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Introduction

If only I had the theorems! Then | should find the proofs easilyugh.
B.Riemman

The following text provides an overview on important defons and theorems from stochastic
calculus with special focus on the classoefstable processes on one-dimensional real line.

In the first part of this text is introduced the class of inBiytdivisible distributions and stated
Levy-Khinchine formula. Stable distributions as an reyertant of this class are defined. Further,
there is described algorithm for generating random vagmbiom stable distributions.

The second part provides a quick excursion into definitiobésfy process and stable process. The
link to self-simmilar processes is described.

The third section is focused on the understanding of pathesties and mainly jump structure
of Levy processes. Firstly, there is introduced Lévy roeasis the intensity of the Poisson process,
given definition of Poisson random measure and describedration of measurable function with
respect to Poisson random measure. Finally there is fotauind explained Levy-Itd decomposi-
tion.

Fourth section uses the results of Levy-Itd decompasitind provides an insight into quadratic
variation for Levy processes and mainly pure jump proces3den there is formulated change of
variable formula and provided example of its applicatiorstimchastic exponential driven by Lévy
processes. The special example for stochastic expondnitiah bya—stable Levy motion is formu-
lated and described simulation technique of such a paati@dample.

The fifth and last section is devoted to problematics of chasigmeasure and building Lévy
process via this technique. The section contains two the®rehich holds for Levy processes in
general. These are further applied on the subclass-aftable Levy process and the result of that
investigation is formulated into Theorem 5.3.

1 Stable Distributions

1.1 Infinitely Divisible Distributions

Let us consider a probability measuren R and its characteristic function given by
(k) = /R & u(dx), wherek € R
Further we denote by the n-fold convolution probability measurewith itself, i.e.
W= H*... %
e

Definition 1.1 A probability measure p ofR is infinitely divisible if, for any ne N, there exists a
probability measure glon R such that p= pp.

The convolution of measures is equivalent to the producteir tcharacteristic funtions. This
gives us idea about how to verify whether the probabilityriiation is infinitely divisible. Having
the distributiony, we find thenth root of its characteristic function(K) and check if it can be choosen
as the characteristic function of some probability measure
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Forn = 0, the '0th’ root ofjlis &g, a Dirac measure with mass at 0.

The simplest examples of infinitely divisible distributioare Poisson and Gamma distributions,
Dirac point masses, Gaussian and stable distributionsh®nother hand, uniformly distributed ran-

The set of infinitely divisible distributions form an Abeligiroup with respest to convolution.

Characteristic functions of infinitely divisible distrithans are well described by Léevy-Khinchine
formula. This formula provides a representation of the abti@ristic exponent. This beautifull result
is a cornerstone of the whole theory.

Theorem 1.1 (Levy-Khintchine formula)
Let p is an infinitely divisible distribution oR with characteristic exponeni(k), i.e.

(k) = / u(dx) = e Y9, ke R

R
then
1.
W(K) = —iyk+ % _ / (€ — 1yv(dx) — / (€ — 1 — ikx)v(dx) L)
(=1} (K<)

wherey € R, 0 > 0 andv is a measure oiR satisfying

v({0}) =0and /min(]x\z,l)v(dx) < o0 2)
R

2. The representation @x) in (1) byo,v andy is unique.

3. Conversely, i > 0, v is measure satisfying conditions in (2), apd R, then there exists an
infinitely divisible distribution p whose characteristigponenty (k) is given by (1).

Definition 1.2 We call(o,v,y) from Theorem 1.1 thgenerating tripleof infinitely divisible distribu-
tion p. v is calledLévy measur@f u ando Gaussian component of distribution p.

To condsider simple examples, Gaussian distribution wighmy and variances? has generating
triplet (o, 0,y), Poisson distribution with parametehas generating triplé0,0,A8;). To Dirac mass
at pointz corresponds triplet0, 0, z).

The integral

/ (€ — 1— ikx)v(dx)
R
is integrable, because it is bounded outside neighbourb®6dind for fixedk

& — 1 —ikxL{o-x<1)V(dX) as[x| — O
There other ways for getting integrability by choosing eatly thecentering function
Definition 1.3 Let c: R — R is bounded and measurable function, satisfying
/R(e"‘x —1—ikc(x))v(dx) < o for any fixed k

We call €x) the centering function.



Then we can reformulate Levy-Khinchine formula as

o2k?

Wk = —iyek-+ - - /(ékx — 1 ikxo(x))v(dx)

R
with
Ve =Y+ [ X(€00 ~ Lpoapea V(A

and obtain characteristic tripl€to,v,y.) for infinititely divisible measurgL which corresponds to
different parametrization.
Obviously sufficient requirement aix) is

c(x) =1+4o0(]x|) as|x| — 0

c(x) = o(ﬁ) as|x| — o

The following choices 0€(x) are sometimes used
C(X) = 1{0<|X\§£} (X) withe >0

1

sgn(x
c(X) = Ljo<xj<1} + %1{1@}
_sin(x)
c(x) = <
The centering function obviously affects the represemadif they term in the formula. For this
reason, one has to be carefull with choosing different patapations and the choice should depend
on the form of Lévy measure.

1.2 Stable Distributions

Stable distributions belongs to the class of infinitly divie distributions. Their characteristic expo-

nent can be represented by Levy-Khinchine formula. Thexether possible ways of representations,
see e.g. Zolotarev [6]. In the following, we firstly give defion of the the stable measure and then
state theorem which gives most commonly used represamtaticharacteristic exponent of stable

random variable.

