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On Weak Solutions of Stohasti Di�erential Equations�Martina Hofmanov�a, Jan SeidlerA new proof of existene of weak solutions to stohasti di�erential equations with ontin-uous oeÆients based on ideas from in�nite-dimensional stohasti analysis is presented.The proof is fairly elementary, in partiular, neither theorems on representation of martin-gales by stohasti integrals nor results on almost sure representation for tight sequenesof random variables are needed.0. Introdution. In this paper, we provide a modi�ed proof of Skorokhod'slassial theorem on existene of (weak) solutions to a stohasti di�erential equa-tion dX = b(t;X) dt+ �(t;X) dW; X(0) = ';where b : [0; T ℄� Rm �! Rm and � : [0; T ℄� Rm �! M m�n are Borel funtions ofat most linear growth ontinuous in the seond variable. (Heneforward, by M m�nwe shall denote the spae of all m-by-n matries over R endowed with the Hilbert-Shmidt norm kAk = (TrAA�)1=2.) Our proof ombines tools that were proposedfor handling weak solutions of stohasti evolution equations in in�nite-dimensionalspaes, where traditional methods ease to work, with results on preservation of theloal martingale property under onvergene in law. In �nite-dimensional situation,the \in�nite-dimensional" methods simplify onsiderably and in our opinion thealternative proof based on them is more luid and elementary than the standardone. A positive teahing experiene of the seond author was, in fat, the mainmotivation for writing this paper. Moreover, we believe that the reader may �ndthe omparison with other available approahes illuminating.To explain our argument more preisely, let us reall the struture of the usualproof; for notational simpliity, we shall onsider (in the informal introdution only)autonomous equations. Kiyosi Itô showed in his seminal papers (see e.g. [9℄, [10℄)that a stohasti di�erential equationdX = b(X) dt+ �(X) dW (0.1)X(0) = ' (0.2)driven by an n-dimensional Wiener proess W has a unique solution provided thatb : Rm �! Rm , � : Rm �! M m�n are Lipshitz ontinuous funtions. A nextimportant step was taken by A. Skorokhod ([16℄, [17℄) in 1961, who proved thatthere exists a solution to (0.1), (0.2) if b and � are ontinuous funtions of at mostlinear growth, i.e. supx2Rm kb(x)k+ k�(x)k1 + kxk <1:�This researh was supported by the GA �CR Grant no. P201/10/0752.1



It was realized only later that two di�erent onepts of a solution are involved: forLipshitzian oeÆients, there exists an (Ft)-progressively measurable proess inRm solving (0.1) and suh that X(0) = ', whenever (
;F ; (Ft);P ) is a stohastibasis arrying an n-dimensional (Ft)-Wiener proess and ' is an F0-measurablefuntion. (We say that X is a strong solution of (0.1), (0.2).) On the other hand, forontinuous oeÆients, a stohasti basis (
;F ; (Ft);P ), an n-dimensional (Ft)-Wiener proess W and an (Ft)-progressively measurable proess X may be foundsuh that X solves (0.1) and X(0) and ' have the same law. (We speak about aweak solution X in suh a ase.) It is well known that this di�erene is substantialin general: under assumptions of the Skorokhod theorem strong solutions need notexist (see [1℄).Skorokhod's existene theorem is remarkable not only by itself, but also beauseof the method of its proof. To present it, we need some notation: if M and N areontinuous real loal martingales, then by hMi we denote the quadrati variationof M and by hM;Ni the ross-variation of M and N . Let M = (M i)mi=1 and N =(N j)nj=1 be ontinuous loal martingales with values in Rm and Rn , respetively.By hhMii we denote the tensor quadrati variation of M , hhMii = (hM i;Mki)mi;k=1,and we set hMi = TrhhMii. Analogously, we de�neM 
N = �M iN j�m ni=1j=1; hhM;Nii = �hM i; N ji�m ni=1j=1:Let X and Y be random variables with values in the same measurable spae (E; E ),we write X D� Y if X and Y have the same law on E . Similarly, X D� � means thatthe law of X is a probability measure � on E .Let dXr = br(Xr) dt+ �r(Xr) dW; Xr(0) = 'be a sequene of equations whih have strong solutions and approximate (0.1) ina suitable sense. (We shall approximate b and � by Lipshitz ontinuous funtionshaving the same growth as b and �, but likewise it is possible to use e.g. �nitedi�erene approximations.) The linear growth hypothesis makes it possible to provethat the laws of fXr; r � 1g are tight, (0.3)that is, form a relatively weakly ompat set of measures on the spae of ontinuoustrajetories. Then Skorokhod's theorem on almost surely onverging realizationsof onverging laws (see e.g. [5℄, Theorem 11.7.2) may be invoked, whih yields asubsequene fXrkg of fXrg, a probability spae ( ~
; ~F ; ~P ) and sequenes f ~Xk; k �0g, f ~Wk; k � 0g suh that(Xrk ;W ) D� ( ~Xk; ~Wk); k � 1; ( ~Xk; ~Wk) ~P -a. s.�����!k!1 ( ~X0; ~W0): (0.4)2



