the ordered observations

F0(a) ≡ 0 = Y0 < Y1 ≡ F0(Xn:1) ≤ ... ≤ Yn ≡ F0(Xn:n) < 1 = Yn+1 ≡ F0(b) (4.12)

and with the hypotheses H0 : F0(Q0), alternatives A : F (Q0) and e.d.f.’s Fn(Q0), all defined on [0, 1] by
means of the increasing hypothetical percentile function (briefly, h.p.f.)

Q0(y) = F−1
0 (y) on [0, 1]. (4.13)

This motivates the next convention which will also hold for the remainder of this chapter.

Convention 4.2 We assume without loss of generality that we test the hypothesis of uniformityH0 : F0

with constant p.d.f. f0(y) = 1 and linear h.p.f. Q0(y) = F0(y) = y on (0, 1) against the alternative A : F
with a p.d.f. f(y) positive on (0, 1) and the percentile function Q(y) = F−1(y) increasing on [0, 1]. The
testing is based on the e.d.f. Fn(y) on [0, 1] with jumps 1/n at the points

0 < Y1 ≤ ... ≤ Yn < 1 (4.14)

obtained by ordering the random observations

X1, X2, ..., Xn i.i.d. by the p.d.f. f(y) on the observation space (0, 1). (4.15)

Alternatively, the testing can be based on the one-to-one related empirical percentile function (briefly,
e.p.f.)

Qn(y) = F−1
n (y) = inf{z ∈ (0, 1] : Fn(z) ≥ y} on [0, 1]. (4.16)

Consequently

Qn

(
j

n

)
= Yj , 0 ≤ j ≤ n (4.17)

and the disparities, divergences or distances Dφ(P, P0) and Dφ(P0, P ) are given by the formulas

Dφ(P, P0) =
∫ 1

0

φ (p) dy and Dφ(P0, P ) =
∫ 1

0

pφ

(
1
p

)
dy. (4.18)
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This is the the basic conceptual framework for the rest of the chapter.

The information available to the statistician when he faces the problem of testing hypothesis H0 : F0

is represented by the d.f.’s Fn and F0. It is used by him to calculate the decision tool Dφ(pn,p0) or
Tn = mnDφ(pn,p0) using the rules (4.4), (4.10) and (4.11). Naturally, this procedure is simplified if
either the distribution p0 or pn is uniform,

p0 =
(

1
k
,

1
k
, ...,

1
k

)
or pn =

(
1
k
,

1
k
, ...,

1
k

)
for some k > 1 (4.19)

where k may increase with the sample size n, i.e. the dependence

k = kn (4.20)

is admitted but the subscript n is suppressed unless it plays an explicit role. These two possibilities are
mutually exclusive for large k and are studied separately in the next two subsections.

4.1 Partitioning by hypothetical percentiles

Let us start with the first case considered in (4.19). It takes place if the partition (4.8) is defined by the
k + 1 cutpoints

cj = Q0

(
j

k

)
=
j

k
, 0 ≤ j ≤ k for the h.p.f. Q0 (c.f. (4.13)), (4.21)

which are the hypothetical percentiles of the uniformly distributed orders 0, 1/k, ..., (k − 1)/k, 1.
Thus, the partitioning by uniformly distributed hypothetical percentiles leads to the discrete alternative,
empirical and hypothetical distributions

p =
(
pj ≡ F

(
j

k

)
− F

(
j − 1
k

)
: 1 ≤ j ≤ k

)
, (4.22)

pn =
(
Fn

(
j

k

)
− Fn

(
j − 1
k

)
) : 1 ≤ j ≤ k

)
, (4.23)

p0 =
(
p0j ≡ F0

(
j

k

)
− F0

(
j − 1
k

)
=

1
k

: 1 ≤ j ≤ k
)

(4.24)

respectively. The disparities, divergences or distances Dφ(pn,p0) and Dφ(p0,pn) are given by the for-
mulas

Dφ(pn,p0) = k
k∑
j=1

φ (kpnj) for pnj ≡ Fn
(
j

k

)
− Fn

(
j − 1
k

)
(4.25)

and

Dφ(p0,pn) =
k∑
j=1

pnjφ

(
1

kpnj

)
for pnj ≡ Fn

(
j

k

)
− Fn

(
j − 1
k

)
(4.26)

where the latter is meaningful only if all pnj are positive.

The probability that all pnj are positive decreases when k increases and vanishes for k ≥ n + 1,
since there are only n observations, i.e. Fn has at most n jumps. Therefore the version (4.26) is not
used in the sequel and attention is restricted to the goodness-of-fit criteria (4.25) or their scaled versions
Tφ,n = mnDφ(pn,p0). All examples of statistics Tφ,n = mnDφ(pn,p0) given in previous sections are of
this type if their cells Cj are specified by the cutpoints (4.21).

4.2 Partitioning by empirical percentiles.

In this subsection we study the second possibility considered in (4.19). It takes place if the partition (4.8)
is defined by the same number of k + 1 cutpoints

0 = c0 < c1 < ... < ck−1 < ck = 1 (4.27)
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as in Subsection 4.1, but the first k of them are the empirical percentiles of the uniformly distributed
orders 0, 1/k, ..., (k − 1)/k, i.e.,

cj =

 Qn
(
j
k

)
, 0 ≤ j ≤ k − 1 for the e.p.f. Qn (c.f. (4.16))

1 for j = k
(4.28)

This formula is not a complete parallel to (4.21) of the previous subsection, because here the last cutpoint
is ck = 1 and not Qn (k/k) = Qn (1) = Yn < 1. (See in this respect Remark 4.2.1 below.) The cutpoints
formula simplifies when k divides n. Unless otherwise explicitly stated, we assume that

k = kn =
n

m
for m = mn = 1, 2, ... (cf. (4.20)). (4.29)

In accordance with the agreement above, the subscript n is suppressed in kn,mn and all expressions
involving kn,mn unless it is explicitly needed to display.

By the definitions of Fn, F0, under the assumption (4.29) the cutpoints formula (4.28) implies

cj = Qn

(
jm

n

)
= Yjm, so that, by the hypothesis of uniformity, F0(cj) = Yjm, 0 ≤ j ≤ k−1. (4.30)

Hence from (4.10) and (4.27) we get

pn =
(
pnj ≡ Fn (Yjm)− Fn

(
Y(j−1)m

)
=

1
k

: 1 ≤ j ≤ k + 1
)

(4.31)

because Fn (Ykm) ≡ Fn (Yn) = Fn (ck) ≡ 1, while from (4.11) and (4.27) we get

p0 =


(
p0j ≡ Yjm − Y(j−1)m : 1 ≤ j ≤ k

)
with

Ykm ≡ Yn replaced by Yn+1 = 1.
(4.32)

The replacement of Ykm ≡ Yn by Yn+1 = 1 in (4.32) is necessary, because ck−1 = Y(k−1)m but the last
cutpoint of (4.27) is ck = 1 and not Ykm ≡ Yn < 1, so that

F0 (Ykm) ≡ F0 (Yn) < F0 (ck) ≡ F0 (Yn+1) ≡ 1. (4.33)

Notice that under the assumption (4.29) the cutpoints formula (4.28) implies that each cell of the partition
of the interval contains exactly m observations.

The disparities, divergences or distances Dφ(pn,p0) and Dφ(p0,pn) of the distributions defined by
(4.31) and (4.32) are given by the formulas

Dφ(pn,p0) = Dφ∗(p0,pn) for φ∗(t) = tφ

(
1
t

)
on (0,∞) (4.34)

where

Dφ(p0,pn) =
k−1∑
j=1

1
k
φ
(
k(Yjm − Y(j−1)m)

)
+

1
k
φ
(
k(1− Y(k−1)m)

)
=

m

n

k∑
j=1

φ
( n
m

(Yjm − Y(j−1)m)
)

+
m

n
φ
( n
m

(1− Y(j−1)m)
)
. (4.35)

The version (4.34) leads to a too complicated formula in terms of the original function φ. Thus for
theoretical analysis as well as for practical applications it is more convenient to work with version (4.35).
The stochastic differences Yjm − Y(j−1)m are generally referred to as the m-spacings.

The disparities, divergences or distances (4.35) define the m-spacings based goodness-of-fit statistics

T
(m)
φ = T

(m)
φ,n = nDφ(p0,pn)

= m

k−1∑
j=1

φ
( n
m

(Yjm − Y(j−1)m)
)

+mφ
( n
m

(1− Y(k−1)m)
)
. (4.36)
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Remark 4.2.1 If in full analogy with (4.21) the cutpoint scheme (4.27, (4.28) is replaced by

cj = Qn

(
j

k

)
, 0 ≤ j ≤ k for the e.p.f. Qn (c.f. (4.16)

then ck = Yn < 1, so that the components p0j = F0(cj) − F0(cj−1) ≡ cj − cj−1 of the hypothetical
distribution p0 satisfy the strict inequality

k∑
j=1

p0j = ck = Yn < 1

i.e. they cannot be normalized to 1. This can be solved by adding the cutpoint ck+1 = 1 when the
collection of cutpoints

0 = c0 < c1 < ... < ck−1 < ck < ck+1 = 1

generates hypothetical and empirical distributions p0 and pn with k + 1 components, both normalized
to 1, but the last component of the empirical distribution is then

pn,k+1 = Fn(ck+1)− F0(ck) = Fn(1)− F0(Yn) ≡ 0,

so that the empirical distribution is not uniform. Nevertheless, for φ ∈ Φdiv the φ-divergences Dφ(p0,pn)
are well defined by the formula

Dφ(p0,pn) = Dφ(p0,pn) =
k∑
j=1

1
k
φ
(
k(Yjm − Y(j−1)m)

)
+ (1− Yn)φ∗(0) (4.37)

for the function φ∗(t) defined above (for details see e.g. Liese and Vajda (2006)). Thus the φ-divergences
with finite limit φ∗(0) = limt→∞ φ(t)/t define meaningful spacings-based divergence statistics

T
∗(m)
φ = T

∗(m)
φ,n = m

k∑
j=1

φ
( n
m

(Yjm − Y(j−1)m)
)

+ (1− Yn)φ∗(0). (4.38)

In what follows we would like to deal with more general statistics than just the divergence statistics, so
that as starting point we prefer the more universal statistics (4.36).

In the remaining sections we study the properties and applications of the simple-spacings based
variants

Tφ = Tφ,n =
n−1∑
j=1

φ (n(Yj − Yj−1)) + φ (n(1− Yn−1)) (4.39)

of the statistics T (1)
φ in (4.36), i.e. T (m)

φ when m = 1. We decompose them into representative parts
Rφ and an asymptotically vanishing parts Vφ as follows:

Tφ = Rφ + Vφ with Rφ =
n+1∑
j=1

φ (n (Yj − Yj−1)) , φ ∈ Φ (4.40)

and
Vφ = φ (n(1− Yn−1))− φ (n(Yn − Yn−1))− φ (n(1− Yn)) (4.41)

where we put as before Yn+1 = 1.
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Example 4.2.1 The power divergences Dα(p0,pn) of orders α ∈ R from Example 3.1.3 define spacings-
based statistic Tα = Tα,n obtained by inserting in (4.39) the generating power functions φα or φ̃α. For
example, the power divergence of order 2 with the generating function φ̃2(t) = (t− 1)2/2 given in (3.20)
defines the spacings-based statistic T2 = T2,n with the representative part

R2 = R2,n =
1
2

n+1∑
j=1

(n(Yj − Yj−1)− 1)2 =
n2

2

n+1∑
j=1

(
Yj − Yj−1 −

1
n

)2

. (4.42)

Obviously, this is a spacings-based version of the classical Pearson goodness-of-fit statistic

Tn = nD2(pn,p0) =
1
2
nχ2(pn,p0) (see (2.16)).

Similarly, the power divergence of order 0 with the generating function φ0(t) = − ln t from (3.15) defines
the spacings-based statistic T0 = T0,n with the representative part

R0 = R0,n = −
n+1∑
j=1

ln (n (Yj − Yj−1)) , (4.43)

which is nothing but a spacings-based version of the classical likelihood ratio goodness-of-fit statistic

Tn = nD0(p0,pn) = nD1(pn,p0) (see (3.11)).

5 Goodness-of-fit statistics based on spacings

5.1 Objectives of the following sections

This chapter is devoted to the systematic analysis of the disparity and divergence spacings statistics and
to their comparisons with the spacings statistics studied in the previous literature. The primary aim is to
show that while the motivation of the latter is not based on the concept of similarity between empirical
and hypothetical distributions, this idea is in fact hidden somewhere behind because they asymptotically
coincide with the former. Therefore the first objective is to prove the mutual asymptotic equivalence
of the disparity and divergence spacings statistics introduced in this chapter and the spacings statistics
known from the literature. This equivalence helps to understand why many ad hoc defined spacings-based
statistics exhibit desirable asymptotic properties. The secondary aim is to present in a relatively simple
unified manner the asymptotic properties of the many various types of spacings statistics studied in the
previous literature. Thus the second objective of this chapter is to prove the consistency and asymptotic
normality under fixed and local alternatives for a sufficiently wide variety of our spacings-type disparity or
divergence statistics. These results are important for applications of the spacings statistics in the testing
of goodness-of-fit, and they may also be useful in the estimation of functionals of the type of φ-disparity
or φ-divergence. The last aim is to apply this asymptotic theory to the spacings-based power divergence
statistics and compare their asymptotic parameters and properties for various divergence orders α ∈ R.
Therefore the third objective is the explicit evaluation of the asymptotic parameters of spacings-based
power divergence statistics and an analysis of their properties including their continuity in the parameter
α ∈ R. To achieve all these objectives within a reasonably limited space, we pay the main attention to
the simple spacings with m = 1 and, starting with Section 6, we deal exclusively with simple spacings.

