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Abstract: Bliedtner, Hansen [2] state the theorem which gives the characte-
rization for the cones of excessive functions for sub-Markov processes, where
all excessive functions are lower semicontinuous and positive hyperharmonic
functions for a family of harmonic kernels on X. We formulate the con-
sequence of this rather general theorem for Lévy processes.

Abstrakt: Bliedtner, Hansen [2] uváděj́ı obecný theorem, který umožňuje
charakterizovat kužel excesivńıch funkćı pro sub-markovské procesy tak, že
všechny tyto excesivńı funkce jsou zdola polospojité a kladné hyperharmo-
nické funkce pro rodinu harmonických jader na lokálně kompaktńım pro-
storu X. V tomto článku vysvětĺıme výše uvedené pojmy, vyslov́ıme zmı́něnou
větu a formulujeme d̊usledek pro Lèvyho procesy.

1 Introduction

The classical potential theory provides a very close connection between the-
ory of probability and mathematical calculus. A very known is a powerfull
Feymann-Kac theorem which very formally speaking allows us to interpret
the solution of the partial differential equation of a specific form as an ex-
pected value of the functional of Brownian motion stopped at a certain time.
The link between these two branches of mathematics is however much wider.
We can look at potential theory from four different angles via Hunt proces-
ses, sub-Markov semigroups, families of harmonic kernels and balayage space.
This is stated in Theorem IV.8.1 in Bliedtner, Hansen [2]).

Our motivation comes from the interest in the family of functions which
solves generalized Dirichlet problem. Consider for example a heat equation.
The functions which are harmonic with respect to the heat equation are
a special example of the general class of harmonic kernels. The harmonic
functions are also closely related with the class of Brownian semigroups. Our
intention is to study Lèvy processes. The later covers large class of stochastic
processes which however still owns very nice and handable properties.

The article is organized as follows. We firstly introduce notation and give
definitions of balayage space, sub-Markov semigroups, excessive functions,
hyperharmonic functions, family of harmonic kernels and Hunt processes in
the section Preliminaries. The reader familiar with these terms may prefer to
skip this part. In the second section we state a rather general theorem from
Bliedtner J., Hansen W. [2]. In the last section we recall the definition of Lèvy
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process and use the theorem from the second part to formulate a consequence
of it for Lèvy processes as a special case of Hunt processes.

The introduced theory is of great importance not only for the theoretical
studies. It has great applicability to optimal stopping problems and stochastic
control problems and consequently is of interest e.g. in the pricing of the
American contingent claims. For an introduction to the latter topics and
Dirichlet problem the reader may appriciate chapters 9-12 from Oksendal [3].

2 Preliminaries

We consider a locally compact space X with a countable base and denote U
a base for the topology on X consisting of relatively compact open sets in X.
We further denote by C(X) space of all continuous real functions on X and
C0(X) space of all continuous real functions vanishing in infinity. We also fix
the probability space (Ω,F , P ) on which live considered stochastic processes.

In the following we explain what is a balayage space. Let us consider W
a convex cone of positive lower semicontinuous1 numerical functions on X. For
v ∈ W we denote v̂ the lower regularization of v, i.e. v̂(x) := lim infy→x v(y),
x ∈ X.

The coarsest2 topology which is at least as fine as the initial topology and
for which all the functions from W are continuous will be called (W)-fine
topology.

Observe that functions from a convex cone W are missing the continuity
property in the initial topology U of locally relatively compact open sets and
thus we take new topology such that we add some sets to topology U in which
the functions from W will be continuous.

By v̂f we will denote the lower regularization of the function v in the
W-fine topology.

Definition 1. (X,W) is a balayage space, if the following properties are sa-
tisfied:

1. W is σ−stable, i.e. for every increasing sequence (vn) of functions
from W the supremum sup vn is in W

2. înf V
f
∈ W for every subset V of W.

3. if u, v′, v′′ ∈ W such that u ≤ v′ +v′′, then there exists u′, u′′ ∈ W such
that u = u′ + u′′ and u′ ≤ v′, u′′ ≤ v′′.