It is laimed that ~X0 is the (weak) solution looked for. Skorokhod's papers [16℄and [17℄ are written in a very onise way and details of proofs are not o�ered;nowadays standard version of Skorokhod's proof is as follows (see [18℄, Theorem6.1.6, [8℄, Theorem IV.2.2, [12℄, Theorem 5.4.22): under a suitable integrabilityassumption upon the initial ondition,Mk = Xrk �Xrk(0)� Z �0 brk(Xrk(s)) dsis a martingale with a (tensor) quadrati variationhhMkii = Z �0 �rk(Xrk(s))��rk(Xrk(s)) ds;for all k � 1. Equality in law (0.4) implies that also~Mk = ~Xk � ~Xk(0)� Z �0 brk( ~Xk(s)) dsare martingales for k � 1, with quadrati variationshh ~Mkii = Z �0 �rk( ~Xk(s))��rk( ~Xk(s)) ds:Using onvergene ~P -almost everywhere, it is possible to show that~M0 = ~X0 � ~X0(0)� Z �0 b( ~X0(s)) dsis a martingale with a quadrati variationhh ~M0ii = Z �0 �( ~X0(s))��( ~X0(s)) ds:By the integral representation theorem for martingales with an absolutely ontinu-ous quadrati variation (see e.g. [12℄, Theorem 3.4.2, or [8℄, Theorem II.7.1'), thereexists a Wiener proess Ŵ (on an extended probability spae) satisfying~M0 = Z �0 �( ~X0(s)) dŴ (s):Therefore, ~X0 is a weak solution to (0.1), (0.2). (In the ited books, martingaleproblems are used instead of weak solutions. Then the integral representation3



theorem is hidden in the onstrution of a weak solution from a solution to themartingale problem, so a omplete proof is essentially again the one skethed above.)This proedure has two rather nontrivial inputs: the Skorokhod representationtheorem, and the integral representation theorem whose proof, albeit based on asimple and beautiful idea, beomes quite tehnial if the spae dimension is greaterthan one. An alternative approah to identi�ation of the limit was disoveredreently by M. Ondrej�at (see [3℄, [14℄) who studied stohasti wave maps betweenmanifolds, where integral representation theorems for martingales are no longeravailable. His method, whih refers only to basi properties of martingales andstohasti integrals, may be desribed in the ase of the problem (0.1), (0.2) in thefollowing way: One starts again with a sequene f( ~Xk; ~Wk)g suh that (0.4) holdstrue. If the initial ondition is p-integrable for some p > 2, it an be shown in astraightforward manner, using the almost sure onvergene, that~M0; k ~M0k2 � Z �0 k�( ~X0(s))k2 ds; ~M0 
 ~W0 � Z �0 �( ~X0(s)) dsare martingales, in other words,� ~M0 � Z �0 �( ~X0) d ~W0(s)� = 0;whene one onludes that X0 is a weak solution. If the additional integrabilityhypothesis on ' is not satis�ed, the proof remains almost the same, only a suitableut-o� proedure must be amended.We take a step further and eliminate also the Skorokhod representation theorem.Let ~Pk be the laws of (Xrk ;W ) on the spae U = C ([0; T ℄;Rm)�C ([0; T ℄;Rn) and(Y;B) the anonial proess on U . Then�Mk; k �Mkk2 � Z �0 k�rk(Y (s))k2 ds; �Mk 
B � Z �0 �rk(Y (s)) ds; (0.5)where �Mk = Y � Y (0)� Z �0 brk(Y (s)) ds; k � 0(with br0 = b, �r0 = �), are martingales under the measure ~Pk for every k � 1, asan be inferred quite easily from the de�nition of the measure ~Pk. Now one maytry to use Theorem IX.1.17 from [11℄ stating, roughly speaking, that a limit in lawof a sequene of ontinuous loal martingales is a loal martingale. We do not usethis theorem diretly, sine onvergene in law of the proesses (0.5) as k !1 doesnot seem obvious, but our argument is inspired by the proofs in the book [11℄. Theproof we propose is not diÆult and it is almost self-ontained, it requires only two4



auxiliary lemmas from [11℄ with simple proofs whih we reall in Appendix. Onewe know that the proesses (0.5) are loal martingales for k = 0 as well, Ondrej�at'strik may be used showing that Y is a weak solution to (0.1), (0.2). It is worthmentioning that this proedure is independent of any integrability hypothesis on '.The proof of (0.3) not being our main onern notwithstanding, we deided toinlude a less standard proof of tightness inspired also by the theory of stohastipartial di�erential equations. We adopt an argument proposed by D. G�atarek andB. Go ldys in [6℄ (f. also [4℄, Chapter 8), who introdued it when studying weaksolutions to stohasti evolution equations in Hilbert spaes, and whih relies on thefatorization method of G. Da Prato, S. Kwapie�n and J. Zabzyk (see [4℄, Chapters5 and 7, for a thorough exposition) and on ompatness properties of frationalintegral operators. The frational alulus has beome popular amongst probabilistsreently beause of its appliations to frational Brownian motion driven stohastiintegrals and a proof of tightness using it may suit some readers more than thetraditional one based on estimates of moduli of ontinuity.Let us lose this Introdution by stating the result to be proved preisely.Theorem 0.1. Let b : [0; T ℄ � Rm �! Rm and � : [0; T ℄ � Rm �! M m�n beBorel funtions suh that b(t; �) and �(t; �) are ontinuous on Rm for any t 2 [0; T ℄and the linear growth hypothesis is satis�ed, that is9K� <1 8t 2 [0; T ℄ 8x 2 Rm kb(t; x)k _ k�(t; x)k � K��1 + kxk�: (0.6)Let � be a Borel probability measure on Rm . Then there exists a weak solution tothe problem dX = b(t;X) dt+ �(t;X) dW; X(0) D� �: (0.7)We reall that a weak solution to (0.7) is a triple ((G;G ; (Gt);Q);W;X), where(G;G ; (Gt);Q) is a stohasti basis with a �ltration (Gt) that satis�es the usualonditions, W is an n-dimensional (Gt)-Wiener proess and X is an Rm -valued(Gt)-progressively measurable proess suh that Q ÆX(0)�1 = � andX(t) = X(0) + Z t0 b(r;X(r)) dr+ Z t0 �(r;X(r)) dW (r)for all t 2 [0; T ℄ Q-almost surely.The rest of the paper is devoted to the proof of Theorem 0.1. In Setion 1,a sequene of equations with Lipshitzian oeÆients approximation (0.7) is on-struted, tightness of the set of their solutions being shown in Setion 2. In Setion3, luster points of the set of approximating solutions are identi�ed as weak solu-tions to (0.7).Aknowledgements. The authors are indebted to Martin Ondrej�at for manyuseful disussions. 5