It seems that the spacings-based goodness-of-fit test statistics given in the literature lacked sofar the
motivation of taking into account the notion of disparity between hypothetical and empirical distributions
p0 and pn. This contrasts with the goodness-of-fit statistics based on deterministic partitions specified
by the uniformly distributed constant cutpoints cj given in (4.21) and by the related random frequency
counts (4.23), where the typical statistics, including the most classical Pearson statistic T1 and likelihood
ratio statistic T0, can easily be recognized as appropriately scaled power divergences between p0 and pn.

The classical spacings-based statistics, however, appear to have been motivated rather by other con-
siderations such as the analytic simplicity of formulas and the possibility to achieve desired asymptotic
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properties. In fact, as pointed out by Pyke(1965) in his landmark paper, most of the classical spacings-
based statistics were proposed within the context of testing the randomness of events in time, in which
differences between successive order statistics (spacings) were considered to play an important role. Also,
in the period 1946-1953, when most of the classical tests based on spacings were proposed, research
focused mostly on studying the behavior of these tests under the null-hypothesis, rather than under an
alternative, making it unnecessary to motivate the test statistic from the point of view of divergence
or disparity. Although the concept of dispersion of spacings around the uniform distribution has been
mentioned as a motivation for a test statistic by some authors, all known spacings-based statistic are close
to the divergence statistic T (m)

φ of (4.36) or Tφ of (4.39) for some φ in Φdiv, but none of them happens
to be precisely equal to this divergence statistic. This situation is illustrated in the next examples for
the simple-spacings statistics Tφ = Tφ,n with φ ∈ Φ0 given by (4.40) as the sum Rφ + Vφ where the
representative terms

Rφ =
n+1∑
j=1

φ (n (Yj − Yj−1)) , φ ∈ Φ (5.1)

slightly differ from the statistics known from the literature, which are of the form

Sφ =
n+1∑
j=1

φ ((n+ 1)) (Yj − Yj−1)) , φ ∈ Φ (5.2)

where φ is often from the divergence subclass Φdiv ⊂ Φ. Hence the departure from the divergence
statistics is mainly the scaling of the spacings by n + 1 instead of n. A possible explanation for this
is suggested in the next example. We prove in the next section that the departure from the divergence
statistics as such is asymptotically negligible in the sense that the so-called asymptotically vanishing term

Vφ = φ (n(1− Yn−1))− φ (n(Yn − Yn−1))− φ (n(1− Yn)) (5.3)

really vanishes asymptotically and the modification of the scaling factor by n/(n + 1) is asymptotically
negligible.

Example 5.1.1 The first known statistic of the type (5.2) is

G =
n+1∑
j=1

(Yj − Yj−1)2 (5.4)

of Greenwood (1946) who devised it for testing the hypothesis that the intervals between successive events
in epidemiology are exponentially distributed. Obviously,

(n+ 1)2G = Sφ ≡
n+1∑
j=1

φ ((n+ 1)) (Yj − Yj−1)) (5.5)

for φ(t) = t2 from Φ. Therefore the Greenwood proposal was neither the divergence nor the disparity
spacing statistic. However, Irwin in the discussion of Greenwood (1946), and Kimball (1947) suggested
to replace G by the modification of the power divergence spacing statistic (4.42) defined by

K =
n+1∑
j=1

(
Yj − Yj−1 −

1
n+ 1

)2

=
2

(n+ 1)2

n+1∑
j=1

φ̃2 ((n+ 1)) (Yj − Yj−1)) (5.6)

for φ̃2(t) = (t− 1)2/2 from Φdiv generating the quadratic spacing statistics R2 in (4.42). The motivation
of the Irwin and Kimball statistic K may be deduced from the fact that for any real x1, x2, ..., xn+1

E

n+1∑
j=1

(Yj − Yj−1 − xj)2 ≥ E
n+1∑
j=1

(
Yj − Yj−1 −

1
n+ 1

)2
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and that the inequality is strict unless

E (Yj − Yj−1) =
1

n+ 1
for 1 ≤ j ≤ n+ 1

which in turn takes place if and only if F = F0. Therefore the minimal expected values of the Kimball
criterion K characterize the hypothesis F0 and the larger expected values are reserved for the alternatives
F 6= F0.

Example 5.1.2 Another classical spacing statistic which is a slight modification of the power divergence
spacings statistic (4.43) was defined by Moran (1951) as

M = Sφ0 = −
n+1∑
j=1

ln ((n+ 1) (Yj − Yj−1)) =
n+1∑
j=1

φ0 ((n+ 1) (Yj − Yj−1)) (5.7)

where φ0(t) = − ln t from Φdiv generated the logarithmic spacing statistics R0 in (4.43).

5.2 Types of statistics studied

As stated above, the analysis of the spacings-based disparity or divergence statistics generated by func-
tions φ ∈ Φ is in the rest of this chapter restricted to the case of the simple spacings with m = 1. In
the previous subsection we defined for these spacings three different statistics, viz. Tφ of (4.39), Rφ of
(5.1), and Sφ of (5.2). The first of these was obtained by application of the partition of the observation
space by n empirical percentiles of equidistant orders to the disparity or divergence Dφ(Fn, F0) of the
empirical and hypothetical distribution. The remaining two were modifications of Tφ representing the
spacing statistics from the pioneering work of Greenwood, Kimball and Moran. In the present subsection
some other modifications are introduced, which represent the spacing statistics known from the literature
subsequent to the mentioned pioneering work. Since those statistics generally used the m-spacings, we
return temporarily in this subsection to our disparity or divergence statistics T (m)

φ from (4.36) based on
m-spacings, in order to make the comparisons more realistic and credible.

Let us start with Del Pino’s (1979) class of statistics of the form

S
(m)
φ = m

k∑
j=1

φ

(
n+ 1
m

(Ymj − Ym(j−1))
)

(5.8)

where it is assumed that n + 1 is divisible by k and that m = (n + 1)/k ≥ 1. Here the notation in
our chapter is consistent in the sense that (5.8) reduces for m = 1 to the formula for Sφ in (5.2). Del
Pino found φ(t) = t2 to be optimal among the functions φ considered by him. The class (5.8) was
later investigated by Jammalamadaka et al. (1989) and many others. Jammalamadaka et al studied the
asymptotics of S(m)

φ for m tending slowly to infinity as n → ∞. In such case these asymptotics depend
only on the local properties of φ(t) in the neighborhood of t = 1, and in this regard a wide class of
functions φ can be admitted, including those with φ′′(1) = 0, so that they can be used for functions
which generate disparities or divergences. However, as we have seen in Examples 5.1.1 and 5.1.2 for some
φ ∈ Φdiv, the statistics (5.8) differ from those in (4.36). Other examples of well-known spacings-based
statistics which differ from our spacings-type φ-disparity statistics (4.36) will be given in the next section.
Therefore it is important to look at the problem whether the classical spacings-based statistics and our
spacings-type disparity statistics are asymptotically equivalent for n → ∞, and, if yes, then in what
precise sense.

Let us return to our spacings-type φ-disparity statistic T (m)
φ introduced in (4.36). Notice that T (m)

φ

cannot be efficient when m > 1, because then it ignores the observations Ymj+r for 1 ≤ j ≤ k − 1 and
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1 ≤ r ≤ m − 1. Shifting the orders j/k of the percentiles in (4.30) by a quantity depending on r, we
obtain the shifted empirical percentiles

c
(r)
j = F−1

n

(
mj + r

n

)
= Ymj+r, 1 ≤ j ≤ k − 1, 1 ≤ r ≤ m− 1 (5.9)

as cutpoints and, instead of p0j = Ymj − Ym(j−1) = p
(0)
0j , the shifted hypothetical probabilities p(r)

0j =

Ymj+r−Ym(j−1)+r, while still preserving the uniform shifted empirical probabilities p(r)
nj = 1/k = m/n on

the cells (c(r)j−1, c
(r)
j ], 1 ≤ r ≤ m− 1. Replacing each term φ( nm (Ymj − Ym(j−1))) in (4.36) by the average

1
m

m−1∑
r=0

φ
( n
m

(Ymj+r − Ym(j−1)+r)
)

(5.10)

of all φ(np(r)
0j /m) for 0 ≤ r ≤ m− 1, we get a potentially more efficient version of T (m)

φ , namely

T̂
(m)
φ =

n−m−1∑
j=0

φ
( n
m

(Yj+m − Yj)
)

+mφ
( n
m

(1− Yn−m)
)

(5.11)

which for m = 1 reduces to Tφ of (4.39), so that the notation of our chapter is again consistent.

A similar procedure can be carried out for S(m)
φ of (5.8), which involves the observations Ymj for

1 ≤ j ≤ k, but ignores the observations Ymj+r for 0 ≤ j ≤ k − 1 and 1 ≤ r ≤ m − 1. Applying the
averaging and substitution from the previous paragraph, with n replaced by n+ 1 in (5.8), and excluding
the terms containing undefined expressions (that is, the terms Ymk+r − Ym(k−1)+r, 1 ≤ r ≤ m− 1, where
mk + r > n+ 1 ), we get a similar possibly more efficient version

Ŝ
(m)
φ =

n−m+1∑
j=0

φ

(
n+ 1
m

(Yj+m − Yj)
)

(5.12)

of Del Pino’s statistic S(m)
φ of (5.8). Notice that if m = 1, then Ŝ

(m)
φ of (5.12) reduces to Sφ of (5.2)

above, so that our notation is in this sense still consistent. The statistics (5.12) are formally well defined
for all 1 ≤ m ≤ n, and not only for m = (n + 1)/k ≥ 1 corresponding to the integers 1 < k ≤ n + 1.
Cressie (1976, 1979), Hall (1986), and Ekström (1999) are among the authors dealing with the statistics
(5.12) for fixed m ≥ 1 and eventually also for m slowly tending to ∞ when n→∞.

In spite of the fact that, when carrying out our analysis above, we went through several important
papers (and many other ones listed in these as references), covering altogether four decades of research
on spacings-based statistics, we did not in this literature come across the framework of the statistics Sφ
and its modification Rφ when restricting ourselves to the simple spacings with m = 1. To make this
connection, take into account that if m > 1, and in particular if m→∞, then the statistics (5.12) assign
more weight to the central spacings than to those in the tails. To avoid this, Hall (1986) proposed to
wrap the observations Y1, Y2, ..., Yn around the circle of unit circumference and to define the m-spacings
Ym+j − Yj for arbitrary 1 ≤ m ≤ n and j as the distance between observations Yj and Yj+m on this
circle. This leads to the following two possible extensions of the ordered observations Y1, . . . , Yn.

(i) By the formula
Yn+j = 1 + Yj for j = 1, 2, ..., n (5.13)

where the previous dummy observation Y0 = 0 is suppressed and the other dummy observation Yn+1 = 1
is redefined in accordance with (5.13) by Yn+1 = 1 +Y1, leading to the m-spacing Yj+m−Yj to be equal
to 1 + Ym+j−n − Yj if n+ 1−m ≤ j ≤ n.

(ii) By the alternative formula

Yn+j = 1 + Yj−1 for j = 0, 1, · · · , n (5.14)

where the dummy observations Y0 = 0 and Yn+1 = 1 are placed on the circle as well, resulting in the
m-spacing Yj+m − Yj to be defined as 1 + Ym+j−n−1 − Yj if n+ 2−m ≤ j ≤ n.
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Both these extensions of the ordered observations Yj beyond j > n allow to add in (5.12) the tail evidence
missing there by adding to the substituted averages (5.10) also the previously excluded terms. Depending
on whether we use (5.13) or the alternative extension (5.14), we get in this manner two different extensions
of (5.12), namely

S̃
(m)
φ =

n∑
j=1

φ

(
(n+ 1)

Yj+m − Yj
m

)
where Yj+m = 1 + Yj+m−n (5.15)

if j = n+ 1−m, · · · , n, or

˜̃S(m)
φ =

n∑
j=0

φ

(
(n+ 1)

Yj+m − Yj
m

)
where Yj+m = 1 + Yj+m−n−1 (5.16)

if j = n+ 2−m, · · · , n, and Y0 = 0 (cf (5.14)).

The statistics from the class (5.15) were studied for example by Hall (1986) and Morales et al. (2003),
while those from the class (5.16) were investigated among others by Cressie (1978), Rao and Kuo (1984),
Ekström (1999) and Misra and van der Meulen (2001) and others cited there.

Recently Jimenez and Shao (2009) studied for convex functions φ the statistics

JS
(m)
φ = m

k∑
j=1

φ

(
n+ 1
m

(F (Ymj)− F (Ym(j−1))
)

for m,n such that n+ 1 is divisible by k and m = (n+ 1)/k ≥ 1. Under the hypothetic p.d.f.’s F (y) = y

considered in this chapter these statistics reduce to the statistic S(m)
φ of Del Pino’s (5.8).

