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Abstract: The present paper deals with the goodness of fit and the two-
sample problem testing related to the event-history type data. The proposed
graphical methods are related to the bayesian nonparametric approach and
take advantage of MCMC estimation of the hazard rate. The first technique
of the homogeneity testing is based on the method of Arjas [2] who estimated
the hazard rate under the null hypothesis (all individuals are governed by the
same rule) and then plotted the estimated cumulative hazard rate against
the number of failures in one group and in the other group separately. The
second method to detect the inhomogeneity in two groups uses the estimation
of the hazard rate based on the first - control - group and compare it to the
second one. The article conclude with a concrete application of the methods
on a vaginal cancer mortality data.

Abstrakt: Súčasný článok sa zaoberá problémom testu dobrej zhody a dvoj-
výberovým testom v oblasti dát prežitia. Predložené metódy sú spojené
s bayesovským neparametrickým pŕıstupom a MCMC odhadmi pre funk-
ciu hazardu. Prvý test homogeneity vychádza z článku Arjas [2], v ktorom
je odhadnutá funkcia hazardu za predpokladu platnosti nulovej hypotézy,
čiže všetky objekty sa správajú rovnako nezávisle na rozdeleńı do skuṕın.
Následne sa vykresĺı odhadnutá kumulat́ıvna funkcia hazardu proti kumu-
lat́ıvnemu počtu udalost́ı v oboch skupinách zvlášt’. V druhom pŕıstupe od-
hadneme funkciu hazardu v jednej skupine a podobne ako v predchádzajúcom
porovnáme s druhou. Článok je zakončený konkrétnou aplikáciou na reálnych
dátach.

1 Introduction

The aim of the analysis of life history data is to describe the behaviour of
the underlying processes what is usually done by assuming a suitable model
for the hazard rate. When the model is fitted, the next step is the assessment
of quality of the estimation and that leads us to the goodness of fit testing.
Over last decades many powerful and convenient methods of detecting, whe-
ther such a model is unsatisfactorily specified, arised. Particularly in case of
presence of some covariates, the inference is related to the form and signifi-
cance of the dependence of the observed times on those covariates. The known
methods are mostly based on the martingal properties of the differences be-
tween observed cumulative number of failures and the estimated cumulative
hazard rate.
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Let us consider n parallel mutually independent counting processes N1(t),
N2(t), . . . , Nn(t) observed in the time interval [0, T ]. We assume that all pro-
cesses start from zero, Ni(0) = 0, and that Ni(t) increases in +1 when the
i-th object happens to meet an event of interest. The i-th process is expected
to behave according to an intensity process Ii(t) · λ(t) where λ(t) is a boun-
ded nonnegative continuous hazard function and Ii(t) is an indicator process
(indicating whether the i-th individual is at risk of event, i.e. Ii(t) = 1 when
it is at risk, Ii(t) = 0 otherwise). The indicator process has its importance
when the censoring is present or when the occurence of event implies the
end of the observing of the object. As the result we obtain the multivariate
counting process N(t) = (N1(t), N2(t), . . . , Nn(t))T .

The hazard rate related to i-th object, λi(t), is the instantaneous rate of
an event occuring at time t defined as

λi(t) = lim
∆t→0

1

∆t
P (Ni(t + ∆t) − Ni(t) = 1|Ft),

where Ft := σ{Ni(s), 0 ≤ s ≤ t} is σ-algebra of the history of the i-th object
up to time moment t. In next we will consider a special case of previous setting
- a typical survival data with one possible event on each object (either death
or censoring).

Now, let us introduce the generalized residual at given time t as

Xi(t) = Ni(t) −
∫ t

0

Ii(u)λi(u)du

for all i. Then the process (Xi(t), t ∈ [0, T ]) is an Ft-martingale and is called
the residual process for i-th individual. Let us have t1, . . . tn observed times
of events. By considering Xi(t) at the ordered set of uncensored failure times
t(1), t(2),. . . ,t(K), where K is the total number of uncensored failures, we
obtain

Xi(t(k)) = Ni(t(k)) −
∫ t(k)

0

Ii(u)λi(u)du, k = 1, . . . ,K.

an discrete time martingale of parameter k. In fact, the integrated intensity
process approximates the number of uncensored events observed on the indi-
vidual. Hence, the motivation for the testing technique is straightforward. Let
us have the cumulative hazard rate Λi(t) =

∫ t

0
λi(u) du and after denoting

X(t) =
∑n

i=1 Xi(t) and N(t) =
∑n

i=1 Ni(t),

X(t(k)) = N(t(k)) −
n∑

i=1

∫ t(k)

0

Ii(u)λi(u)du = k −
n∑

i=1

Λi(t(k) ∧ ti),

is close to zero for all k ∈ {1, . . . ,K}. Now we can substitute the unknown
hazard rate with the appropriate estimation and use it for testing the good-
ness of fit as well as homogeneity among groups.