1. Approximations. In this Setion we introdue a sequene of equations whihhave strong solutions and approximate the problem (0.7). If E and F are metrispaes, we denote by C (E;F ) the spae of all ontinuous mappings from E to F .For brevity, we shall sometimes write CV instead of C ([0; T ℄;RV ) if V 2 N . Iff 2 C ([0; T ℄;F ) and s 2 [0; T ℄ then the restrition of f to the interval [0; s℄ will bedenoted by %sf . Plainly, %s : C ([0; T ℄;F ) �! C ([0; s℄;F ) is a ontinuous mapping.Finally, Lq(G;RV ) stands for the spae of q-integrable funtions on G with valuesin RV .Our onstrution is based on the following proposition.Proposition 1.1. Suppose that F : R+ � RN �! RV is a Borel funtion of atmost linear growth, i.e.9L <1 8t � 0 8x 2 RN kF (t; x)k � L�1 + kxk�;suh that F (t; �) 2 C (RN ;RV ) for any t 2 R+ . Then there exists a sequene ofBorel funtions Fk : R+ � RN �! RV , k � 1, whih have at most linear growthuniformly in k, namely8k � 1 8t � 0 8x 2 RN kFk(t; x)k � L�2 + kxk�;whih are Lipshitz ontinuous in the seond variable uniformly in the �rst one,8k � 1 9Lk <1 8t � 0 8x; y 2 RN kFk(t; x)� Fk(t; y)k � Lkkx� yk;and whih satisfy limk!1Fk(t; �) = F (t; �) loally uniformly on RNfor all t � 0.The proof is rather standard so it is not neessary to dwell on its details: onetakes a smooth funtion � 2 C1(RN ) suh that � � 0, supp � � fx 2 RN ; kxk � 1gand RRN � dx = 1 and setsGk(t; x) = kN ZRN F (t; y)��k(x� y)�dyfor k � 1, t � 0 and x 2 RN . The funtions Gk have all desired properties exept forbeing only loally Lipshitz, but it is possible to modify them outside a suÆientlylarge ball in an obvious manner. 6



Let the oeÆients b and � satisfy the assumptions of Theorem 0.1. UsingProposition 1.1 we �nd Borel funtions bk : [0; T ℄ � Rm �! Rm and �k : [0; T ℄ �Rm �! M m�n , k � 1, suh thatsupk�1 supt2[0;T ℄�kbk(t; x)k _ k�k(t; x)k	 � K��2 + kxk�; x 2 Rm ; (1.1)bk(t; �) and �k(t; �) are Lipshitz ontinuous uniformly in t 2 [0; T ℄ and onvergeloally uniformly on Rm as k !1 to b(t; �) and �(t; �), respetively, for all t 2 [0; T ℄.Fix an arbitrary stohasti basis (
;F ; (Ft);P ), on whih an n-dimensional (Ft)-Wiener proess W and an F0-measurable random variable ' : 
 �! Rm with' D� � are de�ned. It is well known that for any k � 1 there exists a unique (Ft)-progressively measurable Rm -valued stohasti proess Xk solving the equationdXk = bk(t;Xk) dt+ �k(t;Xk) dW; Xk(0) = ': (1.2)Moreover, for any p 2 [2;1[ there exists a onstant C� <1, depending only on p,T and K�, suh thatsupk�1E sup0�t�T kXk(t)kp � C��1 +Ek'kp�; (1.3)provided that ZRm kxkp d�(x) = Ek'kp <1:2. Tightness. Let fXk; k � 1g be the sequene of solutions to (1.2). Plainly,the proesses Xk may be viewed as random variables Xk : 
 �! Cm (where thePolish metri spae Cm is endowed with its Borel �-algebra). In this setion, weaim at establishing the following proposition.Proposition 2.1. The set fP ÆX�1k ; k � 1g of Borel probability measures onC ([0; T ℄;Rm) is tight.To this end, let us reall the de�nition of the Riemann-Liouville (or frationalintegral) operator: if q 2 ℄1;1℄, � 2 ℄1q ; 1℄ and f 2 Lq([0; T ℄;Rm), we de�ne afuntion R�f : [0; T ℄ �! Rm by�R�f�(t) = Z t0 (t� s)��1f(s) ds; 0 � t � T:The de�nition is orret, as an easy appliation of the H�older inequality shows.Note that, in partiular, R1f = R �0 f(t) dt. It is well-known (and may be hekedby very straightforward alulations) that R� is a bounded linear operator from7