As said above, this chapter deals only with the ordinary spacings where m = 1. We have seen that
then the statistic Tφ takes on the form presented in (4.39) and both S

(m)
φ of (5.8) and Ŝ

(m)
φ of (5.12)

reduce to the statistic

Sφ =
n+1∑
j=1

φ ((n+ 1) (Yj − Yj−1)) , where Yn+1 = 1 and Y0 = 0 (5.17)

introduced in (5.2). Consequently, JS(m)
φ reduces for m = 1 to Sφ too. It is easy to see that in this case

also ˜̃S(m)
φ of (5.16) reduces to Sφ. However, S̃(m)

φ of (5.15) does not do so unless φ is linear. Indeed, if

m = 1, S̃(m)
φ reduces to

S̃φ =
n−1∑
j=1

φ ((n+ 1) (Yj+1 − Yj)) + φ ((n+ 1) (Y1 + 1− Yn)) (5.18)

which coincides with

Sφ =
n−1∑
j=1

φ ((n+ 1) (Yj+1 − Yj)) + φ ((n+ 1)Y1) + φ ((n+ 1) (1− Yn)) (5.19)

only if
φ ((n+ 1)Y1) + φ ((n+ 1) (1− Yn)) = φ ((n+ 1) (Y1 + 1− Yn))

which takes place with a positive probability only for linear φ. It is to be noted that some of the results
described in this chapter follow from the papers dealing with general m-spacing statistics cited in this
and the following sections. Our simple proofs are to some extent based on the arguments established in
these papers.

In what follows we use the functions

φ(n)(t) = φ

(
n+ 1
n

t

)
(5.20)
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and, in addition to Tφ, Sφ, and Rφ (introduced in (5.1)), also the statistic S̃φ of (5.18). Moreover, we
study another new type of spacings-type disparity statistic denoted by T̃φ. To obtain it, we redefine
the partition Q = {(0, Y1], . . . , (Yn−2, Yn−1], (Yn−1, 1)} of (0, 1) given by (4.32) when m = 1. The new
partition Q′ of (0, 1) is obtained by rearranging the n intervals of the partition Q into n new intervals by
the rule

(0, Y1] 7→ (0, Y1] ∪ (Yn, 1) and (Yn−1, 1) 7→ (Yn−1, Yn] (5.21)

while keeping the remaining intervals (Yj−1, Yj ], 2 ≤ j ≤ n− 1, unaltered. This new partition Q′ leads
to the modified hypothetical distribution

p̃0 = (p̃01 = Y1 + 1− Yn, p̃02 = Y2 − Y1, . . . , p̃0n = Yn − Yn−1)

but preserves the original uniform empirical distribution pn on the cells, as each of the new n intervals
still contains exactly one of the observations Y1, . . . , Yn. Therefore the new partition leads to the new
spacings-type disparity statistic

T̃φ = nDφ (p̃0,pn) =
n∑
j=1

φ(np̃0j)

=
n∑
j=2

φ (n(Yj − Yj−1)) + φ (n(Y1 + 1− Yn)) (5.22)

which differs from Tφ of (4.39). Applying (5.20), we obtain the useful relations

S̃φ = T̃φ(n) and Sφ = Rφ(n) . (5.23)

In addition to the statistics Rφ, Sφ, S̃φ, Tφ, T̃φ, defined above in (5.1), (5.2) , (5.18), (4.39), and (5.22),
respectively, we use in this chapter also the auxiliary spacings-based statistics

R̃φ =
n−1∑
j=1

φ (n(Yj+1 − Yj)) = Rφ − φ(nY1)− φ (n(1− Yn)) (5.24)

investigated previously by authors neglecting the tail probabilities such as for example Hall (1984). Thus
we can conclude this subsection by introducing the sets

Uφ =
{
Rφ, R̃φ, Sφ, S̃φ, Tφ, T̃φ

}
, φ ∈ Φ (5.25)

of the spacings-based statistics of the special types introduced here and studied in the following sections.
The statistics from Uφ are representative in the sense that they cover all known spacings-based statistics
studied in the previous literature as special cases when the attention is restricted to the simple spacings.

The set Φ of differentiable functions φ : (0,∞) → R was introduced in the Subsection 3.1 by mild
additional conditions guaranteeing the existence of the integrals

Dφ(P, P0) =
∫
p0φ

(
p

p0

)
dλ (cf. (3.7))

called disparities in the wide sense, which were justified as measures of disparity, divergence or distance
only for φ from the subclasses Φdisp ⊃ Φdiv of Φ . On the other hand, the functions φ which defined
the statistics Uφ ∈ Uφ considered in the cited literature imposed on the functions φ : (0,∞) → R
usually somewhat different additional conditions, namely the continuity and the continuous second order
differentiability in the neighborhood of 1 with φ′′(1) 6= 0 and φ(1) = 0. Therefore in the sequel we study
the class of statistics

Uφ =
{
Rφ, R̃φ, Sφ, S̃φ, Tφ, T̃φ

}
, φ ∈ Φ0 (5.26)

where Φ0 is the set of all continuous functions φ : (0,∞) 7→ R which are twice continuously differentiable
in a neighborhood of 1 with φ′′(1) > 0 and φ(1) = 0. The replacement of Φ by Φ0 means no loss of
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generality and guarantees that the class (5.26) contains all disparity and divergence statistics Rφ, Sφ, S̃φ,
Tφ, T̃φ, defined above or, more generally, that

Φdiv⊂Φdisp ⊂ Φ0. (5.27)

For references later, we summarize the definition formulas

Rφ = Rφ,n =
n+1∑
j=1

φ (n (Yj − Yj−1)) (5.28)

Sφ = Sφ,n =
n+1∑
j=1

φ ((n+ 1) (Yj − Yj−1)) (5.29)

(e.g. Jammalamadaka et al. (1989), Jiménez and Shao (2009))

Tφ = Tφ,n =
n−1∑
j=1

φ (n(Yj − Yj−1)) + φ (n(1− Yn−1)) = nDφ(p0,pn) (cf. (4.36), (4.39)) (5.30)

R̃φ = R̃φ,n =
n∑
j=2

φ (n(Yj − Yj−1)) (5.31)

(e.g. Hall (1984), Cressie (1976) - (1979))

S̃φ = S̃φ,n =
n∑
j=2

φ ((n+ 1) (Yj − Yj−1)) + φ ((n+ 1) (Y1 + 1− Yn)) (5.32)

(e.g. Hall (1986), Morales et al. (2003))

T̃φ = T̃φ,n =
n∑
j=2

φ (n(Yj − Yj−1)) + φ (n(Y1 + 1− Yn)) = nDφ(p̃0,pn) (cf. (5.22)) (5.33)

where in all these formulas Y0 = 0, Yn+1 = 1 and

Yj = F0(Xn:j) for Xn:j ∼ F, 1 ≤ j ≤ n and H : F0. (5.34)

5.3 Structural spacings statistics

In this section and in the rest of this chapter we study the subclasses

Uφ =
{
Rφ, R̃φ, Sφ, S̃φ, Tφ, T̃φ

}
for φ ∈ Φ2 or φ ∈ Φ1 where Φ2 ⊂ Φ1 ⊂ Φ0 (5.35)

of the class (5.26) of statistics defined by (5.28) - (5.34). Here Φ1 ⊂ Φ0 is the subset of functions φ ∈ Φ0

for which there exist functions ξ, η, ζ : (0,∞) 7→ R satisfying the functional equation

φ(st) = ξ(s)φ(t) + ζ(t)φ(s) + η(s) (t− 1) for all s, t ∈ (0,∞). (5.36)

The narrower class Φ2 consists of all φ ∈ Φ1 which admit functions ξ, η, ζ : (0,∞) 7→ R satisfying the
stronger functional equation

φ(st) = ξ(s)φ(t) + φ(s) + η(s) (t− 1). (5.37)

Assertion 5.3.1 The functions ξ, ζ and η are continuous on (0,∞) and satisfy the relations

ξ(1) = ζ(1) = 1 and η(1) = 0. (5.38)
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Proof The continuity of ξ and η can be obtained by putting t = 2 and t = 3, and that of ζ by putting
s = 2 in (5.36). If we put s = 1 in (5.36) or (5.37) and use the assumption φ(1) = 0, then we obtain that
for all t ∈ (0,∞)

(ξ(1)− 1)φ(t) + η(1) (t− 1) = 0.

This contradicts the assumption φ′′(1) > 0, unless ξ(1) = 1 which implies also η(1) = 0. By putting t = 1
in (5.36) we find that ζ(1) = 1.

Assertion 5.3.2 Every φ ∈ Φ1 is differentiable on (0,∞), the corresponding functions ξ and η are
differentiable at 1, and for every t > 0

φ′(t) = ξ′(1)
φ(t)
t

+ φ′(1)
ζ(t)
t

+ η′(1)
t− 1
t

. (5.39)

Proof Putting s = 1 + ε and

ξ∗(ε) =
ξ(1 + ε)− ξ(1)

ε
, η∗(ε) =

η(1 + ε)− η(1)
ε

we obtain from (5.36) for every t > 0 and ε close to 0

t
φ(t+ εt)− φ(t)

εt
= ξ∗(ε)φ(t) +

φ(1 + ε)− φ(1)
ε

ζ(t) + η∗(ε) (t− 1). (5.40)

Since φ is differentiable in a neighborhood of 1, we have for t close to 1

ξ∗(ε)φ(t) + η∗(ε) (t− 1) = t φ′(t)− φ′(1) ζ(t) + o(ε) as ε→ 0.

By the assumptions concerning Φ, φ(t) is not linear in a neighborhood of t = 1. Therefore the last
relation implies that the limits of ξ∗(ε) and η∗(ε) for ε→ 0 exist, that is,

ξ∗(ε) = ξ′(1) + o(ε) and η∗(ε) = η′(1) + o(ε) as ε→ 0.

Now (5.39) follows from (5.40) for all t > 0.

Example 5.3.1 The function φ(t) = (1 − t)/t, t > 0, belongs to Φ and satisfies (5.37) for ξ(t) = 1/t
and η(t) ≡ 0. Therefore it belongs to Φ2 ⊂ Φ. The function φ(t) = (1 − t)2/t, t > 0, belongs to Φ
too and satisfies (5.37) for the same ξ(t) as above and η(t) = t − 1/t. Therefore it belongs to Φ2. The
functions defined on (0,∞) by

φα(t) =
tα ln t

(2α− 1)
, α ∈ R− { 1

2}

belong to Φ and satisfy (5.36) for ξ(t) = ζ(t) = tα and η(t) ≡ 0. Therefore

{φα : α ∈ R− { 1
2}} ⊂ Φ1

and φ0 ∈ Φ2. But φ1 satisfies also (5.37) for ξ(t) = t and η(t) = t ln t and therefore φ1 belongs to Φ2.

5.4 Organization of the following sections

The rest of the chapter deals with the asymptotic properties and applications of the classes of statis-
tics considered in (5.35). Let us mention briefly how the following sections are organized. Section 6
establishes the asymptotic equivalence of the statistics from the class Uφ =

{
Rφ, R̃φ, Sφ, S̃φ, Tφ, T̃φ

}
,

φ ∈ Φ1, and presents the general asymptotic theory of the structural statistics from the class Uφ ={
Rφ, R̃φ, Sφ, S̃φ, Tφ, T̃φ

}
, φ ∈ Φ2. Section 7 applies this theory to and makes it precise for the power

divergence statistics of Example 3.1.3 and comments on comparable results in the previous literature.
Section 8 presents a universal program for evaluation of power divergence spacings statistics and their
applications in testing the goodness-of-fit. Finally, Section 9 contains proofs of the assertions of Sections
6 and 7.
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6 Asymptotic properties of structural statistics

In the remainder of this chapter the observations are assumed to be distributed on (0, 1] in two possible
ways:

(i) under a fixed alternative,

(ii) under local alternatives.

Case (i) means that the observations are distributed by a fixed distribution function F ∼ f with f
positive and continuous on [0, 1]. Case (ii) means that the observations from samples of sizes n = 1, 2, . . .
are distributed by distribution functions

F (n)(x) = F0(x) +
Ln(x)

4
√
n

= x+
Ln(x)

4
√
n

(6.1)

on [0, 1], where the functions Ln : R 7→ R are continuously differentiable, with Ln(0) = Ln(1) = 0, and
with derivatives `n(x) = L′n(x) tending on [0, 1] to a continuously differentiable function ` : R 7→ R
uniformly in the sense that

sup
0≤x≤1

|`n(x)− `(x)| = o(1) as n→∞. (6.2)

The two possibilities (i) and (ii) are not mutually exclusive: their conjunction is “under the hypothesis
H0 ” where F (x) = F0(x), f(x) = f0(x) = I [0,1](x) and Ln(x) ≡ 0 on R for all n. This means that the
asymptotic results obtained under local alternatives for `(x) of (6.2) being identically equal to 0 must
coincide with the results obtained under the fixed alternative for F (x) = F0(x).

6.1 Asymptotic equivalence

The theorems below demonstrate that if φ ∈ Φ2 defines a φ-divergence or φ-disparity, then the statistics
Sφ, S̃φ, Rφ and R̃φ, which are formally not scaled φ-divergences or φ-disparities of the hypothetical and
empirical distributions F0 and Fn, share the most important statistical properties with the statistics
Tφ and T̃φ, which are scaled φ-divergences or φ-disparities of this type . Therefore they provide a key
argument for the thesis of the present chapter formulated in Section 2, that the spacings-based goodness-
of-fit statistics considered in the previous literature actually measure a disparity between the hypothetical
and empirical distributions F0 and Fn, although this was possibly not so intended by the various authors.
But the main purpose of the following theorems is to present a systematic asymptotic theory for the whole
set of statistics (5.35) and to demonstrate that the small modifications distinguishing these statistics from
one another are asymptotically negligible. The restriction to the functions from Φ2 or even Φ1 is not
essential – it only simplifies the proof of the next theorem.

