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Abstract: Residual analysis is used commonly in statistical tests of model fit, i.e. of good correspondence
between data and model. We shall recall the notion of martingale residuals defined for the case of lifetime
models based on failure intensities. Analysis of these residual processes has already been studied by
many authors. Nevertheless, Bayes approach to this problem is just developing. We shall present a Bayes
procedure of estimation in models containing nonparametric components. Further, Bayes construction of
residual processes and model goodness-of-fit assessing will be proposed and demonstrated on an example
with Cox’s regression model.
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1 Martingale residuals

Let us first recall a basic scheme of survival analysis, for the beginning without considering any
dependence on covariates. We shall switch to regression models later. Let us imagine that we
observe survival times of n objects of the same type, so that we describe their survivals by i.i.d.
(independent, identically distributed) set of random variables Ti. Alternatively, we may consider
their counting processes Ni(t), each having maximally 1 count (at the time of failure, Ti), or it
can be censored without failure. For this case, we have indicator processes (of being in risk) Yi(t),
which =0 after failure or censoring, Yi(t) = 1 otherwise. As lifetimes are i.i.d., corresponding
counting processes have the same common hazard rate h(t) ≥ 0. Cumulated hazard rate
is then H(t) =

∫ t
0 h(s)ds. It follows that the intensity of Ni(t) is ai(t) = h(t) · Yi(t). Notice a

difference between those two notions: The hazard rate is a characteristics of distribution, namely
here h(t) = −dF̄ (t)/dt where F̄ (t) = 1−F (t) is a survival function, complement to distribution
function, while intensity depends on realization of process Yi(t). It is assumed that data are
observed on a finite time interval t ∈ [0, T ], Ni(0) = 0.

We can as well define sums of individual characteristics, namely counting process N(t) =∑n
i=1 Ni(t) counting number of failures, further Y (t) =

∑n
i=1 Yi(t), cumulated intensities Ai(t) =∫ t

0 ai(s)ds and A(t) =
∑n

i=1 Ai(t), so that here A(t) = h(t) ∗ Y (t).
In theoretical studies on lifetime models, many results are based on martingale – compensator

decomposition of counting process, namely that Ni(t) = Ai(t) + Mi(t), so that also N(t) =
A(t)+M(t), where Mi(t), M(t) are martingales with EM(t) = 0, conditional variance processes
(conditioned by corresponding filtration, a nondecreasing set of σ-algebras F(t−)) are 〈Mi〉(t) =
Ai(t), 〈M〉(t) = A(t). From practical point of view, these limits from the left of σ-algebras F(t−)
represent actually all observations available at (just before) time t. Naturally, martingales have
non-correlated increments, and here are also non-correlated mutually (for different i).

Then it is quite reasonable to consider a RESIDUAL PROCESS (martingale residuals)

R(t) = N(t)− Â(t) = M(t) + A(t)− Â(t)

as a tool for testing model fit. Here Â(t) is estimated cumulated intensity. Hence, residual
process is constructed from observed data, and its properties depend mainly on properties of
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estimator of cumulated hazard rate, because Â(t) =
∫ t
0 Y (s)dĤ(s). Tests are then performed

either graphically or numerically, critical borders for assessing the goodness-of-fit are then based
on asymptotic properties of estimates.

1.1 Properties of residuals

The most common estimator of cumulated hazard rate H(t) is so called Nelson-Aalen estimator,
which has the form:

Ĥ(t) =
∫ t

0

n∑

i=1

dNi(s)∑n
j=1 Yj(s)

=
∫ t

0

dN(s)
Y (s)

,

so that it is a piecewise constant function with jumps dĤ(s) = dN(s)/Y (s) at times where
failure occurred. Its asymptotic properties, namely uniform on [0, T ] consistency in probabil-
ity and asymptotic normality when n → ∞, are well known (for review of survival analysis,
see for instance Kalbfleisch and Prentice, 2002). More precisely, the following convergence in
distribution on [0, T ] to Brown process B holds:

√
n(Ĥ(t)−H(t)) → B(V (t)), V (t) =

∫ t

0

h(s)ds

c0(s)
,

where we assume the existence of c0(s) = P − limY (s)
n , uniform in [0, T ], c0(s) ≥ ε > 0.

Hence, it is possible to construct Kolmogorov-Smirnov type confidence bands for H(t), also
point-wise confidence intervals. Consistent (again uniform in 0, T ) estimator of V (t) is available,
too: V̂ (t) =

∫ t
0

n dN(s)
Y (s)2

.