Lq([0; T ℄;Rm) to the spae C 0;��1=q([0; T ℄;Rm) of (�� 1q )-H�older ontinuous fun-tions (see e.g. [15℄, Theorem 3.6). Balls in C 0;��1=q([0; T ℄;Rm) are relatively om-pat in C ([0; T ℄;Rm) by the Arzel�a-Asoli theorem, hene we arrive atLemma 2.2. If q 2 ℄1;1℄ and � 2 ℄1q ; 1℄, then R� is a ompat linear operatorfrom Lq([0; T ℄;Rm) to C ([0; T ℄;Rm).We shall need also a Fubini-type theorem for stohasti integrals in the followingform (a more general result may be found in [4℄, Theorem 4.18):Lemma 2.3. Let (G;G ; (Gt);Q) be a stohasti basis, B an n-dimensional (Gt)-Wiener proess and (X;�; �) a �nite measure spae. Denote by M the �-algebraof (Gt)-progressively measurable sets and assume that  : [0; T ℄�G�X �! M m�nis an M 
�-measurable mapping suh thatZX�Z T0 ZG k (s; x)k2 dQ ds�1=2 d�(x) <1: (2.1)Then ZX�Z T0  (s; x) dB(s)�d�(x) = Z T0 �ZX  (s; x) d�(x)�dB(s)Q-almost surely.The last auxiliary result to be realled is the Young inequality for onvolutions(see, for example, [13℄, Theorem 4.2).Lemma 2.4. Let p; r; s 2 [1;1℄ satisfy1p + 1q = 1 + 1s :If f 2 Lp(Rd ) and g 2 Lq(Rd ), then the integral(f � g)(x) � ZRd f(x� y)g(y) dyonverges for almost all x 2 Rd , f � g 2 Ls(Rd ) andf � gLs � kfkLpkgkLq :In fat, we shall need only a partiular one-dimensional ase of Lemma 2.4: iff 2 Lp(0; T ), g 2 Lq(0; T ), 1p + 1q = 1 + 1s , then�Z T0 ����Z t0 f(t� r)g(r) dr����s dt�1=s � kfkLp(0;T )kgkLq(0;T ): (2.2)8



Now we derive a representation formula that plays a key role in our proof ofProposition 2.1.Lemma 2.5. Let  be an M m�n -valued progressively measurable proess suhthat E Z T0 k (s)kq ds <1for some q > 2. Choose � 2 ℄1q ; 12 [ and setZ(t) = Z t0 (t� u)�� (u) dW (u); 0 � t � T:Then Z t0  (s) dW (s) = sin��� �R�Z�(t)for all t 2 [0; T ℄ P -almost surely.Proof. The result is well-known and widely used for in�nite-dimensional systems(see e.g. [4℄, x 5.3), but we repeat here the proof for reader's onveniene.Sine s�2� 2 L1(0; T ), Ek (�)k2 2 L1(0; T ), their onvolutiont 7�! Z t0 (t� s)�2�Ek (s)k2 ds = E Z t0 ��(t� s)��k (s)k��2 dsbelongs to L1(0; T ) as well and so is �nite almost everywhere in (0; T ), whih impliesthat Z(t) is well de�ned for almost all t 2 [0; T ℄. By the Burkholder-Davis-Gundyinequality,E Z T0 kZ(t)kq dt = Z T0 EZ s0 (s� u)�� (u) dW (u)q ds� CqE Z T0 �Z s0 (s� u)�2�k (u)k2 du�q=2 ds� Cq�Z T0 s�2� ds�q=2�Z T0 Ek (u)kq du�;the last estimate being a onsequene of (2.2) and the fat that Ek (�)k2 2Lq=2(0; T ). Hene Z(�; !) 2 Lq(0; T ;Rm) for P -almost all ! 2 
 and R�Z iswell de�ned P -almost surely. 9



Further,Z t0 �E Z t0 (t� s)��11[0;s[(u)(s� u)�� (u)2 du�1=2 ds= Z t0 (t� s)��1�Z s0 (s� u)�2�Ek (u)k2 du�1=2 ds� �Z t0 s(��1)q� ds�1=q��Z t0 �Z s0 (s� u)�2�Ek (u)k2 du�q=2 ds�1=q� �Z t0 s(��1)q� ds�1=q��Z t0 s�2� ds�1=2�Z t0 Ek (u)kq du�1=q <1;where 1q� + 1q = 1 and the H�older and Young inequalities were used onseutively.This means that the hypothesis (2.1) of Lemma 2.3 is satis�ed and this lemma maybe used to obtain�R�Z�(t) = Z t0 (t� s)��1�Z s0 (s� u)�� (u) dW (u)�ds= Z t0 Z t0 (t� s)��11[0;s[(u)(s� u)�� (u) dW (u) ds= Z t0 �Z t0 (t� s)��11[0;s[(u)(s� u)�� ds� (u) dW (u)= Z t0 �Z tu (t� s)��1(s� u)�� ds� (u) dW (u)= Z t0 �Z 10 (1� v)��1v�� dv�| {z }= �sin��  (u) dW (u):
Q.E.D.Proof of Proposition 2.1. Let an arbitrary " > 0 be given, we have to �nd arelatively ompat set K � Cm suh thatinfk�1P�Xk 2 K	 � 1� ":In what follows, we shall denote by Di onstants independent of k and by j � jq thenorm of Lq(0; T ;Rm).First, we prove our laim under an additional assumption that there exists p > 2suh that Ek'kp <1: (2.3)10



Plainly, a ompat set � � Rm may be found satisfying�(� ) = P�' 2 �	 � 1� "3 :Take an � 2 ℄ 1p ; 12 [. By Lemma 2.5,Xk(t) = '+ Z t0 bk(s;Xk(s)) ds+ Z t0 �k(s;Xk(s)) dW (s)= '+ �R1b(�; Xk(�))�(t) + sin��� �R�Zk�(t); 0 � t � T;P -almost surely, whereZk(s) = Z s0 (s� u)���k(u;Xk(u)) dW (u); 0 � s � T:Applying the Chebyshev inequality, (1.1) and (1.3) we getP�jbk(�; Xk(�))jp � �	 � 1�pE Z T0 bk(t;Xk(t))p dt� 1�pKp�E Z T0 �2 + kXk(t)k�p dt� D1�p �1 +Ek'kp�:Similarly, invoking in addition the Burkholder-Davis-Gundy and Young inequalities,P�jZkjp � �	 � 1�p E Z T0 kZk(t)kp dt� D2�p E Z T0 �Z t0 (t� s)�2��k(s;Xk(s))2 ds�p=2 dt� D2�p �Z T0 s�2� ds�p=2�Z T0 E�k(s;Xk(s))p ds�� D3�p �1 +Ek'kp�:Let us hoose �0 <1 so thatD1 +D3�p0 �1 +Ek'kp� < "311