Definition 1.4 Let u is infinitely divisible probability measure @ It is called stableif, for any
a> 0, there exist b> 0 and ce R s.t.

A(k)® = bk
It is called strictly stableif, for any a> 0, there is b> 0 s.t.

k)™ = (bK)



We define the stable ditribution by its characteristic fiorcwhich uniquely determines the form
of it.
The Lévy measure for a real valued stable variable is esprkas

v(dx) = {%1{’90} T IX\(‘:‘2+1 1y forO<a <2 andcy,c;>0,c0+C2>0
fora=2

We see that foo = 2 we have Gaussian distribution. Foz@ < 2 the generating triplet i€, v, y)
where Lévy measure is written above. According the Lewrg€hine formula the characteristic
exponent of the stable distribution can be rewriten as

00

. iK ikx | 1

W(k) = 'Vk+01/(e' —1- m)ﬁ(dxﬂ ©)
0
: kx 1
o ikx
A 4
oo (@1 1) e (0% @
Note, that we here we used centering functigr) = TTXF The representation in the following

theorem is often used as the definitionoef stable law.

Theorem 1.2 Let0 < a < 2 and p is non-trivialo —stable measure, then

W(k) = olk/*(1—iBsgnk)tan(7)) —iyk foro#1
olK|(1+iB(ZsgrK)log|K) —ivk fora =1

witho > 0, € [-1,1] andy € R. Hereo, 3 andy are uniquely determined by p. Conversely, for every
o> 0,f € [-1,1] andy € R, there is non-triviala—stable ditribution p satisfying (5). A necessary
and sufficient condition for a non-trivial —stable distribution to be strictlp—stable is thaty =0 or
that3 =0, according asx # 1or a = 1.

(5)

The parameters from the previous theorem has the followiagnimg: a € (0,2] is calledstability
parameter € [—1,1] is skewnesparameterg > 0 scaleparameter angt € R corresponds tshift
parameter.

The parametef represents non-symmetry of the Levy measuveis symmetric only if} =
0. Forp = 1 the support of the measure is the positive part of real fioe3 = —1 is the Lévy
measure concentrated only on negative part of real lineetQitkeful link between Lévy measwe
and skewness paramefers thatp = % wherec,, ¢, > 0,¢1 + ¢, > 0 are constants from the Levy
measure.

If random variableZz hasa—stable distribution with parametecs 3 andy we use notatiorZ ~
S (0,B,y). For symetric stable random varialde- S;(1,0,0) we use shorter notatiofh ~ $S

1.3 Simulating from Stable Distribution

The densities fom—stable processes are in general not known in closed form. ohheknown
densities are for Gaussian, Cauchy and Lévy distribufidre following theorem provides us with an
algoritm for simulating from stable distributions.



Theorem 1.3 Let V is uniformly distributed random variable on the in@iry—73, 7), W is expo-
nentialy distributed random variable with mean 1, V and W iageependent random variables and
ae(0,2.

For any € [1,1] anda # 1, defineg, — 2@ 2))

Then random variable Z defined by

sina(8p+V) cogabp+(a—-1)V) o
(cosueoc%s\/)l/“ |: 0W ] azl

%[(§+ BV)tanV — Blog (%)] a=1
has %(1,B,0) distribution.

Remark 1.1 In case of symmetric stable distribution, i.e. foe 0the formula from previous theorem
can be considerably simplified. Following the notation fidheorem 1.3, the random variable

1-a

sin(aV) |:cos((0(—1)v):|T o041

Z = { (cosv)¥/a W
tanVv a=1

has $S distribution.

Let us take a closer look on the numiiigrfrom Theorem 1.3. Consider random random variable
Z with & (o, ,0) distribution. Definep = P(Z > 0). In Zolotarev [6], section 2.6 is shown that
the probability ofa—stable random variable having non-negative value depemnigioa the stability
parameten and the skewness paramefeasind can be computed far£ 1,2 as

o= 1 N arctar{ftan(to /2))

2 Tl
p is called positivity parameter. Observe, tipatioes not depend on the scaling parametef~or
0<a < 1,pranges over interva0, 1], whereas for k a < 2, p ranges ovefl— %, %]. The boundary

pointsp =0 fora € (0,1) andp=1— % for a € (1,2), respectively, corresponds to the situation
that random variabl@ takes negative values only. Analogically, the boundarmnisp = 1 for a €
(0,1) andp = % for a € (1,2) corresponds to the situation thathas non-negative values only. For
symmetric stable distributions, i.e. f@r= 0, the positivity parametep has value%. We see that

p= % + 9—# wherefg contains the relation between skewness and stability peteam

2 Stable processes

2.1 Levy processes

Stable processes form a subclass of more general clasypplécesses. Assume we are on filtered
probability spac€Q, F,IF,P) . Let us recall definition of the Lévy process .

Definition 2.1 An adapted process % {X(t),t > 0} is aLévy processif

1. X has increments independent of the past; i.e.
X(t) — X(s) is independent of thés, 0 <s<t <



2. X has stationary increments, i.e.
X(t) — X(s) has same distribution as(K—s) for0<s<t < o

3. X(t) is continuous in probability, i.e.

limsP(ooe Q: | X(wt)—X(w,s)|>¢€)=0

For eacht > 0 the distribution of Lévy procesk(t) is infinitely divisible. It can be shown also
that for each infinitely divisible probability measyu¢here exists Levy procesés.t. pis distribution
of X(1). The following theorem gives us idea about important patiperty of Levy processes.