Assertion 6.1.1. Consider the observations under fixed or local alternatives, and the set of statistics
{Rφ, R̃φ, Sφ, S̃φ, Tφ, T̃φ} defined in (5.1), (5.24), (5.2), (5.18), (4.39), and (5.22). If φ ∈ Φ1, then for any
statistic Uφ ∈ {Rφ, Sφ, S̃φ, Tφ}

Uφ − R̃φ = Op(1) as n→∞, (6.3)

and, if φ ∈ Φ2, then
Sφ −Rφ = εnRφ + δn and S̃φ − T̃φ = εn T̃φ + δn (6.4)

where εn = o(1) and δn = φ′(1) + o(1) as n→∞.

The proofs of this assertion and of the remaining ones of the chapter are deferred to Section 9.

6.2 Assumptions and notations

In this subsection we study the same spacings-type φ-disparity statistics Rφ, R̃φ, Sφ, S̃φ, Tφ and T̃φ, defined
by (5.1), (5.24), (5.2), (5.18), (4.39), and (5.22), for φ from Φ2 or Φ1 as in the previous subsection.
Unless otherwise explicitly stated, these statistics are assumed to be distributed under the fixed or local
alternatives introduced as case (i) and case (ii) in the beginning of this section .
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For every continuous function ψ : (0,∞) 7→ R we define the condition

lim
t→∞

t−α|ψ(t)| = lim
t↓0

tβ |ψ(t)| = 0 for some α ≥ 0 and β < 1 (6.5)

and the integral

〈ψ〉 = 〈ψ(t)〉 =
∫ ∞

0

ψ(t) e−t dt. (6.6)

Obviously, if (6.5) holds then 〈ψ〉 exists and is finite.

Let φ ∈ Φ1 satisfy (6.5) and let

ξ = ξφ, ζ = ζφ and η = ηφ (6.7)

be the corresponding functions satisfying the functional equation (5.36). Then all functions

ψ(t) = φ(ts)− φ(t) ζ(s), s > 0,

satisfy (6.5) too, and by (5.36) the linear combinations

ψ(t) = ξ(t)φ(s) + η(t) (s− 1), s > 0,

of functions ξ(t) and η(t) also satisfy (6.5). Since φ(s) is not linear in the neighborhood of s = 1, it
follows from here that ξ(t) and η(t) themselves satisfy (6.5). Therefore the integrals 〈ξ〉 and 〈η〉 exist and
are finite.

For the fixed alternatives F ∼ f we shall consider the linear combinations

µφ(f) = 〈ξ〉Dφ(F0, F ) + 〈φ〉Dζ(F0, F ) (6.8)

where

Dφ(F0, F ) =
∫ 1

0

f(x)φ
(

1
f(x)

)
dx (6.9)

and

Dζ(F0, F ) =
∫ 1

0

f(x)ζ
(

1
f(x)

)
dx (6.10)

are disparities of the distributions F0 and F , well defined by (4.1) under the present assumptions about
the densities f0 and f , and are finite. If φ(t) is convex on (0,∞), or φ(t)−φ′(1) (t−1) is monotone on (0, 1)
and (1,∞), then Dφ(F0, F ) is a nonnegative φ-divergence or φ-disparity of F0 and F . Similarly, if ζ(t) is
convex on (0,∞), or ζ(t)− ζ(1)− ζ ′(1) (t− 1) is monotone on (0, 1) and (1,∞), then the φ∗-divergence
or φ∗-disparity of F0 and F for

φ∗(t) = ζ(t)− ζ(1) = ζ(t)− 1 (cf (5.38))

satisfies the relation Dφ∗(F0, F ) = Dζ(F0, F )− 1. Hence the formula for µφ(f) can be written for every
φ ∈ Φ1 in the more intuitive form

µφ(f) = 〈ξ〉Dφ(F0, F ) + 〈φ〉 [Dφ∗(F0, F ) + 1] (6.11)

where ξ and φ∗ depend on φ as specified above, and Dφ(F0, F ), Dφ∗(F0, F ) are divergences or disparities
between the hypothesis F0 and the alternative F for typical φ ∈ Φ1. For φ ∈ Φ2 ⊂ Φ1 it holds that
ζ ≡ 1, so that (6.11) then simplifies to

µφ(f) = 〈ξ〉Dφ(F0, F ) + 〈φ〉. (6.12)

In particular for φ ∈ Φ2

µφ(f0) = 〈φ〉. (6.13)
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6.3 Consistency under H0 and fixed alternatives

Assertion 6.3.1 Consider the observations under a fixed alternative F ∼ f with f positive and con-
tinuous on [0, 1], and denote by Uφ any statistic from the class {Rφ, R̃φ, Tφ, T̃φ}. If φ ∈ Φ1 satisfies (6.5),
then

Uφ
n

p−→ µφ(f) for n→∞ (6.14)

where µφ(f) is given by (6.11). If φ ∈ Φ2 satisfies (6.5), then the asymptotic relation (6.14) remains valid
also for Uφ = S̃φ and Uφ = Sφ, and µφ(f) is given by the simpler formula (6.12).

Corollary 6.3.1 Under H0 (6.14)) reduces to

Uφ
n

p−→ µφ(f0) = 〈φ〉 =
∫ ∞

0

φ(t) e−t dt for n→∞ (6.15)

In the sequel we use the L2-norm

‖`‖ =
(∫ 1

0

`2(x) dx
)1/2

and we denote the integral (6.6) usually by 〈ψ(t)〉 rather than 〈ψ〉.

6.4 Asymptotic normality under local alternatives

Assertion 6.4.1 Consider the observations under the local alternatives (6.1) with a limit function `(x)
introduced in (6.2), and denote by Uφ any statistic from the set {Rφ, R̃φ, Sφ, S̃φ, Tφ, T̃φ}. If φ ∈ Φ2

satisfies the stronger version of (6.5) with β < 1/2 then

1√
n

(Uφ − nµφ) D−→ N(mφ(`), σ2
φ) as n→∞ (6.16)

where
µφ = 〈φ(t)〉, σ2

φ = 〈φ2(t)〉 − 〈φ(t)〉2 − (〈tφ(t)〉 − 〈φ(t)〉)2 (6.17)

and

mφ(`) =
‖`‖2

2
(
〈t2φ(t)〉 − 4〈tφ(t)〉+ 2〈φ(t)〉

)
. (6.18)

6.5 Asymptotic normality under fixed alternatives

Let us now consider the fixed alternative F ∼ f defined at the beginning of this section under (i), and
φ ∈ Φ2 with ξ = ξφ, η = ηφ, satisfying the functional equation (5.37), and denote by φ′, ξ′, η′ the
derivatives of φ, ξ, η as in Assertion 5.3.2. To express the asymptotic normality under this alternative,
we need auxiliary functions Ψi = Ψi,φ of the variable x ∈ (0, 1):

Ψ1(x) = ξ′(1) 〈φ(t)〉 f(x) ξ
(

1
f(x)

)
+ ξ′(1) f(x)φ

(
1

f(x)

)
+ [φ′(1)− η′(1)] f(x) + η′(1) (6.19)

Ψ2(x) =
(
〈φ2(t)〉 − 〈φ(t)〉2

)
f(x) ξ2

(
1

f(x)

)
+ f(x) η2

(
1

f(x)

)
+2(〈tφ(t)〉 − 〈φ(t)〉)f(x) ξ

(
1

f(x)

)
η

(
1

f(x)

)
, (6.20)

Ψ3(x) = (〈tφ(t)〉 − 〈φ(t)〉)
√
f(x) ξ

(
1

f(x)

)
+
√
f(x) η

(
1

f(x)

)
, (6.21)
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and also

Ψ4(x) =

√
f(x)
F (x)

∫ x

0

(
1− F (y) f ′(y)

f2(y)

)
Ψ1(y) dy (6.22)

when the alternative density has a continuous derivative f ′(x) on (0, 1).

Assertion 6.5.1 Consider the observations under the fixed alternative F ∼ f with f positive and
continuous on [0, 1] and continuously differentiable on (0, 1) with the derivative f ′ bounded. If Uφ is
a statistic from the set {Rφ, R̃φ, Sφ, S̃φ, Tφ, T̃φ}, and φ ∈ Φ2 satisfies the stronger version of (6.5) with
β < 1/2, then

1√
n

(Uφ − nµφ(f)) D−→ N(0, σ2
φ(f)) as n→∞ (6.23)

where µφ(f) is given by (6.12) and

σ2
φ(f) =

∫ 1

0

Ψ2(x) dx− 2
∫ 1

0

Ψ3(x) Ψ4(x) dx+
∫ 1

0

Ψ2
4(x) dx (6.24)

for Ψ2(x), Ψ3(x) and Ψ4(x) defined by (6.20) – (6.22).

Remark 6.5.1 Under the hypothesis F0 ∼ f0 ≡ 1 both Assertions 6.4.1 and 6.5.1 deal with the same sta-
tistical model. Therefore, if f = f0, the asymptotic parameters (µφ, σ2

φ) from (6.17) and (µφ(f0), σ2
φ(f0))

from (6.12) and (6.24) must be the same, that is, the equalities

µφ(f0) = 〈φ〉 and σ2
φ(f0) = 〈φ2〉 − 〈φ〉2 − (〈tφ(t)〉 − 〈φ〉)2

must hold. The first equality is clear from (6.13). For f = f0 we get from (9.62) by partial integration

Ψ1(y) = 〈tφ′(t)〉 = 〈tφ(t)〉 − 〈φ〉 for all y ∈ (0, 1).

Thus, by (6.22), Ψ4(x) is under the hypothesis constant, equal to 〈tφ(t)〉−〈φ〉. Similarly, by (6.20), (6.21)
and Assertion 5.3.1, Ψ2(x) = 〈φ2〉 − 〈φ〉2 and Ψ3(x) = Ψ4(x). Hence (6.24) implies the desired result

σ2
φ(f0) = Ψ2(x)− 2Ψ2

4(x) + Ψ2
4(x) = σ2

φ.

Remark 6.5.2 The expressions µφ, σ2
φ are well defined by (6.17) for every continuous function φ :

(0,∞) 7→ R satisfying the condition (6.5) with β < 1/2. If this condition holds for some function
ψ : (0,∞) 7→ R, then it holds also for all linear transformations φ(t) = aψ(t) + b(t− 1) + c and

µφ = aµψ + c, σ2
φ = a2σ2

ψ. (6.25)

Let us now consider a fixed alternative F ∼ f with the density continuously differentiable on (0, 1). Then,
using expression (9.52) for µφ(f), and (9.54)–(9.56) for s2i (f), the formulas

µφ(f) =
∫ 1

0

f(x)
〈
φ

(
t

f(x)

)〉
dx and σ2

φ(f) = s21(f) + s22(f) + s23(f) (6.26)

define µφ(f) and σ2
φ(f) for all continuously differentiable functions φ : (0,∞) 7→ R such that both φ(t)

and φ̃(t) = tφ′(t) satisfy (6.5) with β < 1/2. If ψ is one of the functions satisfying all these conditions
then all linear transformations φ(t) = aψ(t) + b(t− 1) + c satisfy these conditions too and

µφ(f) = aµψ(f) + c, σ2
φ(f) = a2σ2

ψ(f). (6.27)

Formulas (6.25) and (6.27) are verifiable from the definitions mentioned in this remark and are useful for
the evaluation of asymptotic means and variances.

Remark 6.5.3 We observe that the asymptotic results of Assertions 6.3.1, 6.4.1 and 6.5.1 are in each
case for a fixed φ the same for any statistic Uφ from the class of statistics considered, confirming the
asymptotic equivalence of these statistics.
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7 Asymptotic properties of power spacings statistics

7.1 Power spacing statistics

In the rest of this chapter we deal with and frequently refer to the statistics generated by the power
functions φ = φ̃α introduced in (3.20), (3.21) as nonnegative linear transforms of the simpler functions
φ = φα defined by (3.14), (3.15). In order to simplify the notations, we intrchange the symbols φα ←→ φ̃α,
i.e. we use the functions defined by

φα(t) =
tα − α(t− 1)− 1

α(α− 1)
if α /∈ {0, 1}, (7.1)

and otherwise by the corresponding limits

φ1(t) = t ln t− t+ 1 and φ0(t) = − ln t+ t− 1, (7.2)

and their simpler alternatives

φ̃α(t) =
tα − 1
α(α− 1)

for α /∈ {0, 1}, φ̃1(t) = t ln t, φ̃0(t) = − ln t. (7.3)

The rest of this chapter pays special attention to the subclass

Uα = {Rφα , R̃φα , Sφα , S̃φα , Tφα , T̃φα}, α ∈ R (7.4)

of the spacings-based structural disparity statistics studied in the previous section which are generated
by the power functions φ = φ α : (0,∞) 7→ R defined for all powers α ∈ R byas in (3.20), (3.21). It is
easy to verify that these functions belong to the subset Φ2, that is, they satisfy the functional equation
(5.37) with

ξ(t) = ξα(t) = tα and η(t) = ηα(t) =


tα−t
α−1 if α 6= 1

lim
α→1

tα−t
α−1 = t ln t if α = 1

(7.5)

In other words, if α ∈ R then

φα(st) = sαφα(t) + φα(s) + (t− 1) ·

{
sα−s
α−1 if α 6= 1

s ln s if α = 1
(7.6)

for all s, t > 0.