However, in present contribution we are more interested in properties of residual process
R(t) = N(t) − Â(t). Notice that Â(t) = N(t) directly, so that it is preferred to construct
residuals in data subgroups (strata), S ⊂ {1, .., n}. Thus, let us define

RS(t) = NS(t)− ÂS(t) = MS(t) + AS(t)− ÂS(t),

where we denoted again N(t) =
∑n

i=1 Ni(t), NS(t) =
∑

i∈S Ni(t), similarly for Y (t), M(t), A(t), Â(t).
As

ÂS(t) =
∫ t

0

∑

i∈S

dĤ(r)Yi(r) =
∫ t

0

dN(r)
Y (r)

· YS(r) =

=
∫ t

0

dH(r)Y (r) + dM(r)
Y (r)

· YS(r) = AS(t) +
∫ t

0

dM(r)
Y (r)

· YS(r),

we obtain that (with notation S̄ - complement of S)

RS(t) = MS(t)−
∫ t

0

dM(r)
Y (r)

· YS(r) =
∫ t

0

dMS(r)YS̄(r)− dMS̄(r)YS(r)
Y (r)

.

From its structure it follows that process RS(t) has non-correlated increments, conditional vari-
ance (conditioned by σ-algebras F(t−)) of 1√

n
dRS(t) is

dH(t)
nY (t)2

(YS̄(t)YS(t)2 + YS̄(t)2YS(t)) ∼ dH(t)
cS(t)cS̄(t)

c0(t)
,

where we again assume that there exist P-limits YS(t)/n → cS(t), YS̄(t)/n → cS̄(t), Y (t)/n →
c0(t), uniform in t ∈ [0, T ], positive. Then asymptotic normality, namely the convergence to
Brown process 1√

n
RS(t) → B(VR(t)) holds, and asymptotic variance function VR(t) is consis-

tently estimable by:

V̂R(t) =
∫ t

0

dĤ(r)YS(r)YS̄(r)
nY (r)

=
∫ t

0

dN(r)YS(r)YS̄(r)
nY (r)2

.
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Hence, the process (provided assumptions of our model hold)

1√
n

RS(t)
(1 + V̂R(t))

behaves asymptotically as Brown bridge process, so that Kolmogorov-Smirnov (or other similar,
as Cramer-von Mises) criterion can be used directly for it. In the present case, we assume a
simple model of survival times (without any non-heterogeneity), so that the method can be used
for assessing the homogeneity of different subsamples S.

For direct comparison of two subsamples C and D the following variant can be considered:
Let H(t) be estimated from a set of data D and residuals are constructed in another set C.
Under hypothesis that H(t) is the same in both sets, we have

RC,D(t) = NC(t)− ÂC(t) = MC(t)−
∫ t

0

dMD(r)
YD(r)

· YC(r).

Hence, conditional variance

var
1√
n

dRC,D(t) ∼ dH(t)
cC(t)
cD(t)

c0(t),

again with assumed existence of P-limits YC
n → cC , YD

n → cD, Y
n → c0 as above.

The case considered in the present part was rather simple, in such a case the tests of model
fit can be performed directly with the aid of estimated cumulative hazard rates or distribution
functions (recall well known Product limit estimate of Kaplan and Maier). However, the test are
not so straightforward in cases of regression models. That is why we defined residual process in
a simple setting first, and we shall continue by description of Bayes variant of residual analysis.

2 Bayes version of residual process

Bayes approach to statistical models considers all models components (i.e. the parameters as
well as non-parametrized components) as random quantities, initially with a prior probability
distribution. The result of statistical analysis is then a posterior distribution of those model
components, i.e. estimate is a distribution. Actually it is the likelihood function ’modulated’
by prior distribution.

From another point of view, it is possible to say that while the ”standard statistics” studies
the variation of data and its consequence when inserted to given functions (estimators), in Bayes
statistics the main concern is variation of ’parameters’, data are taken as fixed.

Today, Bayes analysis is often connected with (supported by) MCMC (Markov Chain Monte
Carlo) methods. They are based on certain algorithms of random sampling (Gibbs sampler,
Metropolis-Hastings procedure) and are used for obtaining approximate representation of pos-
terior distribution. More about MCMC can be found elsewhere, for instance in Gamerman
(1997).

In the case considered here we deal with nonparametric hazard rate. For Bayes solution,
its representation can be made from piecewise-constant functions (or from splines or from other
functional basis), as in Arjas and Gasbarra (1994). Parameters are then points of changes of
hazard rate, also their number in [0, T ], and levels of hazard rate in intervals between these
points. Arjas and Gasbarra (1994) show how MCMC generation can follow Gibbs sampler
combined with an ”accept-reject” sampling method.

Once we have posterior sample (i.e. last M representatives of aposteriori distribution ob-
tained by MCMC procedure) of ’hazard rates’, h(m)(t), we can construct from them a sample
of cumulated intensities in subgroup S and corresponding residuals:
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A
(m)
S (t) =

∫ t

0
h(m)(r)YS(r)dr, R

(m)
S (t) = NS(t)−A

(m)
S (t).