Theorem 2.1 Let X be a lBvy process. There exists a uniqgue modification Y of X whicighs
contiuous and has limits from left &dlag) and which is also a&vy process .

2.2 a-—stable Levy Motion

Consider filtered probability space, #,FF,P) and on this space consider Levy procéss =
{Lgp(t),t >0} . In the following we will call the stochastic procelsg = {Lq g(t),t > 0} a—stable
Lévy motiorif

1. Lyp(0)=0P-as
2. Ly p(t) has independent increments

3. Lap(t) — Lagp(s) ~ S((t—9)¥9,B,0) for any 0< s< t < oo

Simply said,Lq g = {Lqg(t),t > 0} is a Levy process it g(t) hasa-stable distribution. Only
the scale parameter changes during time, the stability eald parameteres does not depend on time
and remains constant for alt 0.

Definition 2.2 X = {X(t),t > 0} is a Levy process oiR. It is called stableor strictly stableif the
distribution of X(1) is, respectively, stable or strictly stable.

Definition 2.3 X = {X(t),t > 0} is a stochastic process d It is calledselfsimilarif, for any a> 0,
there exists b> 0 s.t.
{X(at),t >0} 2 {bX(t),t > 0}

It is called broad-sense selfsimilaf; for any a> 0, there exists b> 0 and maping c R™ — R s.t.
{X(at),t >0} 2 {bX(t) +c(t),t > O}

The property of selfsimilarity means that when performingli®g changes in the time domain of
the process one has to count with a scaling effect in a sghifakin of the process. The broad-sense
selfsimilarity is slightly generous concept. Here, when seale time of the process, the result-
ing change for the value of the process corresponds to catepoapping where the value of the
stochastic process without time change is linearly transfal to capture the time scaling.

The corespondence between stable and selfsimilar Lewepses is very straightforward. Having
Lévy processX = {X(t),t > 0} on R, it is selfsimilar if and only if it is a strictly stable pross.
Analogically, for broad-sense selfsimilar Levy processl atable process. From the Definition 2.3
is obvious, that selfsimilar or broad-sense selfsimilarcpss does not have to be Lévy process . If,
however, it is a Levy process , then it can be only stricthbfa or stable process. The class of stable
processes is thus intersection of Levy processes and{seoak selfsimilar processes.
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3 Poisson Random Measures

Let us start with introducing the concept of Poisson randoeasures which is crucial for good
understanding of behaving of the jump structure of Lévycpss .

Consider Lévy proces¥ = {X(t),t > 0} on the filtered probability spad€, 7,F,P) . Denote
by X(t—) = limg_¢- X(s) and byAX(t) := X(t) — X(t—) the jump of the proces¥ at timet; theorem
2.1 guarrantes that the trajectory of the Levy procesadag. Consider borel subdéte B(R\ 0),
s.t. 0¢ U whereU is the closure of set U, i.e. we consider Beto be bounded away from 0. For
t > 0 define:

NtLU) = 5 1y(AX(S),
0<s<t
that is the number of jumps of siZ&(s) € U, s € [0,t] which occurs up to timé. AsU is bounded
away from ON(-) really counts jumps of the process. Let us further definegandariables

TY =inf{t >0:AX(t) U}

T, =inf{t > Ty : AX(t) €U}

The sequencéTV},i = 1,2, ... is the sequence of random times in which the jumps are oflsize
at maximum. The sequence of times of repeated entrance$)ifgmbviously a stopping time as
{t<TV} € R, = % (X has cadlag trajectories and filtration is complete agttrcontinuous).

We can further rewrite the variablM(t,U) in terms of number of times of jump events which
occur up till timet:

N(LU) = 5 1(BX(9) = il”"““} ©)

0<s<t

It can be argued th&(t,U) is a counting process, without explosion, with stationamy @mdependent
increments which directly implies thal(t,U) is a Poisson process; see Protter [4], p.26.
Let us define Lévy measurgU ) of processX in terms of expected number of jumps of sizeJin
over time unit:
v(U):=E[N(L,U)], U € B(R\0).

Levy measurev(U) is the intensity of the Poisson procdsét,U) and is finite because Poisson
process has bounded jumps and every Lévy process with bdynchps has finite moments of all
orders; see Protter [4], Theorem 34, p.25.

MappingU — N(t,U) defines ao—finite meausure ot). Let us summerize the above into the
definition of Poisson random measure.

Definition 3.1 Consider probability spacéQ, 7,P) and o—finite measurable spacge, E,p1). A
family of non-negative integer valued random variabfégU ),U € £} is called aPoisson random
measuren E with intensity y, if the following hold:

1. for every U N(U) has Poisson distribution with meauty).
2. ifUq,...,U, are disjoint, then NU;),...,N(Uy) are independent

3. for everyw € Q, N(-,w) is a measure ofE, E)



Remark 3.1 1. N(t,U) is a Poisson random measure with intensity meas(ik); see Sato [5],
Theorem 19.2 (i), p.120.