Testing homogeneity and goodness of fit in survival data 543

Naturally, the martingale property of the residual process is not always
preserved after plugging-in the estimated hazard rate but there are cases
in which it is true. There is certain number of publications regarding the
topic in various models of hazard rate; see e.g. excellent [7] for the gene-
ralized residuals in the Cox model, further [11] in Aalen regression model
and [6] in Cox-Aalen model. Apparently, once the estimated residual process
is a martingale, the central limit theorem for martingales (cf. [4]) gives the
weak convergence to zero-mean Gaussian process. This is the way to obtain
the confidence bands around the estimated residual process needed for tests,
although often tedious and in some cases intractable because of complicated
covariance structure of the limiting process.

The alternative which introduces itself is to take the bayesian approach for
modelling and estimating, gain the sample of the estimated hazard rate via
MCMC algorithms and use the pointwise credibility bands for the estimated
residual process. There were developed many bayesian models for hazard rate,
for a good overview see [8] or more detailed [9].

Useful graphical methods based on the residual processes were introdu-
ced by e.g Andersen [1] who considered various plots mainly focused on the
checking the proportional-hazards assumption of Cox model, and later by
Arjas [2] who came up with the plot of the estimated cumulative hazard
against number of failures in stratas, in which the observed individuals were
splitted.

In next sections, a bayesian model for the hazard rate will be introduced
and the testing techniques for two-sample problem will be carried out. The
results will be presented in example of a real data analysis.

2 Model and estimation of the hazard rate

Here we describe one possible model which can be used in bayesian setting.
Let us for now assume that all observed objects are governed by the intensity
processes with the same hazard rate λ(t) without taking any covariate pro-
cess into account. To estimate the hazard rate we use nonparametric method
firstly proposed by Arjas and Gasbarra [3]. They assumed the piecewise con-
stant function for the hazard rate. All the individuals were expected to behave
according to a common hazard rate {λt, t ∈ [0, T ]}. Further in their model
the hazard function was constant within the (m + 1) intervals which came
from dividing the whole time interval [0, T ] by m jump times T1, . . . , Tm. The
level of hazard function within the interval (Tj−1, Tj ] was denoted as λj . The
number of jump times m could vary. To reach the estimates the MCMC were
used.

Let us denote H = (λ1, T1,. . . ,λm, Tm,λm+1). The main idea is to pro-
vide as many iterations as necessary in which the piecewise constant ha-
zard function defined by vector of parameters H is upgraded according to
the data and prior information. As soon as we possess the Markov chain

(H(i))R
i=1 = (λ

(i)
1 , T

(i)
1 , . . . , λ

(i)

m(i) , T
(i)

m(i) , λ
(i)
m(i)+1)

R
i=1, where R is the number
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of provided iteration and parameters denotes with (i) are those connected
with i-th iteration and we are ensured about the ergodicity of the chain, we
could compute the resulting estimate of the hazard function as the mean of
the members of the chain. Finally, even though the simulated hazard rates
are piecewise constant functions, asymptotically the mean of them yields to
a continuous function.

Except few changes we adopt the similar structure of the model for the
hazard rate. The chosen prior distribution of the levels of hazard rate λi,
i = 1,. . . ,m + 1 is gamma distribution with particular setting of parameters
dependent on parameter α to fold in the martingale structure. The jump
times are distributed as the homogeneous Poisson process in [0, T ] with unk-
nown constant rate µ. Further, we extended Arjas and Gasbarra’s model by
accompanying the hierarchical structure into model. For details about the
estimation and the discussion on the ergodicity of the chain see [10].

3 Testing

As it was announced before the main focus of the paper is in a simple two-
sample problem which occurres when the observed objects come from two
different environments. Also more complicated cases could be transformed to
this situation by dividing the individual processes in two stratas according to
certain values of covariates or the observed times themselves (as it was done
in [2, sec. 3.3]).