and set K = nf 2 C ([0; T ℄;Rm); f = x+ R1r + sin��� R�v; x 2 �;r; v 2 Lp(0; T ;Rm); jrjp _ jvjp � �0o:Sine the operators R1 and R� are ompat, the set K is relatively ompat andP�Xk =2 K	 � P�' =2 �	 + P�jbk(�; Xk(�))jp > �0	 + P�jZkjp > �0	� 23" < "for any k � 1, whih ompletes the proof of tightness under the additional assump-tion (2.3).Finally, let ' be arbitrary. Let " > 0 be �xed, we may �nd � � 0 suh thatP fk'k > �g < "2 . Let X̂k, k � 1, be the solutions todX̂k = bk(t; X̂k) dt+ �k(t; X̂k) dW; X̂k(0) = 1fk'k��g': (2.4)The initial ondition in (2.4) satis�es (2.3), so by the �rst part of the proof we knowthat the set fP Æ X̂�1k ; k � 1g is tight and there exists a ompat set K � Cm suhthat infk�1P�X̂k =2 K	 � "2 :Sine the oeÆients bk, �k are Lipshitz ontinuous in spae variables,1fk'k��gX̂k = 1fk'k��gXk P -almost surelyfor all k � 1, this impliesP�Xk =2 K	 � P�X̂k =2 K	 + P�k'k > �	 < "for any k � 1 and tightness of the set fP ÆX�1k ; k � 1g follows. Q.E.D.Corollary 2.6. The set fP Æ (Xk;W )�1; k � 1g is a tight set of probabilitymeasures on C ([0; T ℄;Rm)� C ([0; T ℄;Rn).By the Prokhorov theorem, the set fP Æ (Xk;W )�1; k � 1g is relatively (se-quentially) ompat in the weak topology of probability measures, so it ontainsa weakly onvergent subsequene. Without loss of generality we may (and shall)assume that the sequene fP Æ (Xk;W )�1g1k=1 itself is weakly onvergent. Let usset for brevity ~Pk = P Æ (Xk;W )�1, k � 1, and denote the weak limit of f ~Pkg1k=1by ~P0. Set furtherU = Cm � Cn; U = Borel(Cm)
 Borel(Cn);12



and let (Y;B) be the proess of projetions on U , that is(Yt; Bt) : Cm � Cn �! Rm � Rn ; (h; g) 7�! (h(t); g(t)); 0 � t � T:Finally, let (Ut) be the ~P0-augmented anonial �ltration of the proess (Y;B),that is Ut = ���(%tY; %tB) [ fN 2 U ; ~P0(N) = 0g�; 0 � t � T:3. Identifiation of the limit. In this setion we shall show that ((U;U ;(Ut); ~P0); B; Y ) is a weak solution to the problem (0.7). Towards this end, de�neMk = Y � Y (0)� Z �0 bk(r; Y (r)) dr; k � 0;where we set b0 = b, �0 = �. The proof is an immediate onsequene of thefollowing four lemmas.Lemma 3.1. The proess M0 is an m-dimensional loal (Ut)-martingale on(U;U ; ~P0).Lemma 3.2. The proess B is an n-dimensional (Ut)-Wiener proess on(U;U ; ~P0).Lemma 3.3. The proesskM0k2 � Z �0 �(r; Y (r))2 dris a loal (Ut)-martingale on (U;U ; ~P0).Lemma 3.4. The proessM0 
 B � Z �0 �(r; Y (r)) dris an M m�n -valued loal (Ut)-martingale on (U;U ; ~P0).Proofs of these lemmas have an idential struture, so we prove only the �rst ofthem in detail, the other ones being treated only in a onise manner. In the ourseof the proof, we shall need two easy results on ontinuity properties of �rst hittingtimes as funtionals of paths. Let V � 1, for any L 2 R+ de�ne�L : CV �! [0; T ℄; f 7�! inf�t � 0; kf(t)k � L	(with a onvention inf ; = T ). 13



Lemma 3.5. (a) For any f 2 CV , the funtion L 7�! �L(f) is nondereasingand left-ontinuous on R+ .(b) For eah L 2 R+ , the mapping �L is lower semiontinuous. Moreover, �L isontinuous at every point f 2 CV for whih ��(f) is ontinuous at L.If (Zt)t2[0;T ℄ is a ontinuous RV -valued stohasti proess de�ned on a proba-bility spae (G;G ; q), then ��L(Z)�L�0 is a stohasti proess with nondereasingleft-ontinuous trajetories, whene we getLemma 3.6. The set�L 2 R+ ; qf��(Z) is not ontinuous at Lg > 0	is at most ountable.Lemma 3.5 is proved (but not stated exatly in this form) in [11℄, see LemmaVI.2.10 and Proposition VI.2.11 there. For Lemma 3.6, see [11℄, Lemma VI.3.12. Inthe book [11℄, �L is onsidered as a funtion on the Skorokhod spae D , in our asethe proofs simplify further and for reader's onveniene are realled in Appendix.Further, let us quote an useful result on weak onvergene of measures (f. e.g.[2℄, Proposition IX.5.7).Lemma 3.7. Let f�rgr�1 be a sequene of Borel probability measures on ametri spae � onverging weakly to a Borel probability measure �0. Let f : � �! Rbe a bounded real funtion ontinuous at �0-almost all points of �. Thenlimr!1 Z� f d�r = Z� f d�0:Proof of Lemma 3.1. The idea of the proof is simple: de�ne proesses�k = Xk �Xk(0)� Z �0 bk(r;Xk(r)) dr; k � 1;in analogy with the de�nition of Mk but using the solutions Xk to the problem(1.2) instead of the proess Y . We shall prove: i) �k, k � 1, are loal martingales,ii) Mk, k � 1, are loal martingales with respet to the measure ~Pk due to theequality of laws ~Pk Æ (Y;B)�1 = P Æ (Xk;W )�1, iii) M0 is a loal martingale as alimit of loal martingales Mk.First, as Xk solves (1.2),�k(t) = Z t0 �k(r;Xk(r)) dWr; 0 � t � T;14