It is also easy to verify that the functions φ α, α ∈ R are convex, belong to Φdiv and define φ α-
divergences (or briefly, α-divergences). Referring to definitions (3.1) and (3.2), we introduce the following
simplified notation for these φ α-divergences:

Dα(p,p0) = Dφα(p,p0) =
1

α(α− 1)

 k∑
j=1

pαjp
1−α
0j −1

 = D1−α(p0,p) (cf. (3.4))

if α /∈ {0, 1} , and

D1(p,p0) = Dφ1(p,p0) =
k∑
j=1

pj ln
pj
p0j

= D0(p0,p)

otherwise. Similarly (cf. (3.2)),

D0(F0, F ) = Dφ0(F0, F )=
∫ 1

0

f ln
f

f0
dx =

∫ 1

0

f(x) ln f(x) dx, (7.7)

D1(F0, F ) = Dφ1(F0, F )=
∫ 1

0

f0 ln
f0
f

dx = −
∫ 1

0

ln f(x) dx, (7.8)

Dα(F0, F ) = Dφα(F0, F )=
1

α(α− 1)

(∫ 1

0

f

(
f0
f

)α
dx−1

)
=

1
α(α− 1)

(∫ 1

0

f(x)1−αdx−1
)

if α /∈ {0, 1}. (7.9)
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Similar to the corresponding φ α-divergences themselves, the φ α-divergence statistics Tφα , T̃φα and Sφα
are not altered if the nonnegative convex functions φ α ∈ Φ2 are replaced by the convex functions φα(t)
from Φ2 given by (7.3).

For references later we present formulas for selected statistis from the class (7.4). In the first set are
our true divergence alternatives

Tφα = Tφα,n =
1

α(α− 1)

nα
n−1∑
j=1

(Yj − Yj−1)α + (1− Yn−1)α

− n
 (7.10)

Tφ1 = Tφ1,n =
n−1∑
j=1

n(Yj − Yj−1) ln [n(Yj − Yj−1)] + n(1− Yn−1) ln [n(1− Yn−1)] (7.11)

Tφ0 = Tφ0,n = −
n−1∑
j=1

ln [n(Yj − Yj−1)]− ln [(1− Yn−1)] (7.12)

(cf. (5.30)). In the second set are the modified divergence statistics

Sφα = Sφα,n =
1

α(α− 1)

(n+ 1)α
n+1∑
j=1

(Yj − Yj−1)α − n− 1

 (7.13)

Sφ1 = Sφ1,n =
n+1∑
j=1

(n+ 1)(Yj − Yj−1) ln [n(Yj − Yj−1)] (7.14)

Sφ0 = Sφ0,n = −
n+1∑
j=1

ln [(n+ 1)(Yj − Yj−1)] (7.15)

(cf. (5.29)) extensively used in the literature (cf. Jammalamadaka et al. (1986), (1989), Misra and van
der Meulen (2001), Jiménez and Shao (2009) and others cited there). In the third set are again the true
divergence statistics

T̃φα = T̃φα,n =
1

α(α− 1)

nα
 n∑
j=2

(Yj − Yj−1)α + (Y1 + 1− Yn)α

− n
 (7.16)

T̃φ1 = T̃φ1,n =
n∑
j=2

n(Yj − Yj−1) ln [n(Yj − Yj−1)] + n(Y1 + 1− Yn) ln [n(Y1 + 1− Yn)] (7.17)

T̃φ0 = T̃φ0,n = −
n∑
j=2

ln [n(Yj − Yj−1)]− ln [n(Y1 + 1− Yn)] (7.18)

(cf. (5.33)) slightly different from those used by Hall (1986), Morales et al. (2003), Vajda and van der
Meulen (2006), Vajda (2007) and others cited there (they differ by the normalizing constant n instead of
n+ 1).

Example 7.1.1 For α = 2 we obtain the statistic

Sφ2 =
1
2

(n+ 1)2
n+1∑
j=1

(Yj − Yj−1)2 − (n+ 1)

 =
n+ 1

2
[(n+ 1)G − 1] (7.19)

where G is the Greenwood statistic of Example 5.1.1.

Since the general asymptotic theory of the statistics Uα ∈ Uα specified by (7.4) is covered by Assertion
5.3.2 and Assertions 6.3.1– 6.5.1, the assertions that follow in this section are basically their corollaries.
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However, they bring explicit formulas and additional important new results, the proofs of which are not
trivial. These proofs are partly based on a continuity theory for the asymptotic parameters

µα(f) = µφα(f), σ2
α(f) = σ2

φα(f), µα = µφα , σ
2
α = σ2

φα and mα(`) = mφα(`), (7.20)

defined by (6.26), (6.17) and (6.18), as functions of the structural parameter α ∈ R. Such a theory enables
us to avoid a direct calculation of the asymptotic parameters at some α0 ∈ R, if these calculations are
tedious and the asymptotic parameters are known at the neighboring parameters α. This theory is
summarized in Assertion 7.1.2 below using Assertion 7.1.1. In Assertion 7.1.2 we take the representations
(6.12) and (6.24) for µφα(f) and σ2

φα
(f) rather than (6.26).

Assertion 7.1.1 Let g(y) be a continuous positive function on a compact interval [a, b] ⊂ R and
Φ(u, v) a continuous function of variables u, v ∈ R. Furthermore let, for all α from an interval (c, d) ⊂ R,
ψα : (0,∞) 7→ R be convex or concave functions differentiable at some point t∗ ∈ (0,∞). If the values
ψα(t), t ∈ (0,∞), and the derivatives ψ′α(t∗) depend continuously on α ∈ (c, d), then for every α0 ∈ (c, d)

lim
α→α0

b∫
a

Φ(g, ψα(g)) dy =

b∫
a

Φ(g, ψα0(g)) dy. (7.21)

Assertion 7.1.2 The asymptotic parameters µα, σ2
α and mα(`), specified by (7.20), (6.17) and(6.18),

are continuous in the variable α ∈ (−1/2,∞). If the density f satisfies the assumptions of Assertion 6.3.1,
then the asymptotic mean µα(f) specified by (7.20) and (6.12) is continuous in the variable α ∈ (−1,∞).
If f satisfies the stronger assumptions of Assertion 6.5.1, then the asymptotic variance σ2

α(f) specified
by (7.20) and (6.24) is continuous in the variable α ∈ (−1/2,∞).

7.2 Consistency

In the assertion below and in the rest of the chapter, we use the gamma function of the variable α ∈ R
and the Euler constant,

Γ(α) =
∫ ∞

0

tα−1 e−t dt and γ = 0.577 . . . . (7.22)

Assertion 7.2.1 Consider the observations under the fixed alternative F ∼ f assumed in Assertion
6.3.1 and denote by Uα any statistic from the class Uα of (7.4). If α > −1, then

Uα
n

p−→ µα(f) as n→∞ (7.23)

for
µα(f) = Dα(F0, F ) Γ(α+ 1) + µα, (7.24)

where

µ0 = γ, µ1 = 1− γ, and µα =
Γ(α+ 1)− Γ(1)

α(α− 1)
for α /∈ {0, 1}, (7.25)

and Dα(F0, F ) are the φα-divergences (7.7)-(7.9). The φα-divergences are zero if and only if F = F0, so
that under the hypothesis H0 : F = F0

µα(f0) = µα, α ∈ R. (7.26)

Both parameters µα and µα(f) are continuous in the variable α ∈ (−1,∞) and satisfy the inequality
µα(f) ≥ µα, which is strict unless F = F0.

Since Γ(α+ 1) = α(α− 1) Γ(α− 1), (7.25) and (7.24) can be replaced for α /∈ {0, 1} by

µα = Γ(α− 1)− 1
α(α− 1)

and µα(f) = Γ(α− 1)
∫ 1

0

f1−α dx− 1
α(α− 1)

. (7.27)
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Assertion 7.2.1 can be illustrated by Table 7.2.1 , in which actual values of the parameters µα and µα(f)
are presented for selected parameters α. In this table, f denotes any density considered in Assertion
6.3.1, and the expressions for Dα(F0, F ), H(F0, F ), and χ2(F0, F ) can be easily discerned from those
used in Examples 3.1.1 and 3.1.3, thereby replacing P and P0 by F0 and F and sums by integrals.

Table 7.2.1 Values of µα and µα(f) for selected α > −1.

α µα µα(f)

− 1
2

4
3 (
√
π − 1) .= 1.030

√
πD−1/2(F0, F ) + µ−1/2 = 4

√
π

3

∫ 1

0
f3/2 dx− 4

3

0 γ
.= 0.577 D0(F0, F ) + µ0 =

∫ 1

0
f ln f dx+ γ

1
2 4− 2

√
π
.= 0.455 2

√
πH(F0, F ) + µ1/2 = 4− 2

√
π
∫ 1

0

√
fdx

1 1− γ .= 0.423 D1(F0, F ) + µ1 = 1− γ −
∫ 1

0
ln f dx

3
2

√
π − 4

3

.= 0.439 3
√
π

4 D3/2(F0, F ) + µ3/2 =
√
π
∫ 1

0
dx√
f
− 4

3

2 1
2 = 0.500 χ2(F0, F ) + µ2 =

∫ 1

0
dx
f −

1
2

5
2

√
π

2 −
4
15

.= 0.620 15
√
π

8 D5/2(F0, F ) + µ5/2 =
√
π

2

∫ 1

0
dx
f3/2 − 4

15

3 5
6

.= 0.833 6D3(F0, F ) + µ3 =
∫ 1

0
dx
f2 − 1

6

4 23
12

.= 1.917 24D4(F0, F ) + µ4 = 2
∫ 1

0
dx
f3− 1

12

7.3 Asymptotic normality under local alternatives

Assertion 7.3.1 Consider the observations under the local alternatives (6.1) with the limit function
`(x) introduced in (6.2), and denote by Uα any statistic from the class Uα of (7.4). If α > −1/2, then

1√
n

(Uα − nµα) D−→ N(mα(`), σ2
α) as n→∞ (7.28)

where the parameters µα, mα(`), and σ2
α are continuous in the variable α ∈ (−1/2,∞) , and are given

by (7.25) and the formulas

mα(`) =
‖`‖2

2
Γ(α+ 1) (7.29)

σ2
α =

Γ(2α+ 1)− (α2 + 1) Γ2(α+ 1)
α2(α− 1)2

for α /∈ {0, 1} (7.30)

and

σ2
0 =

π2

6
− 1, σ2

1 =
π3

3
− 3. (7.31)

Assertion 7.3.1 provides the possibility to compute and compare asymptotic relative efficiencies of
tests of the hypothesis H0 : F0 ∼ f0 based on the statistics Uα ∈ Uα, α > −1/2, for various values of α.
The Pitman asymptotic relative efficiency (ARE) of one test relative to another is defined as the limit of
the inverse ratio of sample sizes required to obtain the same limiting power at the sequence of alternatives
converging to the null hypothesis. If we define the “efficacies” of the statistics Uα ∈ Uα of Assertion 7.3.1
by

eff(Uα) =
Γ2(α+ 1)

σ2
α

=
(mα(`))2

σ2
α

(
2
‖`‖2

)2

for ‖`‖2 6= 0
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then under the assumptions of Assertion 7.3.1 we get in accordance with Section 4 in Del Pino (1979)

ARE(Uα1 , Uα2) =
eff(Uα1)
eff(Uα2)

where Uα1 and Uα2 are arbitrary statistics from Uα1 and Uα2 . Notice that arbitrary statistics Uα from
the set Uα, α fixed, all have the same efficacy (cf. also Remark 6.5.3). In Table 7.3.1 we present the
parameters mα(`), σ2

α and Γ2(α + 1)/σ2
α for selected values of α > −1/2. This table indicates that

the statistics U2 ∈ {Rφ2 , R̃φ2 , Sφ2 , S̃φ2 , Tφ2 , T̃φ2} are most asymptotically efficient in the Pitman sense
among all statistics Uα, α > −1/2. This extends the result on p. 1457 in Rao and Kuo (1984) about the
asymptotic efficiency of the Greenwood statistic G = (2Sφ2 +n+ 1)/(n+ 1)2 (cf. Example 5.1.1 (formula
(5.4)), Example 7.1.1 (formula (7.19)), and formula (7.46) below).

Table 7.3.1 The asymptotic parameters mα(`), σ2
α and eff(Uα)

for selected statistics Uα of Assertion 7.3.1.

α mα(`) σ2
α eff(Uα)

0 ‖`‖2
2

π2

6 − 1 .= 0.645 1.550
1
2 ‖`‖2

√
π

4

.= ‖`‖2
2 × 0.886 16− 5π .= 0.292 2.690

1 ‖`‖2
2

π2

3 − 3 .= 0.290 3.448
3
2 ‖`‖2 3

√
π

8

.= 1.329 32
3 −

13π
4

.= 0.457 3.871

2 ‖`‖2 = ‖`‖2
2 × 2 1 4.000

5
2 ‖`‖2 15

√
π

16

.= ‖`‖2
2 × 3.323 128

15 −
29π
16

.= 2.839 3.890

3 ‖`‖2 3 = ‖`‖2
2 × 6 10 3.600

4 ‖`‖2 12 = ‖`‖2
2 × 24 212 2.717

The general form of the asymptotic normality (7.28), as well as the continuity of the parameters µα,
mα(`) and σ2

α in α ∈ (−1/2,∞) established in Assertion 7.3.1 appear to be new results. The special
result for α = 0 also seems to be new. The particular result for α ∈ (−1/2,∞) − {0, 1} and Uα = Sφα
follows from the asymptotic normality obtained for the statistics

n+1∑
j=1

((n+ 1) (Yj − Yj−1))α = α(α− 1)Sφα + n+ 1 (7.32)

(cf. (7.47) below) by Del Pino, see p. 1062 in Del Pino (1979). The particular result for α = 1 and the
statistic U1 = Sφ1 with µ1 and σ2

1 given in Tables 7.2.1 and 7.3.1 was obtained previously by Misra and
van der Meulen (2001), who however considered m-spacings for arbitrary m ≥ 1. They compared also
the efficiency of the test statistics for α = 0, α = 1 and α = 2 with a similar conclusion as in Table 7.3.1.