2. N(-,-) denotes compensated jump measure definéd(by ) := N(t,U) —tv(U). It is easy to
check thatEN(t,U) = 0.

3.1 Integrals with respect to Poisson Random Measures

Consider borel measurable functidrwhich is finite on the st € B(R\ 0). Then its very natural
to the sum of jumps of size id mapped byf, up till timet.

I(t,U):/Uf(x)N(t,-,dx): T F(AX(9)1y (AX(S))

0<s<t

Procesd (U) = {I(t,U),t > 0} is again a Levy process. For specific choicef 0f) = x we obtain

JLU) = / XNt A = T AX(91u(AX(9))
u 0<s<t

Process](t,U) is calledassociated jump processd it is sum of jumps itJ up till time t. The
processy = {Y(t) = X(t) — J(t,U),t > O} will remain also Lévy process. See Protter [4], Theorem
37, p.27.

ChoosdJ =R\ (0,1), then procesy¥ is the Lévy process without big jumps (jumps bigger then
1),

V(LY =X - IR\ (©O1) =X(1)— [ xN(t,,d¥

x>1
Let us state theorem from Protter [4], Theorem 38, p.28 whiescribes behaving of the Levy
measure in terms of expactation of the integral with resfmePbisson random measure.

Theorem 3.1 LetU be a Borel set with ¢ U. Letv be the [&vy measure of X, and lelg € £(dv).

Then
E(/U FON(t, -, ) ) :t/u f(x)v(dx)
If further f1, € £L?(dv) then

E([/Uf(x)N(t,-,dx)—t/Uf(x)v(dx)]z):t/uf(x)zv(dx)

Another important property of associated jump processibéhaving on the disjoint sets. Con-
sider two disjoint Borel setd;,U, bounded away from 0. Consider processes

AU = F BX(S)1u,(BX(S)

O<s<t

and
J(t,Up) = Z AX(s)1y,(AX(9))

O<s<t

These will be independent Levy processes.
The following two theorems provide view on the Levy proessas semimartingales, see Protter

[4] Theorem 40, 41, p.30. The first theorem tells us that wedmaompose the Lévy process into
martingale and finite variation process. The second thegjiees us idea about construction of the

9



martingale for Lévy process with bounded jumps. For theylLprocess with bounded jumps, we
can construct the martingale by compensating the origigaylprocess with its expected value and
this martingale can be decomposed into the continuous pdrjuenp part. The continuous part of
the martingale is a Brownian motion, the jump part of the mgetle is infinite sum of compensated
Poisson processes. These two new processes are againrbeegges and are independent.

Theorem 3.2 Let X = {X(t),t > 0} is a Levy process . Then(X) =V (t) +M(t), where \V M are
Lévy processes, V has paths of finite variation and M is a ngatewith bounded jumps, i.e. M is
process with finite moments of all orders.

Theorem 3.3 Let X= {X(t),t > 0} be a Levy process with bounded jumps by asuq)<s<t IX(s)| <
aa.s. Let Mt) = X(t) —EX(t). Then M is a martingale and §) = M(t)¢ + M(t)¢ where Mt)Cis a
martingale with continuous trajectories andNé a martingale

dpy . _ — N (t. -
M (t)_/{lx<a}x(N(t, dx) —tv(d)) /{|X<a}x(N(t, dx)

M¢ and M are independent &vy processes.

3.2 Levy-Itd Decomposition

Using the results from previous subsection, we state a veautifull result which provides us with
clear insight into the properties of trajectories of Levpgess .

Theorem 3.4 Let X = {X(t),t > 0} is Lévy process oiR with generating triplet(o,v,y) and jump
measure Nk, -,dx) of process X, i.e. ,-,dx) is a Poisson random measure. Then the process X can
be decomposed into three mutually independéwylprocesses, for allt 0, P—a.s.:

X (t) = X(t) + X3(t) + X3(t)

such that
X1(t) = yt + 0®W(t) where Wt) denotes Wiener process (7)
2(t) = lim // N(ds, -, dx) — v(dx)ds) 8)
e—0* {£<|x\<1}
= [ [ xn@s-dy (©)
0 J{1<|x <o}

The convergence in{t) is uniform in t on any bounded interval.

The Lévy-I1td decomposition allows us to decompose anyylLjgrocess into three independent
processes, the drifted Brownian motion, process of big gimpd a martingale process of small
jumps. In the following we describe the conection with L&dginchine formula. Recall first the
form of characteristic exponent of distribution of increwtseof Lévy process:

2 . .
W(K) = —iyk+ % _ / (€ — 1yv(dx) — / (€ — 1 ikx)v(dx) (10)
{}=1} {Ix<1}
The first part of the formulap, (k) = —iyk+ %2 clearly corresponds to characteristic function of

the distribution of linearly drifted Brownian motion. Thist exactly procesX!(t) in the Lévy-Itd
decomposition.
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The second part of the formulgy (k) = f“X‘zl}(eikX —1)v(dx) is the characteristic function of the
compound Poisson process with intensitR \ (—1,1)) and size of jumps distributed according law

ﬁ where Lévy measure is supportedRn (—1,1). It corresponds to proces€i(t), i.e. the
part of big jumps is driven by compound Poisson process witdsity characterized by the size of the
real line without unit ball centered in origin measured lgwiz measure and distribution of the jumps
corresponds to Levy measure standartized by the intekdyiving Poisson process.