and so �k is a loal (Ft)-martingale. Take an L 2 R+ , for the time being arbitrary.Obviously, �L(Xk) is a stopping time and �k(� ^ �L(Xk)) is a bounded proess by(1.1) and the de�nition of �L, hene �k(� ^ �L(Xk)) is a martingale.Hereafter, times s; t 2 [0; T ℄, s � t, and a ontinuous funtion : C ([0; s℄;Rm)� C ([0; s℄;Rn) �! [0; 1℄will be �xed but otherwise arbitrary. Obviously, (%sXk; %sW ) is a bounded Fs-measurable funtion, heneE(%sXk; %sW )�k(t ^ �L(Xk)) = E(%sXk; %sW )�k(s ^ �L(Xk)) (3.1)by the martingale property of �k(� ^ �L(Xk)).Note that the mapping[0; T ℄� Cm �! Rm ; (u; h) 7�! h(u)� h(0)� Z u0 bk(r; h(r)) dris ontinuous for any k � 0 due to the ontinuity of bk(r; �), and the mappingCm �! [0; T ℄� Cm; h 7�! (� ^ �L(h); h)is Borel for any � 2 [0; T ℄ �xed by Lemma 3.5(b), thus also their superpositionHk(�; �) : Cm �! Rm ; h 7�! h(� ^ �L(h))� h(0)� Z �^�L(h)0 bk(r; h(r)) dris Borel. Consequently, the mappingCm � Cn �! Rm ; (h; g) 7�! (%sh; %sg)Hk(�; h)is Borel. Sine �k(� ^ �L(Xk)) = Hk(�;Xk), k � 1, and Mk(� ^ �L(Y )) = Hk(�; Y ),k � 0, we getP Æ �(%sXk; %sW )�k(� ^ �L(Xk))��1 = ~Pk Æ �(%sY; %sB)Mk(� ^ �L(Y ))��1for all k � 1 by the de�nition of ~Pk, whih together with (3.1) implies~Ek(%sY; %sB)Mk(t ^ �L(Y )) = ~Ek(%sY; %sB)Mk(s ^ �L(Y )); k � 1: (3.2)Now, suppose in addition that L is hosen so that~P0���(Y ) is ontinuous at L	 = 1: (3.3)15



(Lemma 3.6 shows that suh a hoie is possible.) Then~P0�(f; g) 2 U ; �L(�) is ontinuous at f	 = 1by Lemma 3.5(b) and the fat that Y is a anonial projetion from U onto Cm, soalso ~P0�(f; g) 2 U ; H0(�; �) is ontinuous at f	 = 1:This implies that (%sY; %sB)H0(�; Y ) is a bounded funtion ontinuous ~P0-almosteverywhere on U for any � �xed. We may estimate ~Ek(%sY; %sB)Hk(�; Y )� ~E0(%sY; %sB)H0(�; Y )�  ~Ek(%sY; %sB)�Hk(�; Y )�H0(�; Y )�+  ~Ek(%sY; %sB)H0(�; Y )� ~E0(%sY; %sB)H0(�; Y ):From Lemma 3.7 we obtain thatlimk!1 ~Ek(%sY; %sB)H0(�; Y ) = ~E0(%sY; %sB)H0(�; Y ):Further, ~Ek(%sY; %sB)�Hk(�; Y )�H0(�; Y )�� ~EkHk(�; Y )�H0(�; Y )= ~EkZ �^�L(Y )0 �bk(r; Y (r))� b0(r; Y (r))�dr= ~Ek1f�L(Y )>0gZ �^�L(Y )0 �bk(r; Y (r))� b0(r; Y (r))�dr� ~Ek1f�L(Y )>0g Z �^�L(Y )0 bk(r; Y (r))� b0(r; Y (r))dr� ~Ek1f�L(Y )>0g Z T0 bk(r; Y (r ^ �L(Y )))� b0(r; Y (r ^ �L(Y )))dr� ~Ek1f�L(Y )>0g Z T0 supkzk�Lbk(r; z)� b0(r; z)dr= Z T0 supkzk�Lbk(r; z)� b0(r; z) dr;as kY (r ^ �L(Y ))k � L on the set f�L(Y ) > 0g. Sine bk(r; �) ! b0(r; �) loallyuniformly on Rm for every r 2 [0; T ℄ andsupkzk�Lbk(r; z)� b0(r; z) � 2K�(2 + L)16