7.4 Asymptotic normality under fixed alternatives

In this subsection we study the asymptotic distributions of the spacings-type power divergence statistics
Uα from the sets Uα = {Rφα , R̃φα , Sφα , S̃φα , Tφα , T̃φα} for α > −1/2 under the assumption that the
observations are distributed by a fixed alternative F ∼ f satisfying the assumptions of Assertion 6.5.1.
If α > −1/2 then φα satisfies the assumption of Assertion 6.5.1 too. Therefore this theorem implies that

1√
n

(Uα − nµα(f)) D−→ N(0, σ2
α(f)) for n→∞ (7.33)
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where the asymptotic parameters µα(f), σ2
α(f) are given by (7.20). Similarly as in the previous section,

we are interested in explicit formulas for these parameters. By Assertion 6.5.1, the asymptotic mean is
for all α ∈ R given by the explicit formula (7.24) presented in Assertion 7.2.1. The only problem which
remains is the formula for σ2

α(f), α ∈ R.

The functions ψα(t) = tα with α > −1/2 satisfy all assumptions of Remark 6.5.2 so that we can
consider the quantities

τ2
α(f) ≡ σ2

ψα(f), α ∈ (−1/2,∞)

defined there. By (6.27),

σ2
α(f) =

τ2
α(f)

α2(α− 1)2
for α ∈ (−1/2,∞)− {0, 1}. (7.34)

One can find on p. 521 of Hall (1984) an expression for τ2
α(f) for all α ∈ (−1/2,∞)−{0, 1}, which for

the case m = 1 can be given the form

τ2
α(f) = α2(α− 1)2

(
σ2
α

∫ 1

0

f1−2αdx+ Γ2(α+ 1) ∆α(F0, F )
)

(7.35)

where σ2
α is defined by formula (7.30) and

∆α(F0, F ) =
1
α2

∫ 1

0

(
1

(f(x))α
− 1
F (x)

∫ x

0

(f(y))1−αdy
)2

f(x) dx for α ∈ R− {0}. (7.36)

Since Hall (1984) gave no hint about the derivation of his formula, let us mention that (7.35) is obtained
if one substitutes ψα for φ in the expressions (9.54)– (9.56) below for s2j (f), j ∈ {1, 2, 3}, given in the
proof of Assertion 6.5.1 ( thereby employing the expression

G(x) = αE(Zα)
∫ x

0

(
1− Ff ′

f2

)
1

fα−1
dy

= Γ(α+ 1)
(

(α− 1)
∫ x

0

(f(y))1−αdy + (f(x))−αF (x)
)

for G(x) of (9.53) when φ is replaced by ψα ), and then forms the sum s21(f) + s22(f) + s23(f). By (7.34)
and (7.35),

σ2
α(f) = σ2

α

∫ 1

0

f1−2αdx+ Γ2(α+ 1) ∆α(F0, F ), α ∈ (−1/2,∞)− {0, 1}. (7.37)

The final, intuitively appealing, form of the asymptotic variance

σ2
α(f) = (1 + 2α(2α− 1)D2α(F0, F ))σ2

α + Γ2(α+ 1) ∆α(F0, F ) (7.38)

(with σ2
α(f0) = σ2

α given in (7.30)), follows for α ∈ (−1/2,∞)−{0, 1} by taking into account the formula
for D2α(F0, F ) obtained from (7.9). The peculiar expression ∆α(F0, F ) figuring in (7.36) and (7.38) can
be better understood if we take into account the following assertion, after which we extend (7.38) to
include also the values α ∈ {0, 1}.

Assertion 7.4.1 If the fixed alternative F ∼ f satisfies the assumptions of Assertion 6.5.1, then the
class {∆α(F0, F ) : α ∈ R− {0}} consists of the variances

∆α(F0, F ) =
∫ 1

0

(
f−α

α
−
∫ 1

0

f−α

α
f dy

)2

f dx

=
∫ 1

0

(
f−α

α

)2

f dx−
(∫ 1

0

f−α

α
f dx

)2

(7.39)
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of the functions f−α(X)/α of the random argument X distributed by F. This class is continuously
extended to all α ∈ R by introducing the variance

∆0(F0, F ) =
∫ 1

0

(
ln f −

∫ 1

0

(ln f) f dy
)2

f dx

=
∫ 1

0

f ln2 f dx−
(∫ 1

0

f ln f dx
)2

(7.40)

of the function ln f(X) of the random argument X introduced above. All ∆α(F0, F ), α ∈ R, are nonneg-
ative measures of divergence of F0 and F , reflexive in the sense that ∆α(F0, F ) = 0 if and only if F = F0.

We are now in a position to formulate the general results obtained in this chapter regarding the
asymptotic normality of spacings-type power divergence statistics Uα from the sets Uα =
{Rφα , R̃φα , Sφα , S̃φα , Tφα , T̃φα} for α > −1/2 under the assumption of the fixed alternative, thereby
specifying the parameters µα(f) and σ2

α(f) in (7.33) for all α > −1/2. Inspecting once more formula
(7.38), we observe that if α > −1/2 differs from 0 and 1, then the asymptotic variance σ2

α(f) under the
alternative f exceeds the asymptotic variance σ2

α = σ2
α(f0) achieved under the hypothesis F0 ∼ f0 by a

linear function of σ2
α given by

2α(2α− 1)D2α(F0, F )σ2
α + Γ2(α+ 1) ∆α(F0, F ) (7.41)

with the coefficients D2α(F0, F ) and ∆α(F0, F ) positive unless F = F0. By using Assertion 7.1.2, we
can now find the formulas for σ2

0(f) and σ2
1(f) which are missing in (7.37) by taking limits in (7.38) for

α → 0 and α → 1. Since the limits σ2
0 and σ2

1 were already calculated in Assertion 7.2.1, and the limit
∆0(F0, F ) is clear from Assertion 7.4.1, we obtain

σ2
0(f) = lim

α→0
σ2
α(f) = σ2

0 + ∆0(F0, F ) (7.42)

and

σ2
1(f) = lim

α→1
σ2
α(f) = (1 + 2D2(F0, F ))σ2

1 + ∆1(F0, F ) (7.43)

where (cf. (7.39))

∆1(F0, F ) =
∫ 1

0

1
f

dx− 1. (7.44)

Together with (7.37), (7.42) and (7.43) provide formulas for σ2
α(f) for all α > −1/2. It is clear that σ2

0(f)
and σ2

1(f) are of the form (7.38), so that the representation (7.38) holds for all α > −1/2. We summarize
our results as follows.

Assertion 7.4.2 If the alternative F ∼ f satisfies the assumptions of Assertion 6.5.1, then the asymp-
totic formula of (7.33) is valid for all α > −1/2. The asymptotic means µα(f) are given by the explicit
formulas (7.24) – (7.9). The asymptotic variances σ2

α(f) are given by (7.38), where the explicit formulas
for D2α(F0, F ) can be found in (7.7) – (7.9), those for σ2

α in (7.30) and (7.31), and the formulas for
∆α(F0, F ) in (7.39) and (7.40). The asymptotic means and variances are continuous in the variable
α ∈ (−1/2,∞). The asymptotic means satisfy the inequality µα(f) ≥ µα mentioned in Assertion 7.2.1.
The asymptotic variances satisfy the inequality σ2

α(f) ≥ σ2
α. Both inequalities become equalities if and

only if F = F0.

Concrete forms of µα(f) and σ2
α(f0) = σ2

α were illustrated in Tables 7.2.1 and 7.3.1. The next table
illustrates σ2

α(f) given by (7.38) for arbitrary f satisfying the assumptions of Assertion 6.5.1 and selected
values of α. In each line of Table 7.4.1 two expressions for σ2

α(f) are given: the first one is obtained by
substituting α in (7.38), the second one by actually calculating D2α(F0, F ) and ∆α(F0, F ) in each case
and putting the results in a closed form. As presumed, for f = 1 the illustrated values reduce to σ2

α from
Table 7.3.1 .
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Table 7.4.1: Asymptotic variances σ2
α(f) for selected α > −1/2.

α σ2
α(f)

0 σ2
0 + ∆0(F0, F ) = π2

6 − 1 +
∫ 1

0
f ln2 fdx −

(∫ 1

0
f ln f dx

)2

1
2 σ2

1
2

+ π
4 ∆ 1

2
(F0, F ) = 16− 4π − π

(∫ 1

0

√
f dx

)2

1 [1 + χ2(F0, F )]σ2
1 + ∆1(F0, F ) =

∫ 1

0
dx
f

(
π2

3 − 2
)
− 1

3
2 [1 + 6D3(F0, F )]σ2

3/2 + 9π
16 ∆3/2(F0, F ) =

∫ 1

0
dx
f2

(
32
3 − 3π

)
− π

4

(∫ 1

0
dx√
f

)2

2 [1 + 12D4(F0, F )σ2
2 + 4∆2(F0, F )] = 2

∫ 1

0
dx
f3 −

(∫ 1

0
dx
f

)2

3 [1 + 30D6(F0, F )]σ2
3 + 36∆3(F0, F ) = 14

∫ 1

0
dx
f5 − 4

(∫ 1

0
dx
f2

)2

7.5 Discussion

The general form of the asymptotic normality (7.33) established by Assertion 7.4.2, as well as the con-
tinuity of the asymptotic means and variances µα(f) and σ2

α(f) in the parameter α > −1/2 proved in
Assertion 7.1.2, and the explicit formulas (7.24) and (7.38) for these parameters for general α seem to be
new results. However, in the references cited in Subsections 5.1 and 5.2 one can find particular versions
of these results for some of the statistics Uα from the set {Rφα , R̃φα , Sφα , S̃φα , Tφα , T̃φα} or their linear
functions, and for some α > −1/2 and some distributions F ∼ f.

Let us start with the statistic Sφ0 proposed by Moran (1951), and denoted by M in Example 5.1.2
(equation(5.7)). The asymptotic normality (7.33) for α = 0, U0 = Sφ0 and f = f0 ≡ 1, with the
parameters µ0(f0) = µ0 and σ2

0(f0) = σ2
0 given in Tables 7.2.1 and 7.3.1, was proved by Darling (1953),

yielding specifically that under H0

1√
n

(M− nγ) D−→ N

(
0,
π2

6
− 1
)

as n→∞. (7.45)

The result of Darling was extended to all positively valued step functions f on [0, 1] by Cressie (1976),
who also obtained µ0(f) and σ2

0(f) given in Tables 7.3.1 and 7.4.1. The result of Cressie was extended by
van Es (1992) to the alternatives f considered in the present chapter which satisfy a Lipschitz condition
on [0, 1], and to all f considered in this chapter by Shao and Hahn (1995). Cressie(1976) and van Es(1992)
studied Sφ0 as the special case obtained for m = 1 from a more general statistic based on m-spacings
with m ≥ 1. Van Es extended ideas and methods developed for m > 1 by Vasicek (1976) and Dudewicz
and van der Meulen (1981) for proving the consistency and asymptotic normality of a spacings-based
estimator of entropy. The latter authors considered only φ(t) = − ln t.

Greenwood (1946) introduced the statistic

G =
n+1∑
j=1

(Yj − Yj−1)2 =
2Sφ2 + n+ 1

(n+ 1)2
, (7.46)

discussed in Examples 5.1.1 and 7.1.1. Kimball (1950) proposed the generalization

n+1∑
j=1

(Yj − Yj−1)α =
α(α− 1)Sφα + n+ 1

(n+ 1)α
, α > 0, (7.47)

and Darling (1953) proved an asymptotic normality theorem equivalent to (7.33) for Uα = Sφα , α ∈
(0,∞)−{1}, and f = f0 ≡ 1. Weiss (1957) extended this result of Darling to positive piecewise constant
densities f . Hall (1984) obtained the asymptotic normality

1√
n

(
Ũα − nα(α− 1)µα(f)− n

)
D−→ N(0, α2(α− 1)2σ2

α(f)) as n→∞ (7.48)
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for all statistics

Ũα =
n∑
j=2

(n(Yj − Yj−1))α

= α(α− 1) R̃φα − αn(1− Yn + Y1) + n+ α− 1

= α(α− 1) R̃φα + n+Op(1)

with α ∈ (−1/2,∞) − {0, 1} for any f considered in Assertion 7.4.2. Here µα(f) and σ2
α(f) are the

same as in Assertion 7.4.2, with µα(f) given by the right-hand side of (7.27) and σ2
α(f) by (7.38), R̃φα is

defined as in (5.24) with φ = φα, and the Op(1) statement follows from the proof of Assertion 6.1.1. In
fact, this result of Hall (1984) was one of the arguments used in the proof of Assertion 7.4.2.