4. W is linearly separating, i.e. ∀x, y ∈ X,x 6= y and λ ≥ 0 exists v ∈ W,
s.t. v(x) 6= λv(y)

1Real function f defined on the topological space is lower semicontinous if for every
real α is the set {x; f(x) > α} open.

2Consider two topologies Θ1, Θ2 on X, s.t. Θ1 ⊆ Θ2 then we say that Θ2 is finer then
Θ1 and Θ1 is coarser then Θ2.
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and there exist positive u0, v0 ∈ W ∩ C(X) s.t. u0

v0
∈ C0(X)

and v = sup{u ∈ W ∩ C(X) : u ≤ v} for every v ∈ W

As an example consider X a discrete space (at most countable) and W the
set of all positive numerical functions on X, then (X,W) is a balayage space.

Just for completness recall what we understand by the sub-Markov (resp.
Markov) semigroup. We also explain what are excessive functions.

Definition 2. A family P = (Pt)t>0 of kernels3 on X is a semigroup, if Ps+t =
PsPt for s, t > 0.
It is a sub-Markov (resp. Markov), if for every t > 0 PtI ≤ I (resp.PtI = I).

Further note, that having define a semigroup of Markov kernels we will
call a positive borel measurable function f ∈ B+(X) excessive with respect
to the Markov semigroup P (P-excessive) if supt>0 Ptf = f . The set of all
P-excessive functions we denote by EP := {f ∈ B+(X) : supt>0 Ptf = f}.

Now, we describe what are families of harmonic kernels and give definiti-
ons of hyperharmonic and superharmonic functions.

Consider a family of kernels (HU )U∈U on X. We call (HU )U∈U a family of
sweeping kernels (relative to U) if for every set U from the base U of X, we
have a kernel HU on X for which holds that HU (x,U) = 0 for every x ∈ U
and for every x ∈ UC : HU (x, ·) = δx where δx denotes dirac mass.

Now for every open subset V of X we denote U(V ) the set of all open
subsets W ⊆ V such that closure W̄ is a compact set in V . Let H∗(V ) denote
the set of all positive hyperharmonic functions on V , that is the set of all po-
sitive borel measurable functions v on X, such that v is lower semicontinuous
on V and −∞ < HUv ≤ v for all U ⊂ U(V ). We also denote by S∗(V ) the
set of all positive superharmonic functions on V , i.e. the set of all positive
hyperharmonic functions w on V for which HUw|U ∈ C(U) for all U ⊂ U(V ).

We call (HU )U∈U a family of harmonic kernels if the following axioms are
fullfiled:

1. ∀x ∈ X, limU↓x HU I(x) = I

2. HV HU = HU for all U, V ∈ U and V̄ ⊂ U

3. For all U ∈ U and f ∈ B(X) which are bounded on ∂U the function
HUf is continuous on U.

4. for U ∈ U and every x ∈ U there exists a hyperharmonic function w
s.t. w(x) < ∞ and limA = ∞ for every non-regular ultrafilter4 A on U

3A kernel K on X is a mapping K : X × B(X) → R
+ s.t. x → K(x, B) is Borel

measurable for every B ∈ B(X) and B → K(x, B) is a measure on (X,B(X)) for every
x ∈ X

4For non-empty set U a ultrafilter A is non-empty system of subsets of U s.t. (i): 0 /∈ A,
(ii): A1, A2 ∈ A then A1 ∩ A2 ∈ A, (iii): A1 ∈ A and A1 ⊆ A2 then A2 ∈ A, and finaly
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5. the space of positive hyperharmonic functions H∗(X) is linearly sepa-
rating and there exists a strictly positive function s0 ∈ S∗(X) ∩ C(X).

For better understanding of the definition reader can verify (or read e.g.
in Bliedtner, Hansen [2]) that heat kernel in the classical Dirichlet problem
is a harmonic kernel.

Finally we need to define Hunt process. As we will see from the definition
it is a rather general stochastic process. However it still posses a Markov
property.