The last part of the formuldiz(k) = [ (€% —1—ikx)v(dx) is an infinite sum of drifted
{IxI<1}
compound Poisson processes with different intensitiesdistdbutions. To see it, denote By, =

v({x;2- (™D < |x| < 2-"}) the intensity of Poisson process andmydx) = V({X_2,<nﬁgj<x)|x‘<2,n}) the

distribution of the jumps, with support dix;2- ("1 < |x| < 27"}. Then we can rewritey3(k) as

n;) i /(2(MZn)(ékx_l)Fn(dx)_ikAn< /( 27<n+1)’27n)an(dx))}

The procesx?(t) then corresponds to superposion of countable many comp@oisgon processes.
Sometimes is this part of the Levy process caldenn of compensated jump®ue to additional
drift, the Lévy measure of-1,1) is compensated. Without compesation, the limiK#{t) may not
converge as approaches 0.

4 |tdo Formula

4.1 Quadratic Variation

Consider a filtered probability spa¢@, F,FF,P) and a semimartingale with cadlag trajectories on it.
The quadratic variation process is then defined as follows.

Definition 4.1 Let X = {X(t),t > 0} be a semimartingale. Thguadratic variation procesX, X] =
{IX,X](t),t >0} of X is defined by:

t
X, X](t) = X ()2 — 2/0 X (s—)dX(s)

The quadratic variation process Xfis cadlag, increasing, adapted process. The starting I
the process i§X, X](0) = X(0)2. The incremeants of the process AfX, X](t) = (AX(t))>.

More usefull from computational point of view is the follavg construction. Lett(t) = {0=tp <
t; <... <ty =t} denotes the partition of the time intenj@lt]. Further consider the sequence of time
partitionsT, (t) = {0 =17 <t] <...t¢ =t} with supremum norm defined &%(t)| = sup i, [t —
th | ananLrE]m(t)] = 0. Then quadratic variation is the limit in probability ofusred increments of

the proces¥, uniformly continuous in time

lim P<we Q: sup
n—e 0<s<t
See Protter [4], Theorem 22, p.66.
The quadratic variation process can be decomposed intoritincous part and pure jump part.
We denote the path-by-path continuous parfaiX] as[X, X]¢. We can then write the process in the
following form

X X](1) = XX +X(0)2+ 5 (AX(s)?=[X.X]°+ Y (BX(s)?

0<s<t 0<s<t

X(0,w)? +§(X(ti”,(o) —X(t" 1, w))% - [x,X](t,w)( > s) =0

11



If the contiuous part is equal to zero, then

XX = (BX(9)?

0<s<t

4.1.1 Quadratic Variation for Stable Processes

Let us formulate the quadratic variation process for a Lprgcess. Consider Levy process with
characteristic tripleto,v,y) Then the quadratic variation is given by

1
XX)() =%t + T (AX(S))2:02t+/O /R\OXZN(dt,-,dx)

0<s<t

Considera—stable Levy motiorig g = {Lqg(t),t > 0} . Then fora = 2 the quadratic variation
process is a continuous increasing process, whereas<ax & 2 the quadratic variation is the sum
of squared jumps.

{ > (BX(9)? = [p fm@@N(dt,-,dx)  forO<a <2
[X,X](t) = { 0<s<t

ot fora =2

4.2 Change of Variable Formula

Let us start with the general version of change of variabietda for semimartingales, i.e. situation
when one needs to map the semimartingale via the twice @liffetble continuous function. Consider
filtered probability spacéQ, F,F,P) and letX = {X(t),t > 0} denote a semimartingale with cadlag
trajectories. The Itd’'s Formula has to capture also dignaity term and is of following form:

Theorem 4.1 Let X = {X(t),t > 0} be a semimartingale and letd ¢?(R). Then fX) is again a
semimartingale, and the following formula holds:

FX(M)— FX(0) = [ FX(5)aX(S -2 [ (X (s)dX.XT(S)+

0+ 2 Jor
+ ¥ (1K) = f(X(5-) - FX(s-)ax(9)) (11)
<s<t

Remark 4.1 The second term on the right side is given by
F(X (E=))dX, X (1) = £ (X (t=)) X, X°(t) + £ (X (=) (BX(1))?

and so the relation in (11) can be equivalently written as

(X))~ 1XO) = [ FX(s-)aXS)+3 [ (X NAX X+ Y 10X(5)BX(9)%+

0+ + 0<s<t

+ 5 (FX(9) — FX(s2) = F'(X(s-))BX(s) — (X (s-))(BX($))?)

O<s<t

12



Consider now a Lévy process = {X(t),t > 0} on the filtered probability spac&, 7,F,P) .
Levy process has generating triplet v,y). Further considef € ¢?(R) and proces¥ = {Y(t) :=
f(X(t)),t > 0}. Applying Theorem 4.1 and using notation introduced inisec8.1 we derive

Y(t) = (X +/f (s—))dX(s) + ;/Otczf”(x(s—))der
+/ X(s-)+2) ~ f(X(s-)) ~2F(X(s-)) )N(ds -, d2)

Recall now Levy-1td decomposition and rewrd(s) asdX*(s) + dX?(s) + dX3(s).

0)+ [ ¥(X(9)dst [ 20/ (X()aW(s)+

t ~ t /
+/0 /{0<z<1}Zf (X(S_))N(ds"’dzH/ /1<z<°°}Zf (X(s=)N(ds,,dz)+
+%/0:_f//(x ))o ds+/ /R\o X(s-)+2) ~ (X(s-)) ~ 2F(X(s-)))N(ds. - d2)

Recall thatN(dt, -,dx) = N(dt, -,dx) + v(dx) dt and reorder the equation.