Further, point-wise (at each t) sample quantiles of R
(m)
S (t) are obtained immediately, showing

so called credibility intervals (Bayesian version of confidence intervals) for RS(t). Hence, if 0 is
inside, hypothesis of good fit is not rejected.

Methods for construction of confidence bands (of Bayes type) on whole interval [0, T ] are
studied intensively. They can utilize ideas developed for construction of multivariate quantiles,
or even non-parametric regression quantiles, also just developing area of ’depth of data’ analysis
can contribute to this task solution.

3 Residuals in regression models

In the follow-up, we shall assume that distribution of time-to failure, and consequently also
intensity, depends on covariates. It means that we have to select a regression model for hazard
rate and after its evaluation it is necessary to test the model fit. It is actually the proper
situation where the residual analysis should be used. We shall discuss here just two types of
regression models, skipping another frequently used, namely the accelerated failure time model.
More details about regression models in survival analysis can be found in many monographs, let
us again mention Kalbfleish and Prentice (2002).

3.1 Additive (Aalen’s) regression model

In this model, hazard function is specified as h(t, z) = z · β(t), where z stands instead values of
covariates, β(t) are functions of time, both z and β are p-dimensional. Their domains should
ensure that h(t, z) ≥ 0. As a rule, the first covariate component is taken fixed to 1, so that β1(t)
has the meaning of a ’baseline’ hazard function. In the sequel, by index i, i = 1, .., n we shall
denote individual objects, while by k, k = 1, .., p components of vectors β, z.

The covariates themselves, Zi(t), can be different for each object and can change in time.
Individual intensity of Ni(t) is then

ai(t) = Zi(t) · β(t) · Yi(t), i = 1, . . . , n.

Cumulated functions Bk(t) =
∫ t
0 βk(s) ds are estimated by weighted least squares method. As

dNi(t) = Xi(t)dB(t) + dMi(t), where Xi(t) = Zi(t) · Yi(t), then

B̂(t) =
∫ t

0
(X(r)′W (r)X(r))−1X(r)′W (r)dN(r),

where W (r) is a matrix of weights; the simplest choice W (r) = In, identity matrix, optimal
weights are W (r) = diag{1/ai(r)}, in praxis âi(r) are used, computation is iterated.

Consistency and asymptotic normality of B̂(t) are straightforward, it holds that the term

√
n(B̂(t)−B(t)) =

√
n

∫ t

0
X(r)dM(r),

where X(r) = (X(r)′W (r)X(r))−1X(r)′W (r), is asymptotically distributed as a Gaussian pro-
cess with independent increments (i.e. Brown process) and its covariance function is estimable
consistently (uniformly on [0, T ]) by

n

∫ t

0
X(s) D(s,B(s))X

′
ds

provided such a limit exists (here D(s,B(s)) is a diagonal matrix with components ai(s)).
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It follows that the case is similar to the case of nonparametrized hazard rate treated in
1-st part. It means that it is possible develop the asymptotic distribution of residuals, again
coinciding with Brown process distribution. It is described in detail in Volf (1996). Even Bayes
residual analysis can follow the same scheme as in the preceding part, each function βk(t) has
to be modelled separately.

3.2 Cox’s regression model

As we shall se, the case differs in certain aspects from preceding one, due more complicated
asymptotic properties. Now, the hazard rate is specified as h(t, z) = h0(t)exp(z · β), with
processes of covariates Zi(t) and parameter β (both p-dimensional), h0(t) is a baseline hazard
rate, a nonnegative function.

Then intensity of i-th process Ni(t) is

ai(t) = h(t, Zi(t)) · Yi(t).

Parameter β is estimated from partial log-likelihood

Lp =
n∑

i=1

∫ T

0
log{ exp(Zi(t)β)∑n

k=1 exp(Zk(t)β) · Yk(t)
}dNi(t),

by an iterative procedure (of Newton-Raphson as a rule), cumulated baseline hazard H0(t) =∫ t
0 h0(r)dr is then estimated as

Ĥ0(t) =
∫ t

0

dN(r)
∑n

k=1 exp(Zk(t)β̂) · Yk(t)
.

Theory on properties of estimates is collected elsewhere, first time the results has been estab-
lished by Andersen and Gill (1982). Estimates are consistent, asymptotically normal, however,
neither

√
n(Ĥ0(t)−H0(t)) nor residual process are martingales.