The statistic Sφ1 was proposed by Misra and van der Meulen (2001), who proved the asymptotic
normality (7.33) for U1 = Sφ1 and any f considered in Assertion 7.4.2, with the parameters µ1(f) and
σ2

1(f) given in Tables 7.2.1 and 7.3.1, yielding the result

1√
n

(
Sφ1 − n

(
1− γ −

∫ 1

0

ln f dx
))

D−→ N

(
0,
∫ 1

0

(
π2

3
− 2
)

dx
f
− 1
)

(7.49)

as n → ∞. We see that the present Assertion 7.4.2 unifies and extends the results proved separately in
the literature in three different situations for two particular statistics from the set (7.4). The formulas for
all asymptotic parameters µα(f) and σ2

α(f) of the statistics Uα are shown to follow via the asymptotic
equivalence of these statistics (cf. Assertion 6.1.1) and the continuity of these parameters in α (cf.
Assertion 7.1.2) from Hall’s formula (cf. (7.48)) for the asymptotic parameters of Ũα with α ∈ (−1/2,∞)
different from 0 and 1.

8 Program for testing by power divergence statistics

Following three MATLAB based functions was proposed for evaluation of the statistics from section 7.
The statistic Tφα,n (denoted as function Tpdt) and given by (7.10) - (7.12).

function T = Tpdt(X, F0, alpha)
% This function compute the Goodness-of-fit statistic based on
% the power-divergences.
%
% Use: Tpdt(X, F0, {alpha})
% x row vector; observed data
% F0 string: hypothetical cumulative distribution distribution of vector x
% {alpha} number: from interval (-1/2, inf) order of power-divergence
% (optional, default = 2)
%
% Example: Tpdt(X, ’normal_cdf(x, 0, 1)’, 1.5)
eps = 1.E-4;
if (nargin<2), error(’Use: Tpdt(x, F0, {alpha})’); end
Xsize = size(X); if (Xsize(1)~=1), error(’The first parameter is not a row vector’); end
n = Xsize(2);
if (n<3), error(’The number of the observations is too small’); end
if (nargin<3), alpha = 2; end for (i=1:n)

x = X(i);
% small ’x’ is required in hypothetical cdf definition string F0

Y(i) = eval(F0);
end Y = [0 sort(Y) 1]; dY = diff(Y(1:n)); if (abs(alpha)<eps)
% equation 7.12

T = -sum(log(n*dY))-log(n*(1-Y(n)));
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elseif (abs(1-alpha)<eps)
% equation 7.11

T = log(n*dY)*(n*dY)’+log(n*(1-Y(n)))*n*(1-Y(n));
else
% equation 7.10

T = (sum((n*dY).^alpha)+(n*(1-Y(n)))^alpha-n)/alpha/(alpha-1);
end return

The statistics Sφα,n (denoted as Spdt) and given by (7.13) - (7.15).

function S = Spdt(X, F0, alpha)
% This function compute the Goodness-of-fit statistic based on
% the power-divergences.
%
% Use: Spdt(X, F0, {alpha})
% x row vector; observed data
% F0 string: hypothetical cumulative distribution distribution of vector x
% {alpha} number: from interval (-1/2, inf) order of power-divergence
% (optional, default = 2)
%
% Example: Spdt(X, ’normal_cdf(x, 0, 1)’, 1.5)
eps = 1.E-4;
if (nargin<2), error(’Use: Spdt(X, F0, {alpha})’); end
Xsize = size(X);
if (Xsize(1)~=1), error(’The first parameter is not a row vector’); end
n = Xsize(2);
if (n<3), error(’The number of the observations is too small’); end
if (nargin<3), alpha = 2; end
for (i=1:n)

x = X(i);
% small ’x’ is required in hypothetical cdf definition string F0

Y(i) = eval(F0);
end
Y = [0 sort(Y) 1];
dY = diff(Y);
if (abs(alpha)<eps)
% equation 7.15

S = -sum(log((n+1)*dY));
elseif (abs(1-alpha)<eps)
% equation 7.14

S = log((n+1)*dY)*((n+1)*dY)’;
else
% equation 7.13

S = (sum(((n+1)*dY).^alpha)-n-1)/alpha/(alpha-1);
end
return

The statistics T̃φα,n (denoted as TWpdt) and given by (7.16) - (7.18).

function TW = TWpdt(X, F0, alpha)
% This function compute the Goodness-of-fit statistic based on
% the power-divergences.
%
% Use: TWpdt(X, F0, {alpha})
% x row vector; observed data
% F0 string: hypothetical cumulative distribution distribution of vector x
% {alpha} number: from interval (-1/2, inf) order of power-divergence
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% (optional, default = 2)
%
% Example: TWpdt(X, ’normal_cdf(x, 0, 1)’, 1.5)
eps = 1.E-4;
if (nargin<2), error(’Use: TWpdt(X, F0, {alpha})’); end
Xsize = size(X);
if (Xsize(1)~=1), error(’The first parameter is not a row vector’); end
n = Xsize(2);
if (n<3), error(’The number of the observations is too small’); end
if (nargin<3), alpha = 2; end
for (i=1:n)

x = X(i);
% small ’x’ is required in hypothetical cdf definition string F0

Y(i) = eval(F0);
end
Y = [0 sort(Y) 1];
dY = diff(Y(2:n+1));
if (abs(alpha)<eps)
% equation 7.18

TW = -sum(log(n*dY))-log(n*(Y(2)+1-Y(n+1)));
elseif (abs(1-alpha)<eps)
% equation 7.17

TW = log(n*dY)*(n*dY)’+log(n*(Y(2)+1-Y(n+1)))*n*(Y(2)+1-Y(n+1));
else
% equation 7.16

TW = (sum((n*dY).^alpha)+(n*(Y(2)+1-Y(n+1)))^alpha-n)/alpha/(alpha-1);
end
return

The input parameters of all functions are row vector of observed data X, string definition of hypo-
thetical d.f. F0 and power-divergence order alpha. The mixed generalized lambda model for crabs and
horses data from section 1. was tested by all 3 statistics for alpha ∈ (−0.4, 3). The results of tests are
presented in figures 8.1 and 8.2 with 95% significance critical value using the asymptotic normality given
in Assertion 7.3.1.

Figure 8.1 statistics Tφα,n, Sφα,n, T̃φα,n, α ∈ (−0.4, 3) for data from table 1.1

9 Appendix

Proofs of the assertions stated in this chapter above can be found in Vajda and van der Meulen (2010).
They are presented here for the sake of completness.

44



9.1 Proofs for structural spacings statistics

Proof of Assertion 6.1.1 We shall consider the fixed alternative F (x) with a continuous density
f(x) > 0 for 0 ≤ x ≤ 1. For the local alternatives the argument is similar. By inspecting the definitions
of Tφ, T̃φ and Rφ we see that for (6.3) it suffices to prove that as n→∞

φ(np01) = Op(1) and φ(n(p01 + p02)) = Op(1). (9.50)

It is known (see for example page 208 in Hall (1986)) that p01 = F−1(Z1/Wn+1) and p01 + p02 =
F−1((Z1 +Z2)/Wn+1), where Z1, . . . , Zn+1 are independent standard exponential variables and Wn+1 =
Z1 + · · ·+ Zn+1, so that, for n→∞,

Wn+1

n

p−→ 1 and Vn =
Z1

Wn+1

p−→ 0.

Setting

Υn =
F−1(Vn)

Vn
=
F−1(Vn)− F−1(0)

Vn

and using the mean value theorem and the assumed continuity of f in the neighborhood of 0, we find
that

Υn
p−→ 1

f(0)
as n→∞

where, by assumptions about f , 0 < f(0) <∞. Thus

np01 =
n

Wn+1
Z1 Υn

and, by applying (5.36),

φ(np01) = ξ

(
n

Wn+1

)
φ(Z1 Υn) + ζ(Z1 Υn)φ

(
n

Wn+1

)
+ η

(
n

Wn+1

)
(Z1 Υn − 1).

Since Z1 Υn = Op(1) as n→∞, we obtain from Assertion 5.3.1

φ(np01) =
[
ξ

(
n

Wn+1

)
+ φ

(
n

Wn+1

)
+ η

(
n

Wn+1

)]
Op(1)

= [ξ(1) + φ(1) + η(1) + op(1)]Op(1)
= Op(1) (cf (5.38)),

thus proving the first relation of (9.50). Replacing Vn = Z1/Wn+1 by Vn = (Z1 + Z2)/Wn+1, and using
the fact that now

(Z1 + Z2) Υn = (Z1 + Z2)
F−1(Vn)− F−1(0)

Vn
= Op(1)
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we obtain the second relation of (9.50). Next we prove (6.4). From (5.37) we get for any p > 0

φ((n+ 1) p) = ξ

(
n+ 1
n

)
φ(np) + φ

(
n+ 1
n

)
+ η

(
n+ 1
n

)
(np− 1)

so that

φ((n+ 1) p)− φ(np) = εnφ(np) + φ

(
n+ 1
n

)
+ η

(
n+ 1
n

)
(np− 1) (9.51)

where εn = ξ((n + 1)/n) − 1 = o(1) as n → ∞ by Assertion 5.3.1. Replacing p by the probabilities
p0j = Yj − Yj−1 figuring in the definitions of Sφ and Rφ (cf. (5.2) and (5.1)), and summing over
1 ≤ j ≤ n+ 1, we get the equality

Sφ −Rφ = εnRφ + δn

for

δn = (n+ 1)φ
(
n+ 1
n

)
− η

(
n+ 1
n

)
=

n+ 1
n

φ
(
1 + 1

n

)
− φ(1)

1
n

− η
(
n+ 1
n

)
.

By Assertion 5.3.1,
δn = φ′(1) + o(1) as n→∞.

This completes the proof of the first relation in (6.4). The proof of the second relation is the same: we
just replace p in (9.51) by the probabilities p̃0j figuring in the definition (5.22) of T̃φ.

Proof of Assertion 6.3.1 By Theorem 1 of Hall (1984), the statistic R̃φ defined by (5.24) satisfies
under a fixed alternative F ∼ f the relation

R̃φ
n

p−→ µ̃φ(f) =
∫ 1

0

f2(x)
(∫ ∞

0

φ(t) e−tf(x)dt
)

dx as n→∞

provided φ : (0,∞) 7→ R is continuous and exponentially bounded in the sense that |φ(t)| ≤ K(tα + t−β)
for some K > 0, α ≥ 0, β < 1, and f is bounded, piecewise continuous, and bounded away from 0 (see
also part (i) of Theorem 3.1 in Misra and van der Meulen (2001)). Thus (6.14) is proved for Uφ = R̃φ as
soon as it is shown that for φ ∈ Φ1 the limit µ̃φ(f) coincides with µφ(f). By substituting s for tf(x) in
the last integral, and using the assumption 0 < f(x) <∞ and the functional equation (5.36),

µ̃φ(f) =
∫ 1

0

f(x)
(∫ ∞

0

φ

(
s

f(x)

)
e−sds

)
dx (9.52)

=
∫ 1

0

f(x)
(∫ ∞

0

[
ξ(s)φ

(
1

f(x)

)
+ ζ

(
1

f(x)

)
φ(s) + η(s)

(
1

f(x)
− 1
)]

e−sds
)

dx

= µφ(f) +
∫ ∞

0

η(s) e−s ds
∫ 1

0

(1− f(x)) dx = µφ(f).

The extension of (6.14) to Uφ ∈ {Tφ, T̃φ, Rφ} follows from Assertion 6.1.1. For φ ∈ Φ2 the extension of
(6.14) to Uφ ∈ {Sφ, S̃φ} follows from Assertion 6.1.1 too.

Proof of Assertion 6.4.1 For Uφ = Sφ the relations (6.16) – (6.18) follow from the result of Kuo and
Rao (1981), cf. also Del Pino (1979) and Theorem 3.2 in Misra and van der Meulen (2001). The extension
to the remaining statistics Uφ follows from Assertion 6.1.1.
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Proof of Assertion 6.5.1 Consider Uφ = R̃φ for φ ∈ Φ2. By Assertion 5.3.2, φ(t) has a continuous
derivative φ′(t) on (0,∞). By (5.39), for every c ∈ R

tc|φ′(t)| ≤ |ξ′(1)| tc−1|φ(t)|+ |φ′(1)| tc + |η′(1)| tc−1|t− 1|.

Thus if φ satisfies (6.5) with β < 1/2 then there exists α ≥ 0 such that

lim
t→∞

t−α|φ′(t)| = lim
t↓0

t1+β |φ′(t)| = 0.

This means that under the assumptions of Assertion 6.4.1 there exist c > 0, K > 0 and b < 1/2 such
that for every t ∈ (0,∞)

|φ(t)| ≤ K(ta + t−b) and |φ′(t)| ≤ K(ta + t−b−1).