by (0.6) and (1.1), we havelimk!1 Z T0 supkzk�Lbk(r; z)� b0(r; z)dr = 0by the dominated onvergene theorem, henelimk!1 ~Ek(%sY; %sB)Hk(�; Y ) = ~E0(%sY; %sB)H0(�; Y )for any � 2 [0; T ℄. Therefore,~E0(%sY; %sB)M0(t ^ �L(Y )) = ~E0(%sY; %sB)M0(s ^ �L(Y )) (3.4)follows from (3.2). If G � C ([0; s℄;Rm � Rn) is an arbitrary open set, then thereexist ontinuous funtions gl : C ([0; s℄;Rm � Rn ) �! [0; 1℄ suh that gl % 1G onC ([0; s℄;Rm � Rn) as l ! 1. Therefore, using the Levi monotone onvergenetheorem we derive from (3.4) that~E01G(%sY; %sB)M0(t ^ �L(Y )) = ~E01G(%sY; %sB)M0(s ^ �L(Y )): (3.5)Further, �G � C ([0; s℄;Rm � Rn); G Borel and (3.5) holds for 1G	is a �-system ontaining, as we have just shown, the system of all open sets inC ([0; s℄;Rm � Rn ) losed under �nite intersetions. Consequently, (3.5) holds forall Borel sets G � C ([0; s℄;Rm � Rn), that is~E01AM0(t ^ �L(Y )) = ~E01AM0(s ^ �L(Y ))holds for all A 2 �(%sY; %sB), thus for all A 2 Us. We see that M0(� ^ �L(Y ))is a (Ut)-martingale, whenever L 2 R+ satis�es (3.3). It remains to note that byLemma 3.6 there exists a sequene Lr %1 suh that~P0���(Y ) is ontinuous at Lr for every r � 1	 = 1:As f�Lr(Y )g is plainly a loalizing sequene of stopping times, we onlude thatM0 is a loal (Ut)-martingale on (U;U ; ~P0), as laimed. Q.E.D.Proof of Lemma 3.2. By our onstrution, P ÆW�1 = ~Pk Æ B�1 for eahk � 1, so also P ÆW�1 = ~P0ÆB�1 and B is an n-dimensional Wiener proess (withrespet to its anonial �ltration) on (U;U ; ~P0). In partiular, its tensor quadrativariation satis�es hhBiit = tI. Mimiking the proedure from the previous proof we17



may hek easily that B is a loal (Ut)-martingale, hene an (Ut)-Wiener proessby the L�evy theorem. Q.E.D.Proof of Lemma 3.3. We know that �k, k � 1, are loal martingales andh�ki = �Z �0 �k(r;Xk(r)) dWr� = Z �0 �k(r;Xk(r))2 dr;thus k�kk2 � Z �0 �k(r;Xk(r))2 dr; k � 1;are ontinuous loal martingales. For times s � t and a funtion  introdued inthe proof of Lemma 3.1 we getE(%sXk; %sW )h�k(t ^ �L(Xk))2 � Z t^�L(Xk)0 �k(r;Xk(r))2 dri= E(%sXk; %sW )h�k(s ^ �L(Xk))2 � Z s^�L(Xk)0 �k(r;Xk(r))2 dri: (3.6)Note that Cm �! R; h 7�! Hk(�; h)2 � Z �^�L(h)0 �k(r; h(r))2 dris a Borel mapping for all k � 0 and � 2 [0; T ℄. It an be seen easily that it suÆesto hek that Cm �! R; h 7�! Z u0 �k(r; h(r))2 dris a ontinuous mapping for any u 2 [0; T ℄; this follows from the estimate����Z u0 �k(r; h1(r))2 dr � Z u0 �k(r; h2(r))2 dr����� Z u0 n�k(r; h1(r))+ �k(r; h2(r))o����k(r; h1(r))� �k(r; h2(r))��� dr� K��4 + kh1kCm + kh2kCm�Z u0 �k(r; h1(r))� �k(r; h2(r))drfor h1; h2 2 Cm, ontinuity of funtions �k(r; �) and the dominated onvergenetheorem.Hene (3.6) yields~Ek(%sY; %sB)hMk(t ^ �L(Y ))2 � Z t^�L(Y )0 �k(r; Y (r))2 dri= ~Ek(%sY; %sB)hMk(s ^ �L(Y ))2 � Z s^�L(Y )0 �k(r; Y (r))2 dri:18



Passing to the limit exatly in the same way as in the proof of Lemma 3.1 we obtain~E0(%sY; %sB)hM0(t ^ �L(Y ))2 � Z t^�L(Y )0 �0(r; Y (r))2 dri= ~E0(%sY; %sB)hM0(s ^ �L(Y ))2 � Z s^�L(Y )0 �0(r; Y (r))2 driprovided that L 2 R+ satis�es (3.3), and the proof may be ompleted easily. Q.E.D.Proof of Lemma 3.4. Sine �k and W are ontinuous loal martingales, theproess �k 
 W � hh�k;W ii is an M m�n -valued loal martingale. Let us denote�k = (�ik)mi=1, W = (W j)nj=1 and �k = (�ijk )mi=1nj=1. Then
�ik;W j� = � nXl=1 Z �0 �ilk (r;Xk(r)) dW l(r);W j�= nXl=1 Z �0 �ilk (r;Xk(r)) dhW l;W jir= Z �0 �ijk (r;Xk(r)) dr;therefore, �k 
W � Z �0 �k(r;Xk(r)) dr (3.7)is an M m�n -valued loal martingale. The proess (3.7) stopped at �L(Xk;W ) isbounded, hene it is a martingale and soE(%sXk; %sW )h��k 
W �(t ^ �L(Xk;W ))� Z t^�L(Xk;W )0 �k(r;Xk(r)) dri= E(%sXk; %sW )h��k 
W �(s ^ �L(Xk;W ))� Z s^�L(Xk;W )0 �k(r;Xk(r)) dri;whenever 0 � s � t � T and  is a ontinuous funtion as above. (Sine Cm�Cn �=Cm+n, it is lear how �L(f; g) is de�ned for (f; g) 2 Cm�Cn.) Now we may proeedas in the proof of Lemma 3.1. Q.E.D.Proof of Theorem 0.1. Lemmas 3.1{3.4 having been established, it is straight-forward to prove that ((U;U ; (Ut); ~P0); B; Y ) is a weak solution of (0.7). Sine~P0 Æ Y (0)�1 = ~Pk Æ Y (0)�1 = P Æ '�1 = � by our onstrution, it remains only toshow that Y (t) = Y (0) + Z t0 b(r; Y (r)) dr+ Z t0 �(r; Y (r)) dB(r)19