+/0f $))dW(s +// 28 (X(s=))N(ds, -, d2)+
R\0

+ / VE(X(8) + 3 1 (X(5))0 + o (10X(5)+2) = £X(5-) = 2 (X(5-) o) Jv(d2) | ds

Theorem 3.2 states that we can decompose Levy process amtmgale with bounded jumps and
process with paths of finite variation. For the consideret@ssy we see that process with paths of

finite variation is

V(t)—/t[ F(X(8)) + 2 1" (X(5-))o2+ (f(X(s-)+2)— F(X(s-) ~2F(X(s-))1 Jv(d2)|ds
~Jo Y > R\0 {0<|x|<1}

and the martingale part

Mt +/0f $))dW(s +// 2t (X(s=))N(ds, -, d2)
R\0

Using the previous results let us introduce liftelL vy procesand fomulate the change of variable
formula for it in differential notation. Consider again avy procesX = {X(t),t > 0} and predictable
processes = {u(t),t >0} v={v(t),t >0} andw = {w(t),t > 0}. From the Lévy-Itd decomposition
we call X theltd-Lévy procesH it is given as follows

Xo+/ dS+/ s)dW(s +// N(ds - ,dx),

where for allt > 0,x € R\ 0

/Ot (Iu(s)l +v2(s)+/R\0vv2(s,x)v(dx))ds< ©,  P—_as

13



This condition implies that the stochastic integrals ar#-defined and local martingales.
One uses the short-hand differential notation:

dX(t) = u(t)dt+ v(t)dW(t) + R\ow(t,x)N(dt,dx); X(0) =Xo

Let f : R* x R — R be a function inC*?(R* x R) and define process:
Y(t) = f(t,X(t), t>0.
Then the processg = {Y(t),t > 0} is also an Itd-Lévy process and its differential form igegi by

dy(t) = %—I(t,X(t))dH— g—;(t,X(t))u(t)dt+

of 19%f
+ &(t,X(t))v(t)dW(t)+§W(t,x(t))v2(t)dt+
of

+ /R\O[f(t,x(t)er(t,z)) — f(t,X(t)) — &(t,x(t))w(t,z)]v(dz)dtJr

+ / [f(t,X(t—) +w(t,2)) — f(t,X(t—))]N(dt,d2)
R\0

4.3 Stochastic Exponential Driven by levy process

In this part we investigate the simple example of the stdahdsgferential equation which solution is
calledDoleéns-Dade exponential

Theorem 4.2 Let X = {X(t),t > 0} be a Levy process with characteristic triplét,v,y). Then there
exists a @dlag process Z {Z(t),t > 0} that is the unique solution to the equation

t
Z(t) = 1+/ Z(s—)dX(s)
0
Z is calledstochastic exponentialf X, denoted by Z £(X) and is expressed by

Z(t) = exp{X(t) - O—Zt}

> (1+AX(s))exp{ —AX(s) + %(AX(S))Z}

O<s<t
where the infinite product converges.

The above stated result holds for semimartingales in gersera Protter [4], 11.8,p.84.
If X'is a—stable Levy motionq g = {Lyg(t),t > O} , the stochastic exponentizlis

. Mo<see(1+ALqp(s) exp{ — ALqp(s) + (Alap(s)?} for0<a<2
exp{W(t) - %zt} fora =2

whereW(t) denotes Brownian motion.

The stochastic exponential driven tiy-stable Levy motion is always positive far= 2 and cor-
responds to geometric Brownian motion. On the other hanthifilty parameten has value from
(0,2), the stochastic exponential can take even negative vaiugartant role plays obviously initial

z
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Figure 1: 15 trajectories of stochastic exponential dribgi—stable Lévy motion with parameters
a=17 andf=0.3

value of stochastic exponentidland size of jumps of the process. In our c2$8) = 1. If the sizes
of the jumps ofL, g are biger then the initial value 1, stochastic exponentaltake negative values.

It is possible to simulate trajectory of the stochastic equtial driven byo—stable Lévy motion
according the algorithm outlined in Janicki et al. [3]. Thaimidea is that the solution of the
equation:

20)=2+ [ Z(s)dlag

can be aproximated by

B (nt] Yi
Zn(t) = Zno kl:ll <1+ W)

whereYy,k=1,2,...nare i.i.d sequence ok ~ S(1,,0) andg(n) is slowly varying function which
is choosen ag(n) = n/<.

In the following figures we depicted trajectories of stoditasxponential driven byr—stable
Levy motion for different stability parameters. The ohsgion which one can make is that with
stability parameter closer to 2, the process has less biggurlso important observation is that if
the increment of the process is very close to or exactly thilivalue, stochastic exponential can
then remain very close to 0.
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Figure 2: 15 trajectories of stochastic exponential dribgm —stable Lévy motion with parameters
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Figure 3: 15 trajectories of stochastic exponential dribgi—stable Lévy motion with parameters

a=13 andf=0.3
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Figure 4: 15 trajectories of stochastic exponential dribgi—stable Lévy motion with parameters
o =2, andB =0, i.e. geometric Brownian motion

5 Change of Measures

Consider measurable spad@®, 7 ) with two probability lawsP andQ. Further assume th&andQ
areequivalentprobability measures, i.&2 < Q andQ < P, whereP <« Q means that measukeis
absolutly continuous with respect to measQre

VFeF:QF)=0= P(F)=0

The equivalence of the measures is also sometimes caliighl absolut continuousnesbmeasures
P andQ. We writeP ~ Q to denote equivalence.