Definition 3. A markov process Z = (Z(t), t ≥ 0) is called a Hunt process if
the following conditions are satisfied:

1. the trajectories of Z(t) are right-continuous on t ≥ 0 and have limits
from left for 0 ≤ t ≤ T for T ∈ R+

2. (Z(t), t ≥ 0) has the strong markov property w.r.t to the augmented
natural filtration (GZ

t , t ≥ 0), i.e. given any GZ
t -adapted stopping time τ

and ∀s ≥ 0, B ∈ B(Rd) the following holds:

P (Z(τ + s) ∈ B|GZ
t ) = P (Z(s) ∈ B|Z(τ))

3. (Z(t), t ≥ 0) is quasi-left continuous, i.e. whenever (τn) is sequence
of GZ

t -adapted stopping times and τ is GZ
t -adapted stopping time, s.t.

τn ր τ then
lim

n→∞
Z(τn) = Z(τ) a.s. on [τ < ∞]

We will further denote by EZ the set of all functions excessive with respect
to Markov semigroup P of Hunt process Z.

3 Theorem

The following theorem provides us with a general result which allows us to
describe the cone W of excessive functions for sub-Markov processes, where
all excessive functions are lower semicontinuous and positive hyperharmonic
functions for a family of harmonic kernels on X. Further (X,W) is a balayge
space.

Theorem 1. Let P ∈ C+(X) be a function cone and W = S(P) := {sup fn :
(fn) ∈ P increasing} s.t. I ∈ W. Then the following statements are equiva-
lent:

(iv): A1 ∈ A or Ac
1 ∈ A. Considering an ultrafilter A on U converging to point z from

interior of U , then we say that ultrafilter A is regular w.r.t to the family of kernels HU if
limx,A HU (z, ·) = δz (δz is dirac mass at z). Every ultrafilter which is not regular is called
non-regular.
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1. (X,W) is a balayage space

2. there exists a family (HU )U∈U of harmonic kernels on X such that
H∗(X) = W.

3. W is min-stable, i.e for every f, g ∈ W the infimum inf(f, g) ∈ W
and there exists a sub-Markov semigroup P = (Pt)t>0 on X s.t. EP = W

4. there exists a Hunt process Z = (Z(t), t ≥ 0) with state space (X,X )
s.t. EZ = W.

Proof: see Bliedtner J., Hansen W. (1986) [2], Theorem IV.8.1, p.168.

4 Application to Lèvy processes

Lèvy processes are an example of Markov processes with more restrictive con-
ditions. They are also closely related to convolution semigroups of measures
such that the distribution of the Lèvy process forms a convolution semigroup.
To have nice insight about their behaving, we can also describe them as pro-
cesses which can in general consist from the process with finite variation,
a Brownian motion part and jump process which has countable many jumps.
Each of these component can be missing so for example Brownian motion or
Poisson process or mixture of these is Lèvy process.

Definition 4. A stochastic process Z = (Z(t), t ≥ 0) on X is a Lèvy process
if the following conditions holds:

1. Z(0) = 0 a.s.

2. (Z(t), t ≥ 0) has independent and stationary increments

3. (stochastic continuity)
∀ε > 0 and all h > 0 lim

h→0
P(|Z(t + h) − Z(h)| > ε) = 0

4. (cadlag property of trajectories)
(Z(t), t ≥ 0) is right continuous in t ≥ 0 and has left limits in t > 0.

The following proposition which we can formulate due to Theorem 1 gives
us properties for the set of all excessive functions with respect to considered
Lèvy process such that the set is closed under infimum and supremum and
can be characterized via hyperharmonic functions.

Proposition 1. For a function cone P ∈ C+(X) and W = S(P) s.t. I ∈ W
and Lèvy process Z = (Z(t), t ≥ 0) with the state space (X,X ), s.t. EZ = W
there exists a family (HU )U∈U of harmonic kernels on X, s.t. H∗(X) = W,
W is min-stable and σ−stable and there exists a sub-Markov semigroup P =
(Pt)t>0 on X, s.t. EP = W

Proof: The fact that Lèvy process is Hunt process follows from definitions
of these processes. Note, that Lèvy process is a Markov process (see e.g.
Sato K. [4]) and every Lèvy process is a Feller process and every Feller process
is a Hunt process (Applebaum D. [1]). The rest is a consequence of Theorem 1.