3.3 Residuals in Cox’s model

Residuals are sometimes formulated more generally, as

dR(t) =
n∑

i=1

Ki(t) · (dNi(t)− dÂi(t)),

with some (convenient) ’weight’ processes Ki(t), for instance if Ki(t) = Zi(t) (p-dimensional),
R(t) is then estimated score process (the first derivative) of Lp, while Ki(t) = 1[i ∈ S] yields
stratified residuals. Stratified residuals (the simplest case) are then expressed as

dRS(t) = dMS(t) + dH0(t)CS(β0, t)− dĤ0(t) · CS(β̂, t),

where dĤ0(t) = dN(t)

C(β̂,t)
and CS(β, t) =

∑
i∈S exp(Zi(t)β)·Yi(t), C(β, t) =

∑n
i=1 exp(Zi(t)β)·Yi(t).

If we take approximately β̂ ∼ β0, we obtain expression similar to previous ’non-regression’
case. Exact approach (for good overview see Kraus, WDS 2004) uses Taylor expansion of the
last term at β0. Then RS(t)/

√
n is expressed with the aid of a martingale and a nonrandom

function, with asymptotic distribution as a Gaussian process, however with rather complicated
covariance structure.

Hence, random generation of would-be residual processes with ’ideal’ distribution under
hypothesis of model fit is possible (but not easy). It is actually a bootstrapping, by which
we obtain a sample of ’ideal’ residual processes. Then, for instance their absolute maxima
are compared with maximal residual computed from our data. Or other characteristics can
be compared. That is why, the practical tests of Cox’s model fit is mostly performed just
graphically, comparing visually how far are residuals in group S from zero line, or, equivalently,
ÂS(t) from NS(t), as proposed in Arjas (1988). Thus, it seems that in the case of Cox’s model
the Bayes analysis could offer an easiest tool for model fit assessing.
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3.4 A Bayes procedure in Cox’s model

Let us briefly summarize starting points and procedure of Bayes analysis in the Cox’s model
setting, namely the variant applied in the following numerical example. Metropolis-Hastings
steps of MCMC procedure were used to obtain samples representing posterior distributions of
β. Values of β-s were proposed from a prior (a sufficiently wide uniform, in our case), accepted
or rejected with the use of partial likelihoods proportion. Then, to each β, a representation of
H0(t) was generated, similarly as in the 1-st part. i.e. from a piecewise constant prior. Finally,
we obtained a sample of both, β(m), h

(m)
0 (t), m = 1, .., M , from them the intensities and residuals

(in a group S, say) were derived:

A
(m)
S (t) =

∫ t

0
h

(m)
0 (r)

∑

i∈S

exp
(
Zi(r)β(m)) · Yi(r)

)
dr, R

(m)
S (t) = A

(m)
S (t)−NS(t).
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Figure 2: Results of Bayes - MCMC estimation in Cox’s model
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4 Example

We analyzed the data – survival of 50 metal parts tested by cycles of vibrations under different
stress level. The data are on Figure 1, some of them are censored from above (survival is
randomly censored from the right). It is seen that the survival is significantly smaller under
larger load. To express this dependence, we selected the Cox’s model. Standard analysis in
Cox’s model yielded estimated β = 0.0429, with asymptotic 95% confidence interval (0.0279,
0.0578).
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Figure 3: Characterization of residual processes in 2 groups, estimated intensities are plotted
against counting processes.

Then, Bayes analysis, following the procedure described above, has been performed. We
generated 5000 β-s, take last 2000 as a representation of posterior distribution of β. To each
β(m) 200 instances of H0(t) were generated, we always took just the last of them. In such a
way, a representation with M=2000 members was obtained. Together, it was used to model fit
analysis. Posterior of β had the mean 0.0432 and standard deviation 0.77.

Figure 2. shows (above left) the course of MCMC generation of β, last M = 2000 iterations
from 5000. Above right there is the histogram of final sample of β(m), m = 1, ...,M . Below
left is development of log of partial likelihood of β, and finally (below right) the characteristics
of generated representation H0(t)(m) of baseline cumulative hazard function are shown, namely
point-wise sample medians and 2.5%. 97.5% quantiles (several functions from set H0(t)(m) are
displayed, too, by dots).

Figure 3 then displays estimated cumulated intensities ÂS(t), more precisely, from obtained
sample we display their point-wise medians (full) and 95% credibility intervals (dashed) plotted
against counts NS(t), in 2 groups: Z < 150, Z > 150). It is seen that graphs are concentrated
around diagonal line (dashed, too), showing good Cox’s model fit. As it has been said, it is
a way proposed for instance by Arjas (1988), quite equivalent to plotting the residuals around
zero line.

5 Conclusion

Models of lifetime often have to incorporate a dependence on covariates. The sense of the present
contribution was to show several variants of goodness-of-fit tests as procedures supporting a
proper regression model selection. It was also shown that sometimes, as in the case of Cox’s
regression model, Bayes approach could be a reasonable alternative to standard analysis.
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