Let us endow the measurable spd€ke 7 ) with two equivalent probability measurésQ and
consider two probability spacé®), ¥,P) and (Q, 7,Q) . We know that possible events can occur
on these spaces with same or different non-zero probasilitBy assuming the equivalence of the
measures, we are, however, ensured that the events whiahwith probability zero in one space
will remain impossible also in the other probability spalkceother words measurésandQ have the
same support or equivalently same null sets.

Consider restriction of the probability measi¢o % and denote it a& = P|%. Analogically
denoteQ; = Q| %. As the measureB Q are considered on the same stochastic bases, i.e. measure-
able space with the filtration, then also the restrictiBn&; of the equivalent measur&sQ at timet
remains equivalent for all> 0. The Radon-Nikodym theorem ensures us that at every tinmeno
t there exists a measurable mappB§), s.t. Q; = [,D(t)dR for all A€ %. The stochastic pro-
cessD = {D(t) = d—gt‘,t > 0} is calledderivative processf Q with respect to P. Derivative process
describes the time evolution of the density of measQreith respect to measure and filtration.
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Obviously, the derivative process depends on the choickedfiltration. Different filtrations induce
different derivative processes.

Let X = {X(t),t > O} be a Lévy process on the filtered probability spé@e¥ ,F,P) . We would
like to create new Lévy process on the probability sp@egr ,IF, Q) from the old Levy procesX.

e Under which conditions the new stochastic proces$@nF ,F,Q) remains also Levy process
?

e Can we somehow remove the drift part of the Lévy process egate a martingale?

e What does happen to jump structure of the Levy process wlepass from one probability
space to the other?

e How can one describe the derivative process and is the tleeyarocess also Levy process ?

Let us denote byX,P) the Lévy process with generating triplgtp, vp, yp) on filtered probabil-
ity space(Q, F,F,P) . Analogically, we denotéX,Q) as the Levy process with generating triplet
(0g,Vaq,Yq) on the second considered sp&€e 7 ,F,Q) .

The following theorem from Sato [5],33.1,p.218 gives a 1sseey and sufficient condition for
equivalence of the measures in term of generating triplietiseol vy processes.

Theorem 5.1 Let (X, P) and (X, Q) be Levy processes dR with generating triplet§op,vp,yp) and
(00,VQ,Yq), respectively. Then the following statements are equivale

1. R~ Q foreveryt>0

2. the generating triplets satisfy

Op = 0q, (12)
Vp ~ Vg (13)

with the functionp(x) defined byﬂi’)—P — %% satisfying
/]R (€972 _ 1)25(dx) < oo (14)

and
Yo-ve- | _ X(vg—ve)(@¥) < oBx:x< R) (15)
X<

If we work only with drifted diffusion, we see that the onlyrliting condition for us is to have
same diffusive coefficient. The assumption on the finitirefsthe difference of the drift parameter
is rather natural. In case of diffusion we can freely chargedrift. Now consider only pure jump
process. There we are limited on the behaving of the smalpgum terms of drift. The expected
value of the small jumps (on the unit ball) measured by thieihce of the Levy measures has to be
equal to difference of the drifts

The following theorem from Sato [5],33.2 p.219 gives exa@resantation for the derivative pro-
cess:
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Theorem 5.2 Let (X, P) and (X, Q) be Levy processes dR with generating triplegop,Vp,yp) and
(00,Va,Yq), respectively. Suppose that equivalent conditions 1. arnioln previous theorem are
satisfied. Choosg € R such that

Yo—Ve— [ X(vq-ve)(d¥) —o3n (16)
X<1
Then we can define, Pa.s,
203t
U () =nxe() - 05 — nyet+ (17)
+ lim Z OAX(s)) —t (€99 — 1)vp(dx) (18)
e—0t &, [x|>¢€
8X(s)|>¢

The convergence in the right-hand side of (6) is uniform im aay bounded interval, P a.s. We
have, for every t 0

EPeV) = Qe V) =1 (19)
and
9% _ w0 p_as (20)
dh, ’ ’

The procesg{U (t),t > 0},P) is a Levy process oiR with generating triplet oy ,vy,Yu) expressed
by

0-6 = r]20|23 (21)

wu = V@ r—{q) 22)
242

W=t 20 " /R<ey— 1 ylioeyyi<y () (V@ H)(dy) (23)

5.1 Equivalence of Measures for Stable Processes

Let us investigate if it is possible construct equivalenamge fora—stable Levy motion .

Consider filtered probability spacéQ, #,F,P) and(Q, ¥,F,Q) . Denotea—stable Lévy motion
on(Q, ¥,F,P) as(Lq g, P) with generating tripletO,vp, yp) for a € (0,2) and(op,0,yp) for a = 2.
Analogically, we denot@—stable Levy motion or{Q, #,FF,Q) as (L g, Q) with generating triplet
(0,vq,Yo) for a € (0,2) and(oq,0,Yo) for a = 2.

The first quick observation which one can makederstable Lévy motion is that if we have diffu-
sive process under measu®ethe process under measpehas to be also diffusive. If we have pure
jump process under measuPehen also new process will be pure jump under meaQurk means
that we definitly cannot create pure jump process from diffuprocess and vice verse.