for any t 2 [0; T ℄ ~P0-almost surely, that isM0(t) = Z t0 �(r; Y (r)) dB(r) for all t 2 [0; T ℄ ~P0-almost surely. (3.8)Obviously, (3.8) is equivalent to�M0 � Z �0 �(r; Y (r)) dB(r)�T = 0 ~P0-almost surely. (3.9)We have�M0 � Z �0 �(r; Y (r)) dB(r)�T = hM0iT + �Z �0 �(r; Y (r)) dB(r)�T� 2 mXi=1DM i0; nXj=1 Z �0 �ij(r; Y (r)) dBj(r)ET= hM0iT + Z T0 �(r; Y (r))2 dr� 2 mXi=1DM i0; nXj=1 Z �0 �ij(r; Y (r)) dBj(r)ET :By Lemma 3.3, 
M0�T = Z T0 �(r;X(r))2 dr;and by Lemma 3.4 we obtainmXi=1 nXj=1DM i0; Z �0 �ij(r; Y (r)) dBj(r)ET = mXi=1 nXj=1 Z T0 �ij(r; Y (r)) dhM i0; Bjir= mXi=1 nXj=1 Z T0 ��ij(r; Y (r))�2 dr= Z T0 �(r; Y (r))2 dr;hene (3.9) holds true. Q.E.D.Remark 3.1. If the oeÆients b and � of the equation (0.7) are de�ned onR+ � Rm and satisfy the assumptions of Theorem 0.1 there, then there exists aweak solution to (0.7) de�ned for all times t � 0. The proof remains almost thesame, only its part onerning tightness requires small modi�ations. However, it20



suÆes to realize that the spae C (R+ ;RV ) equipped with the topology of loallyuniform onvergene is a Polish spae whose Borel �-algebra is generated by theprojetions f 7! f(t), t � 0 and whose losed subset K is ompat if and only iff%T f ; f 2 Kg is a ompat subset of C ([0; T ℄;RV ) for all T � 0.Remark 3.2. Traing the proofs in Setion 3, we an hek easily that, unlikethe proof of tightness in Setion 2, they depend only on the following properties ofthe oeÆients b = b0, � = �0 and their approximations bk, �k:1Æ the funtions bk(r; �), �k(r; �) are ontinuous on Rm for any r 2 [0; T ℄ andk � 0,2Æ bk(r; �) ! b(r; �), �k(r; �) ! �(r; �) loally uniformly on Rm as k ! 1 forany r 2 [0; T ℄,3Æ the funtions bk, �k are loally bounded uniformly in k � 0, i.e.supk�0 supr2[0;T ℄ supkzk�L�kbk(r; z)k _ �k(r; z)k	 <1for eah L � 0.As a onsequene, Theorem 0.1 remains valid if existene of a suitable Lyapunovfuntion is supposed instead of the linear growth hypothesis. One proeeds asin the proof of Theorem 0.1, approximating the oeÆients b and � by boundedontinuous funtions that satisfy the same Lyapunov estimate as b and �. However,the proof of tightness is more tehnial, although no fundamentally new ideas areneeded; details may be found in a ompanion paper [7℄.4. Appendix. To keep the paper self-ontained as muh as possible, we providehere proofs of Lemmas 3.5 and 3.6.Proof of Lemma 3.5. Choose f 2 CV and L > 0 arbitrarily. The funtionK 7! �K(f) is obviously nondereasing, hene it has a left-hand limit at the pointL and limK!L� �K(f) � �L(f): (4.1)If kfkCV < L then kfkCV < L� Æ for some Æ > 0 and thus �L(f) = T = �K(f) forall K 2 [L� Æ; L℄, so we may assume that kfkCV � L. Then kf(�K(f))k � K forall K 2 [0; L℄ and ontinuity of f yieldsf� limK!L� �K(f)� = limK!L�f(�K(f)) � limK!L�K = L;whene �L(f) � limK!L� �K(f);whih together with (4.1) proves the statement (a).21



To prove (b), take an arbitrary sequene ffrg in CV suh that fr ! f uniformlyon [0; T ℄ as r !1. Let " > 0, thenmax[0;�L(f)�"℄ kfk < L;so there exists r0 2 N suh that max[0;�L(f)�"℄ kfrk < Lfor all r � r0, thus �L(fr) � �L(f)� " for all r � r0. Sine " was arbitrary,lim infr!1 �L(fr) � �L(f);that is, �L is lower semiontinuous at the point f .Finally, assume in addition that ��(f) is ontinuous at the point L. If �L(f) = Tthen T = �L(f) � lim infr!1 �L(fr) � lim supr!1 �L(fr) � T(note that �L is [0; T ℄-valued) and we are done. So assume that �L(f) < T andtake an arbitrary " > 0 satisfying �L(f) + " < T . By ontinuity, a K > L may befound suh that �K(f) < �L(f) + ". Consequently,max[0;�L(f)+"℄ kfk � K > L;thus max[0;�L(f)+"℄ kfrk � Lfor all r suÆiently large, that is �L(fr) � �L(f)+" for all r suÆiently large, whihimplies lim supr!1 �L(fr) � �L(f)and �L is upper semiontinuous at f . Q.E.D.Proof of Lemma 3.6. Here we follow the book [11℄ losely. First, note thatfor any given u > 0 q-almost any trajetory of ��(Z) has only �nitely many jumpsof size greater than u. For brevity, set��L(Z) = limM!L+ �M (Z)� �L(Z)and de�ne reursively random times�0(u) = 0; �p(u) = inf�L > �p(u); ��L(Z) > u	; u > 0; p 2 N:22
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