For continuously differentiable functions φ satisfying these assumptions, and fixed alternatives with den-
sities f continuously differentiable on (0, 1), it follows from Theorem 2 in Hall (1984) (cf. also part (ii)
of Theorem 3.1 in Misra and van der Meulen (2001)) that Uφ = R̃φ satisfies the relation

1√
n

(Uφ − nµ̃φ(f)) D−→ N(0, σ̃2
φ(f)) for n→∞

where: (1) the asymptotic mean µ̃φ(f) was presented and proved to be equal to µφ(f) in the proof
of Assertion 6.3.1 under assumptions weaker than here and, (2) the asymptotic variance σ̃2

φ(f) can be
specified by means of the standard exponential variable Z and the auxiliary function

G(x) =
∫ x

0

(
1− F (y) f ′(y)

f2(y)

)
E

[
Z φ′

(
Z

f(y)

)]
dy, 0 < x < 1, (9.53)

as the sum of

s21(f) =
∫ 1

0

(
Eφ2

(
Z

f(x)

)
−
[
Eφ

(
Z

f(x)

)]2)
f(x) dx (9.54)

s22(f) = −2
∫ 1

0

E

[
(Z − 1)φ

(
Z

f(x)

)]
G(x)
F (x)

f(x) dx (9.55)

and

s23(f) =
∫ 1

0

(
G(x)
F (x)

)2

f(x) dx. (9.56)

It remains to be proved that for every x ∈ (0, 1)(
E φ2

(
Z

f(x)

)
−
[
E φ

(
Z

f(x)

)]2)
f(x) = Ψ2(x), (9.57)

E

[
(Z − 1)φ

(
Z

f(x)

)]√
f(x) = Ψ3(x) (9.58)

and
G(x)

√
f(x)

F (x)
= Ψ4(x). (9.59)

Indeed, then σ̃2
φ(t) = σ2

φ(f) so that (6.23) is proved for Uφ = Rφ, and the extension of (6.23) to the
remaining statistics Uφ ∈ {R̃φ, Sφ, S̃φ, Tφ, T̃φ} follows from Assertion 6.1.1. We shall prove (9.57) – (9.59)
in the reversed order. By substituting t = Z/f(y) in (5.39) and taking into account that ζ(t) ≡ 1 we
obtain

E

[
Zφ′

(
Z

f(y)

)]
= f(y)E

[
ξ′(1)φ

(
Z

f(y)

)
+ φ′(1) + η′(1)

(
Z

f(y)
− 1
)]

= f(y)
[
ξ′(1)E φ

(
Z

f(y)

)
+ φ′(1) + η′(1)

(
1

f(y)
− 1
)]
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and, by putting s = 1/f(x) and t = Z in (5.37), we get

φ

(
Z

f(x)

)
= φ(Z) ξ

(
1

f(x)

)
+ φ

(
1

f(x)

)
+ η

(
1

f(x)

)
(Z − 1). (9.60)

Therefore

E φ

(
Z

f(x)

)
= 〈φ〉ξ

(
1

f(x)

)
+ φ

(
1

f(x)

)
(9.61)

and, consequently,

E

[
Z φ′

(
Z

f(y)

)]
= Ψ1(y). (9.62)

This, together with the definitions of Ψ4(x) and G(x) in (6.22) and (9.53), implies (9.59). Further, from
(9.60) and the definition of Ψ3(x) in (6.21) we get (9.58). Finally, from (9.60), (9.61) and the definition
of Ψ2(x) in (6.20) we obtain (9.57) which completes the proof.

9.2 Proofs for power spacings statistics

Proof of Assertion 7.1.1 By the assumptions about g,

t0 = min
y∈[a,b]

g(y) > 0 and t1 = max
y∈[a,b]

g(y) <∞.

If ψα(t) is convex, then for every t ∈ [t0, t1] and α ∈ (c, d)

ψ′α(t∗) (t− t∗) ≤ ψα(t) ≤ ψα(t0) + ψα(t1).

If ψα(t) is concave, then, similarly,

ψα(t0) + ψα(t1) ≤ ψα(t) ≤ ψ′α(t∗) (t− t∗).

Therefore in both cases

max
t0≤t≤t1

|ψα(t)| ≤ max {|ψα(t0) + ψα(t1)|, |ψ′α(t∗)| · |t1 − t0|} .

The assumed continuity of ψ′α(t∗) and ψα(t0) + ψα(t1) in the variable α ∈ (c, d) implies that for all
compact neighborhoods N ⊂ (c, d) of α0 the constant

k = sup
α∈N

max
t0≤t≤t1

|ψα(t)| = sup
α∈N

max
y∈[a,b]

|ψα(g(y))|

is finite. Put
K = max

[t0,t1]×[−k,k]
Φ(u, v).

The function |Φ(g, ψα(g))| of variables (y, α) ∈ [a, b] × (c, d) is bounded on [a, b] ×N by K < ∞. Since
for every y ∈ [a, b]

lim
α→α0

Φ(g, ψα(g)) = Φ(g, ψα0(g)),

the Lebesgue dominated convergence theorem for integrals implies (7.21).

Proof of Assertion 7.1.2 Since µα = µα(f0) and σ2
α = σ2

α(f0), where the hypothetical density f0
satisfies the assumptions of Assertions 6.3.1 and 6.5.1, the continuity of µα and σ2

α follows from the
continuity of µα(f) and σ2

α(f) proved below. By (7.20) and (6.18),

mα(`) =
‖`‖2

2
(
〈t2φα(t)〉 − 4〈tφα(t)〉+ 2〈φα(t)〉

)
where φα is given by (3.20), (3.21), and, by (6.6),

〈tjφα(t)〉 =
∫ ∞

0

tjφα(t) dH(t), j ∈ {0, 1, 2} (9.63)
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for H(t) = 1−e−t. All integrals (9.63) are finite if and only if α ∈ (−1,∞). Further, for every fixed t > 0

d
dα

αφα(t) ≥ 0 at any α ∈ R. (9.64)

Hence the continuity of the products α〈tjφα(t)〉 in the variable α ∈ R follows from the monotone con-
vergence theorem for integrals, and this implies also the desired continuity of the integrals (9.63) at any
α ∈ (−1,∞)− {0}. Further, for every fixed t > 0

d
dα

(α− 1)φα(t) ≥ 0 for any α ∈ R. (9.65)

Hence the continuity of the products (α − 1) 〈tjφα(t)〉 in the variable α ∈ R follows as well from the
monotone convergence theorem for integrals. Similarly as above, this implies the continuity of the integrals
(9.63) at the remaining point α = 0. Further, by (7.20) and (6.12),

µα(f) = 〈ξα〉Dα(F0, F ) + 〈φα〉

where, by (6.6) and (7.5)

〈ξα〉 =
∫ ∞

0

tαdH(t) and 〈φα〉 =
∫ ∞

0

φα(t) dH(t).

These integrals are finite if and only if α ∈ (−1,∞). The continuity of 〈φα〉 at α ∈ (−1,∞) was proved
above, the continuity of Dα(F0, F ) at α ∈ R follows from the assumptions about the densities f0 and f
and from Proposition 2.14 in Liese and Vajda (1987). The continuity of 〈ξα〉 at α ∈ (−1,∞) follows from
the monotone convergence theorem for integrals applied separately to the integration domains (0, 1) and
(1,∞). Finally, let us consider σ2

α(f) defined by (6.19) – (6.24) for φ = φα, ξ = ξα, and η = ηα given by
(3.20), (3.21) and (7.5). The integrals 〈tφα(t)〉, 〈φα(t)〉 and 〈φ2

α(t)〉 are finite if and only if α ∈ (−1/2,∞),
and their continuity at α ∈ (−1/2,∞) was either proved above or can be proved similarly as above. The
continuity of the integral ∫ 1

0

[
fξ2α

(
1
f

)
+ fη2

α

(
1
f

)]
dx

at α ∈ (−1/2,∞) follows from Assertion 7.1.1, which establishes the continuity of the component∫
Ψ2(x) dx of σ2

α(f) in (6.24). For the continuity of the remaining two components, we take into account
that F (x) > c1x for some c1 > 0 on [0, 1], because f is bounded away from zero on [0, 1]. Furthermore,
both f(x) and f ′(x) are bounded on [0, 1], so that there exists a constant c2 such that in (6.22)√

f(x)
F (x)

∫ x

0

∣∣∣∣1− F (y) f ′(y)
f2(y)

∣∣∣∣dy < c2 for all x ∈ [0, 1]. (9.66)

Using the function ϕα(t) = αφα(t), which is for every t > 0 continuous and monotone in α ∈ R (cf.
(9.64)), we obtain from (6.19)

Ψ1(x) = α〈φα〉 f(x)1−α + f(x)ϕα

(
1

f(x)

)
+ 1− f(x)

where the right-hand side is bounded on [0, 1], locally uniformly in α, and continuous at any α ∈ R. By
(6.22) and (9.66), this implies that also Ψ4(x) is bounded on [0, 1], locally uniformly in α, and continuous
at any α ∈ R. Since the integrands in∫ 1

0

[√
fξα

(
1
f

)
+
√
fηα

(
1
f

)]
Ψ4 dx and

∫ 1

0

Ψ2
4 dx

are continuous on [0, 1] and locally bounded in the variable α ∈ R, the continuity of both these integrals in
the variable α ∈ R follows from the Lebesgue dominated convergence theorem for integrals. This clarifies
the continuity of the second and third component of σ2

α(f) in (6.24) and thus completes the proof.
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Proof of Assertion 7.2.1 The functions from the class {φα : α ∈ (−1,∞)} ⊂ Φ2 satisfy all assump-
tions of Assertion 6.3.1. Hence (7.23) holds for all α > −1 and the limit µα(f) is given in accordance
with (6.12) and (7.5) by the formula

µα(f) = 〈ξα(t)〉Dα(F0, F ) + 〈φα(t)〉 = 〈tα〉Dα(F0, F ) + 〈φα(t)〉

where 〈tα〉 = Γ(α+ 1) for all α ∈ R. If α /∈ {0, 1} then

〈φα(t)〉 =
1

α(α− 1)
〈tα − 1〉 =

Γ(α+ 1)− Γ(1)
α(α− 1)

but the expressions
〈φ0(t)〉 = 〈− ln t〉 and 〈φ1(t)〉 = 〈t ln t〉

lead to the evaluation of unpleasant integrals. This evaluation can be avoided by employing Assertion
7.1.2. From the continuity of µα = 〈φ α(t)〉, it follows that

µj = 〈φj(t)〉 = lim
α→j

Γ(α+ 1)− Γ(1)
α(α− 1)

for j ∈ {0, 1},

where the limit on the right can be easily evaluated by using L’Hospital’s rule and the known formulas
Γ′(1) = −γ, Γ′(2) = 1−γ, thus leading to the values µj , j ∈ {0, 1}, given in (7.25). The continuity and the
inequality µα(f) ≥ µα for α ∈ (−1,∞) follow from (7.24) and (7.25) because Dα(F0, F ) is nonnegative
and continuous in α ∈ R and Γ(α + 1) is positive and continuous in α ∈ (−1,∞). The condition for
equality follows from the fact that Dα(F0, F ) is positive unless F = F0.

Proof of Assertion 7.3.1 Similarly as we applied Assertion 6.3.1 in the proof of Assertion 7.2.1, (7.28)
follows for all α > −1/2 from Assertion 6.4.1. If α /∈ {0, 1}, then the expressions for mα(`) and σ2

α given
in (7.29) and (7.30) follow easily from the formulas given for mφα(`) and σ2

φα
in Assertion 6.4.1, but the

direct evaluation of mj(`) and σ2
j from these formulas for j ∈ {0, 1} is a somewhat tedious task. However,

by using the continuity of mα(`) and σ2
α established in Assertion 7.1.2, we obtain mj(`) and σ2

j given in
(7.29) and (7.31) as the limits

mj(`) = lim
α→j

mα(`) and σ2
j = lim

α→j
σ2
α for j ∈ {0, 1},

which expressions can be easily evaluated by using the continuity of the right-hand side of (7.29) and
L’Hospital’s rule, thereby employing the formulas

Γ(α+ k + 1) = (α+ k) (α+ k − 1) · · · (α+ 1) Γ(α+ 1),
Γ′′(α+ 1) = 2Γ′(α) + αΓ′′(α)

and

Γ′′(1) =
π2

6
+ γ2, Γ′′(2) =

π2

6
− 2γ + γ2, Γ′′(3) =

π2

3
+ 2− 6γ + 2γ2

in addition to the previously used Γ′(1) = −γ and Γ′(2) = 1− γ.

Proof of Assertion 7.4.1 If ψ : [0, 1] 7→ R is continuous then by the assumptions about f

inf
x∈[0,1]

f(x) > 0 and sup
x∈[0,1]

|ψ(x) f(x)| <∞

and, consequently, the function

Ψ(x) =
∫ x

0

ψ(y) f(y) dy, x ∈ (0, 1)

is well defined. Since
d

dx
Ψ2

F
= −

(
Ψ
F

)2

f +
2Ψψf
F
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and
|Ψ(y)| ≤ y sup

x∈[0,1]

|ψ(x) f(x)| as well as F (y) ≥ y inf
x∈[0,1]

f(x),

the function Ψ satisfies the relation∫ 1

0

(ψ −Ψ/F )2f dx =
∫ 1

0

ψ2f dx−
(∫ 1

0

ψ f dx
)2

. (9.67)

To this end take into account the relations∫ 1

0

(ψ −Ψ/F )2f dx =
∫ 1

0

ψ2f dx−
∫ 1

0

2Ψψf
F

dx+
∫ 1

0

(
Ψ
F

)2

f dx

=
∫ 1

0

ψ2f dx−
(

Ψ2(1)
F (1)

− lim
y↓0

Ψ2(y)
F (y)

)
=

∫ 1

0

ψ2f dx− Ψ2(1)
F (1)

.

Now, using (9.67) we obtain (7.39) from the definition (7.36). Since f is assumed to be bounded and
bounded away from 0,

lim
α→0

∆α(F0, F ) =
∫ 1

0

(
lim
α→0

f−α − 1
α

−
∫ 1

0

lim
α→0

f−α − 1
α

f dy
)2

f dx

=
∫ 1

0

(
ln f −

∫ 1

0

(ln f) f dy
)2

f dx

= ∆0(F0, F )

which proves the continuity at α = 0. The reflexivity is clear from (7.39) and (7.40).

Proof of Assertion 7.4.2 The proof should be clear from what was said above. The inequality
σ2
α(f) ≥ σ2

α and the condition for equality follow from (7.38), because D2α(F0, F ) and ∆α(F0, F ) are
nonnegative measures of divergence of F0 and F , which are equal to zero if and only if F = F0, in which
case the excess function (7.41) is 0.
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