Let us first investigate simplier case fwe= 2. Using Theorem 5.1 we state under which conditions
are measureB andQ equivalent. One neccesary assumption is on diffusion tagkese have to be
equal, i.e.0p = 0g. The second assumption gives us that the difference oftdriftsyg — yp has to
be finite number. If these conditions holds, tigmandQ; will be equivalent measures for alb> 0.
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We can now use Theorem 5.2 to exactly describe the derivptiveess. We choosg € R s.t.
Yo—Yp = a3n and from there we can write

_ Yo—Yp
n G%

(24)

To simplify the notation we denoté o, P) 2-stable symmetric Levy motion @4/, P), i.e. drifted
Brownian motion with drift parameteyr. Analogically, we redenot¢l,o,Q) as (W,Q). Using
the result from Theorem 5.2, expression (17) fioand continuousness of trajectories of Brownian
motion, we easily obtain stochastic proceks), the logarithm of derivative proce%, P—as,in
the following form:

Pt Yo~ Yyt (25)
P

2
Op

U ={U(t),t >0} isaLeévy process ofQ, ¥, F, P) with generating triplef *&¥, 0, — (VQZQZ"’)z) which
P P
corresponds to results of Theorem 5.2. The derivative ggige- {D(t),t > 0} is then the exponen-

tial of U and also Dolean-Dade exponential,

D(t) = exp{ . (VQZEgP)Zt + VQO—%VPW(t)} (26)

These results for 2-stable Levy motion are not very surgias we could derive the same very nicely
and moreove claim even more also about the martingale fyobgusing the famous Girsanov the-
orem.

The more interesting for us is then the casedog (0,2). We obtain rather surprising result
which we formulate into following corollary. Consider twdtdired probability space@, ¥ ,F,P)
and(Q, 7,F,Q) .

Theorem 5.3 Let(Lg, g,, P) and(Lqq, gy, Q) bea—stable levy motions oi with parametersip, aq €
(0,2), Bp,Bg € [—1,1] and drift termsyp, yg € R. Then the probability measures#&hd Q are equiv-
alent, for all t> 0, if and only if at oncexp = 0 andBp = g andyp = Yo.

Contrary to case whea = 2 where we have possibility to change and if necessary cdinple
remove the drift term ofi —stable Lévy motion , in pure jump case we can neither chamgstability
parameter, nor the skewness of the distribution of the mergs of the process. This implies that we
can neither change the behaving of small jumps nor big junfiplseoprocess and further we even
cannot alter the drift part of the process.

Proof 1 Considera—stable levy motior(Ly, ., P), (Lag,pe, Q) With characteristic tripletg0,ve, yp),
(0,vp,Yp) respectively.
Yp andyq are real numbers andé&vy measures are of the form

+ —

c c _ _

vp(dx) = XaTPHl{DO} + Wﬁl{x@} for0<ap <2 and ¢,c, >0,¢h +c5 >0
% Q

VQ(dX) = Wl{x>o} + Wl{)Ko} for0< g < 2 and %,Ca >0, Cg +C5 >0
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We now use Theorem 5.1 to state conditions on stability aedrséss parameters. Without lost of
generality we can work only on the positive half-axis of th&l tine. For this reason we simplify the
notation for Levy measures

c
VP(dX):XaTPH for0<op<2 and @ >0,x>0
VQ(dX):XaCQQH forO<ag<2 and g >0,x>0

1. Measurewp andvq have to have same support. This holds if at onge-® and ¢ > 0 or
cp = O at the same timegc= 0.

2. Further, for Levy measures must hold the condition on the finiteness ofahimdier distance
between these measures, stated as:
consider functionp(x) defined as the logarithm of density agé\ty measureq with respect to

Lévy measurep, i.e. gVTS = e*X such that
/ (€29 — 1)2up(dx) < oo
0
The functiong(x) is then
Cp _
@(x) = log <_X(GP 0(Q)>
Co

which states further condition orpc> 0 and from previous everyc> 0.
We need to investigate finiteness of the integral

2
Z (]9, (ap-ag)/2 dx
CP/O ( C_pX Tl x1+ap

The latter can be rewriten as

/Ooo< Ve \/5/2>2dx:/000<x(0(? Cp 2Vm)dx

x(@o+1)/2  y(ap+1) o

ag+1) + X((Xp+1) X((Xer(XQ)/Z

Consider first thatip # 0g. The integral diverges and the Hellinger distance of thesasure
is thus not finite. The choice @nd g does not play a role in this situation.
Condsider then thatip = 0. The integral can be rewritten into simplier form

° (V- VRS
0 XOH-l
From there is obvious that the intergal will be finite only wihe = cg.
The conclusion is that measures andvg has to be identical.
3. The last condition in Theorem 5.1 is the restriction ondhé term. From absence of Gaussian
term and equality of thedvy measures follows thgh = yp.

The last which needs to be checked is the equality of skewaemsieter3p = q. It follows easily
from the relationship between skewness paranf&@nd parameters ofévy measurefc ¢, . Recall

that Bp =

% —Cp § ot o,
S and ¢ = Cq,Cp =Cq-

Q.E.D

We investigated the situation only for—stable Lévy motion ofR. It would need to be checked
and proved if the same situation holds alsoFdrwith d > 2.
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