3.1 Arjas’s plot

Arjas [2] suggested to provide the estimation under the assumption that the
individuals are divided in two or more stratas according to some covariates
observed alongside (more clearly, in his case he worked with the Cox model
with p covariates and wanted to check whether (p+1)-th covariate should by
included in model). We accommodate his approach in our simple case of two
stratas. The null hypothesis for us is that the observed individuals (i.e. the
counting processes) behave in the same way in both stratas. We provide the
estimation of the hazard rate according to the null hypothesis what means to
use all observations from all objects together, as if they were replicates of each
other, to estimate the hazard rate. Once we have the estimated hazard rate
λ̂i(t) ≡ λ̂(t), 0 ≤ t ≤ T, for all i, we can compute the estimated cumulative
hazard function for 0 ≤ t ≤ T in the first strata as follows

Ĥ(strata1)(t) =
∑

i∈strata1

∫ t

0

Ii(s)λ̂(s) ds (1)

and analogically in the second one. Now we base plotting technique on the
zero-mean martingale property of difference between observed numbers of
failures and the real cumulative hazard function. Let t(1) ≤ t(2) ≤ · · · ≤
t(N) be ordered observed times of failures. The idea is to plot Ĥ(strata1)(t(i))
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and Ĥ(strata2)(t(i)) against the observed cumulative number of failures in the
first strata and the second strata respectively. In case the null hypothesis of
homogeneity of both groups is correct, both lines should be placed near the
diagonal line f(x) = x. If the lines are far from each other and from the
diagonale then the null hypothesis is rejected. The significant departure from
the null hypothesis is proposed to be detected by the pointwise 95% credibi-
lity bands created from the sample of Ĥstrata1 calculated from the posterior
sample of the hazard rate.

3.2 Two-sample test

The basis of the second proposed approach is to provide the estimation of the
hazard rate from the observations belonging to one - control - group of ob-
jects. Then we calculate the estimated cumulative hazard function Ĥ(strata1)

accordingly to (1) and plot Ĥ(strata1)(t(i),2) against the observed cumulative
number of failures in the second strata. In the previous we used the notation
t(1),2 ≤ t(2),2 ≤ · · · ≤ t(N2),2 for the observed times of failures occurring in
the second group of objects with the total number of observations denoted
as N2. If both groups of objects possess the same behaviour, the line is near
the imaginary line f(x) = x. Again, to detect a significant departure from
the null hypothesis we use the simulated pointwise confidence bands drawn
from the MCMC simulation output.

Apart from the homogeneity testing, the introduced idea is plausible for
testing of overall goodness of fit. Similarly, as in (1) for stratas, we can cal-

culate Ĥ(t) =
∑n

i=1

∫ t

0
Ii(s)λ̂(s) ds for whole dataset. Plotting the values of

Ĥ(·) in observed uncensored failure times versus number of observed failures
is close to diagonale f(x) = x if the fit is sufficient.

4 Application

In following the application on a real data is presented. The data set was
analyzed in [5]. The observations give the times from insult with the car-
cinogen DMBA to mortality from vaginal cancer in rats. Two group were
distinguished by a pretreatment regimen. We want to compare the impact
of different regimens on the waiting times to death. The data represents the
usual time-to-event setting with one observation (failure or censored event)
belonging to each individual.

First, the hazard rate was estimated separately for each group as well
as for the whole set of observations. The estimated hazard rates are plotted
in figure 1. In the bottom part of the figure the observed times of events for
both groups are displayed, the failures are denoted with ◦ and censored events
with +. The upper row of observations is from the first group and bellow is
the row of the second group’s observations. Figure 2 shows the plots related
to the estimated cumulative hazard rate in the first group which acts as the
control group here. In the left side the goodness of fit of the estimated hazard
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Figure 1: The plot of the estimated hazard rate in the whole set of observati-
ons (solid line) and in the two groups separately (dashed lines). At the bottom
of the figure the data are displayed in two lines - the observations from the
first group in the upper level and from the second group below.

Figure 2: Plots of the cumulative estimated hazard rate against the cumula-
tive number of failures; in the left side the goodness of fit test related to the
control group, the right-hand plot displayes the test of homogeneity of both
groups. The 95% pointwise credibility bands are included.
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Figure 3: Arjas’s plot of the homogeneity of two groups. The 95% pointwise
credibility bands are included.

rate to the control group is shown and the right-hand plot displayes the
test of homogeneity described in the section 3.2. Further, in figure 3 Arjas’s
plot is presented. Obviously, we can reject the hypothesis of homogeneity of
mortality in two groups of rats.

The parameters chosen for the MCMC estimation of the hazard rate was
µa = 10, µb = 100, αa = 1000, αb = 100, α0 = 1 and β0 = 10000. The
number of iterations was 5000 and first 1000 were erased.

5 Conclusion and discussion

The main idea of the previous pages was to think of alternative way of as-
sessing the goodness of fit and homogeneity of two samples in survival data.
The proposed methods are related to bayesian methodology and work with
a sample of simulated hazard rates from MCMC procedure. The advantage
is concentrated in the fact that existence of the sample allows us to create
the testing machinery based on the calculated pointwise credibility bands in-
stead of the rather cumbersome asymptotics. This type of approach can also
be a good starting point for testing in more complicated models in which the
key martingale property after plugging-in the estimator is lost.

The disadvantage of the method is that the result of the test depends
also on the precision of the estimation which is connected with the choice




